Table of contents

Buy this issue in print

Corrigendum

023001
The following article is Open access

, , and

We propose a new scheme for supplying voltages to the electrodes of microfabricated ion traps, enabling access to a regime in which changes to the trapping potential are made on timescales much shorter than the period of the secular oscillation frequencies of the trapped ions. This opens up possibilities for speeding up the transport of ions in segmented ion traps and also provides access to control of multiple ions in a string faster than the Coulomb interaction between them. We perform a theoretical study of ion transport using these methods in a surface-electrode trap, characterizing the precision required for a number of important control parameters. We also consider the possibilities and limitations for generating motional state squeezing using these techniques, which could be used as a basis for the investigation of Gaussian-state entanglement.

023002
The following article is Open access

, and

Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator.

023003
The following article is Open access

, , and

We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra.

023004
The following article is Open access

, and

We investigate the physical origin of the existence or absence of Dirac cones in graphynes by combining first-principles calculations with the downfolding method. We clarify that acetylenic linkages (−C≡C−) can be reduced into an effective hopping term between vertex atoms, and thus various graphynes may be described by a unified tight-binding model on a honeycomb lattice, which is topologically equivalent to that of graphene. Critically, whether Dirac cones exist or not in graphynes is determined by the combination of hopping terms. Based on the unified model proposed, two additional graphynes are revealed to possess Dirac cones, one of which has a rectangular symmetry and contains only four vertex atoms in a unit cell.

023005
The following article is Open access

, , and

A feature common to various solids, including single-alkali (SA) and mixed-alkali (MA) glasses, is a frequency-dependent ionic conductivity that shows the power law and the linear behavior with frequency. In spite of the advances made, the origin of this behavior continues to be controversial. We report our measurements of the conductivity of a series of MA borate glasses (Li1−xAx)2B4O7 (A = Na, K, Rb, Cs; 0 ⩽ x ⩽ 1.0) in the frequency range of 100 Hz–15 MHz and in the temperature range from 300 K to less than the glass transition temperature Tg . Using a self-similar spatial structure model, we show that the real process of ionic transport in the SA and the MA glass systems can be described by the fractional kinetic equations containing non-integer integration/differentiation operators. In the procedure of a systematic deduction of the ionic transport in glass systems, we obtained two important insights. Firstly, the time-dependent conductivity σ(t) ∼ exp (t/τc)α reproduces the empirical expression of mean square displacement of the mobile ions 〈r2 (t)〉 ∼tα as a first approximation of ions moving through the fractal pathway and leads to the universal power-law behavior at frequency scales. Secondly, the modified fractional Rayleigh equation with a repulsive interaction provides a quantitative explanation for experimental findings on the SA and the MA glasses. Investigations on the power-law exponent β in the SA and the MA borate glasses indicate that the ions move through the different branches of the fractal structured conduction pathways due to the structural character, associated with a site mismatch effect, and Coulomb blockade by the randomly distributed ions.

023006
The following article is Open access

, , , , , , , , , et al

Optical quantum communication utilizing satellite platforms has the potential to extend the reach of quantum key distribution (QKD) from terrestrial limits of ∼200 km to global scales. We have developed a thorough numerical simulation using realistic simulated orbits and incorporating the effects of pointing error, diffraction, atmosphere and telescope design, to obtain estimates of the loss and background noise which a satellite-based system would experience. Combining with quantum optics simulations of sources and detection, we determine the length of secure key for QKD, as well as entanglement visibility and achievable distances for fundamental experiments. We analyse the performance of a low Earth orbit satellite for downlink and uplink scenarios of the quantum optical signals. We argue that the advantages of locating the quantum source on the ground justify a greater scientific interest in an uplink as compared to a downlink. An uplink with a ground transmitter of at least 25 cm diameter and a 30 cm receiver telescope on the satellite could be used to successfully perform QKD multiple times per week with either an entangled photon source or with a weak coherent pulse source, as well as perform long-distance Bell tests and quantum teleportation. Our model helps to resolve important design considerations such as operating wavelength, type and specifications of sources and detectors, telescope designs, specific orbits and ground station locations, in view of anticipated overall system performance.

023007
The following article is Open access

, , , , , , , , , et al

Experimental data on laser-driven carbon C6+ ion acceleration with a peak intensity of 5 × 1020 W cm−2 are presented and compared for opaque target normal sheath acceleration (TNSA) and relativistically transparent laser–plasma interactions. Particle numbers, peak ion energy and conversion efficiency have been investigated for target thicknesses from 50 nm to 25 μm using unprecedented full spectral beam profile line-out measurements made using a novel high-resolution ion wide-angle spectrometer. For thicknesses of about 200 nm, particle numbers and peak energy increase to 5 × 1011 carbon C6+ particles between 33 and 700 MeV (60 MeV u−1), which is a factor of five higher in particle number than that observed for targets with micron thickness. For 200 nm thick targets, we find that the peak conversion efficiency is 6% and that up to 55% of the target under the laser focal spot is accelerated to energies above 33 MeV. This contrasts with the results for targets with micron thickness, where surface acceleration with TNSA is dominant. The experimental findings are consistent with two-dimensional particle-in-cell simulations.

023008
The following article is Open access

and

We study the mean-field dynamics and the reduced-dimension character of two-mode Bose–Einstein condensates (BECs) in highly anisotropic traps. By means of perturbative techniques, we show that the tightly confined (transverse) degrees of freedom can be decoupled from the dynamical equations at the expense of introducing additional effective three-body, attractive, intra- and inter-mode interactions into the dynamics of the loosely confined (longitudinal) degrees of freedom. These effective interactions are mediated by changes in the transverse wave function. The perturbation theory is valid as long as the nonlinear scattering energy is small compared to the transverse energy scales. This approach leads to reduced-dimension mean-field equations that optimally describe the evolution of a two-mode condensate in general quasi-one-dimensional (1D) and quasi-two-dimensional geometries. We use this model to investigate the relative phase and density dynamics of a two-mode, cigar-shaped 87Rb BEC. We study the relative-phase dynamics in the context of a nonlinear Ramsey interferometry scheme, which has recently been proposed as a novel platform for high-precision interferometry. Numerical integration of the coupled, time-dependent, three-dimensional, two-mode Gross–Pitaevskii equations for various atom numbers shows that this model gives a considerably more refined analytical account of the mean-field evolution than an idealized quasi-1D description.

023009
The following article is Open access

, , , , , , , , , et al

We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach–Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g = 2.7 × 10−9 with an integration time of 1000 s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.

023010
The following article is Open access

, and

By all-electron ab initio calculations, the layered polar semiconductor BiTeCl is shown to host giant bulk Rashba spin splitting, similar to the recently reported compound BiTeI. In both materials, the standard Rashba–Bychkov model is no longer applicable, because of huge band extrema shifts even in the absence of spin–orbit coupling and a strong momentum dependence of the Rashba coupling constant (αR). By assuming αR to be orbital dependent, a phenomenological extension of the Rashba–Bychkov model is proposed which explains the splitting behavior of states with small in-plane momentum.

023011
The following article is Open access

, and

Using the random phase approximation with both real space and discrete electron–hole (e–h) pair basis sets, we study the broadening of surface plasmons in metal structures of reduced dimensionality, where Landau damping is the dominant dissipation channel and presents an intrinsic limitation to plasmonics technology. We show that for every prototypical class of systems considered, including zero-dimensional nanoshells, one-dimensional coaxial nanotubes and two-dimensional ultrathin films, Landau damping can be drastically tuned due to energy quantization of the individual electron levels and e–h pairs. Both the generic trend and oscillatory nature of the tunability are in stark contrast with the expectations of the semiclassical surface scattering picture. Our approach also allows to vividly depict the evolution of the plasmons from the quantum to the classical regime, and to elucidate the underlying physical origin of hybridization broadening of nearly degenerate plasmon modes. These findings may serve as a guide in the future design of plasmonic nanostructures of desirable functionalities.

023012
The following article is Open access

, , and

We introduce a protocol to distribute entanglement between remote parties. Our protocol is based on a chain of repeater stations, and exploits topological encoding to tolerate very high levels of defects and errors. The repeater stations may employ probabilistic entanglement operations which usually fail; ours is the first protocol to explicitly allow for technologies of this kind. Given an error rate between stations in excess of 10%, arbitrarily long range high fidelity entanglement distribution is possible even if the heralded failure rate within the stations is as high as 99%, providing that unheralded errors are low (order 0.01%).

023013
The following article is Open access

, , , , , , , , , et al

We image the gigahertz vibrational modes of a plasmonic–phononic crystal at sub-micron resolution by means of an ultrafast optical technique, using a triangular array of spherical gold nanovoids as a sample. Light is strongly coupled to the plasmonic modes, which interact with the gigahertz phonons by a process akin to surface-enhanced stimulated Brillouin scattering. A marked enhancement in the observed optical reflectivity change at the centre of a void on phononic resonance is likely to be caused by this mechanism. By comparison with numerical simulations of the vibrational field, we identify resonant breathing deformations of the voids and elucidate the corresponding mode shapes. We thus establish scanned optomechanical probing of periodic plasmonic–phononic structures as a new means of investigating their coupled excitations on the nanoscale.

023014
The following article is Open access

, , and

Motivated by recent experimental data on thin film superconductors and oxide interfaces, we propose a random-resistor network apt to describe the occurrence of a metal–superconductor transition in a two-dimensional electron system with disorder on the mesoscopic scale. We consider low-dimensional (e.g. filamentary) structures of a superconducting cluster embedded in the two-dimensional network and we explore the separate effects and the interplay of the superconducting structure and of the statistical distribution of local critical temperatures. The thermal evolution of the resistivity is determined by a numerical calculation of the random-resistor network and, for comparison, a mean-field approach called effective medium theory (EMT). Our calculations reveal the relevance of the distribution of critical temperatures for clusters with low connectivity. In addition, we show that the presence of spatial correlations requires a modification of standard EMT to give qualitative agreement with the numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide interface, we find that the measured resistivity curves are compatible with a network of spatially dense but loosely connected superconducting islands.

023015
The following article is Open access

, , and

We propose a simple way of probing the number of modes contributing to the channeling in graphene waveguides which are formed by a gauge potential produced by mechanical strain. The energy mode structure for both homogeneous and non-homogeneous strain regimes is carefully studied using the continuum description of the Dirac equation. We found that high strain values privilege negative (instead of positive) group velocities throughout the guidance, sorting the types of modes flowing through it. We also show how the effect of a substrate-induced gap competes against the strain.

023016
The following article is Open access

, , , and

Strong magnetic domain memory is achieved in [Co/Pd]IrMn exchange-biased ferromagnetic thin films when zero-field-cooled (ZFC) below their blocking temperature TB. By mapping out the amount of memory throughout the entire magnetization cycle, from nucleation to saturation, at different temperatures below and above TB, we discover how microscopic morphological changes in the magnetic domain patterns correlate with the macroscopic magnetic hysteresis, in the presence or absence of exchange couplings. Our unique inter-field correlation maps show that in the ZFC state, the film exhibits the highest amount of domain memory, exceeding 90%, when domain patterns are compared at the same field value, in the coercive region of the magnetization loop. However, domain patterns also cross-correlate surprisingly well when measured at different field values, on a wide field range centered about the coercive region. The shape and symmetry of the correlation maps provide further insights into the microscopic morphological changes in the domain patterns and the amount of reversibility in the reversal process, at the nanoscale.

023017
The following article is Open access

, , , and

The small-scale dynamo plays a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may, in particular, lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this paper, we explore whether in this large range of conditions, universal behavior can be expected. Our starting point is previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current amplification scale, backreactions occur and the growth is shifted to the next-larger scale. We employ a Fokker–Planck model to calculate the magnetic field amplification during the nonlinear regime, and find a resulting power-law growth that depends on the type of turbulence invoked. For Kolmogorov turbulence, we confirm previous results suggesting a linear growth of magnetic energy. For more general turbulent spectra, where the turbulent velocity scales with the characteristic length scale as u∝ℓϑ, we find that the magnetic energy grows as (t/Ted)2ϑ/(1−ϑ), with t being the time coordinate and Ted the eddy-turnover time on the forcing scale of turbulence. For Burgers turbulence, ϑ = 1/2, quadratic rather than linear growth may thus be expected, as the spectral energy increases from smaller to larger scales more rapidly. The quadratic growth is due to the initially smaller growth rates obtained for Burgers turbulence. Similarly, we show that the characteristic length scale of the magnetic field grows as t1/(1−ϑ) in the general case, implying t3/2 for Kolmogorov and t2 for Burgers turbulence. Overall, we find that high Mach numbers, as typically associated with steep spectra of turbulence, may break the previously postulated universality, and introduce a dependence on the environment also in the nonlinear regime.

023018
The following article is Open access

, and

A general quantum limit to the sensitivity of particle position measurements is derived following the simple principle of the Heisenberg microscope. The value of this limit is calculated for particles in the Rayleigh and Mie scattering regimes, and with parameters which are relevant to optical tweezers experiments. The minimum power required to observe the zero-point motion of a levitating bead is also calculated, with the optimal particle diameter always smaller than the wavelength. We show that recent optical tweezers experiments are within two orders of magnitude of quantum limited sensitivity, suggesting that quantum optical resources may soon play an important role in high sensitivity tracking applications.

023019
The following article is Open access

, , , , , , , , , et al

Interest in the use of graphene in electronic devices has motivated an explosion in the study of this remarkable material. The simple, linear, Dirac cone band structure offers a unique possibility to investigate its finer details by angle-resolved photoelectron spectroscopy (ARPES). Indeed, ARPES has been performed on graphene grown on metal substrates but electronic applications require an insulating substrate. Epitaxial graphene grown by the thermal decomposition of silicon carbide (SiC) is an ideal candidate for this due to the large scale, uniform, graphene layers produced. The experimental spectral function of epitaxial graphene on SiC has been extensively studied. However, until now the cause of an anisotropy in the spectral width of the Fermi surface has not been determined. In the current work we show, by comparison of the spectral function to a semi-empirical model, that the anisotropy is due to small scale rotational disorder (∼±  0.15°) of graphene domains in graphene grown on SiC(0001) samples. The complicated shape described by the line-width is accurately reproduced by the semi-empirical model only when rotational disorder is included. While spectra from rare regions of the sample containing only one or two rotational domains is also presented. In addition to the direct benefit in the understanding of graphene's electronic structure this work suggests a mechanism to explain similar variations in related ARPES data.

023020
The following article is Open access

We show that the multiscale entanglement renormalization ansatz (MERA) can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat space-like boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains. This result clarifies the nature of the ansatz, and suggests a generalization to quantum field theory. It also constitutes an independent justification of the connection between MERA and hyperbolic geometry which was proposed as a concrete implementation of the AdS-CFT correspondence.

023021
The following article is Open access

, , , , , , and

We perform real-time charge counting with a quantum point contact (QPC) for the last six electrons in a single quantum dot. At zero magnetic field, the charge-counting statistics show distinctive non-thermal-equilibrium effects for the even and odd electron numbers. A detailed study relates this difference to the excitation from the spin singlet state to triplet states driven by QPC back-action. At a finite magnetic field, spin excitations to different triplet states and Zeeman states are also observed. A master-equation model is developed to quantitatively characterize the back-action-driven spin excitation rate.

023022
The following article is Open access

, and

Rashba spin–orbit coupling together with electron correlations in the metallic interface between SrTiO3 and LaAlO3 can lead to an unusual combination of magnetic and orbital ordering. We consider such phenomena in the context of the recent observation of anisotropic magnetism. Firstly, we show that Rashba spin–orbit coupling can account for the observed magnetic anisotropy, assuming a correlation driven (Stoner type) instability toward ferromagnetism. Secondly, we investigate nematicity in the form of an orbital imbalance between dxz/dyz orbitals. We find an enhanced susceptibility toward nematicity due to the van Hove singularity in the low-electron-density regime. In addition, the coupling between in-plane magnetization anisotropy and nematic order provides an effective symmetry breaking field in the magnetic phase. We estimate this coupling to be substantial in the low-electron-density regime. The resulting orbital ordering can affect magneto transport.

023023
The following article is Open access

, , , and

We show that the presence of a spin-dependent random potential in a superconductor or a superfluid atomic gas leads to distinct transitions at which the energy gap and average order parameter vanish, generating an intermediate gapless superfluid phase, in marked contrast to the case of spin-symmetric randomness where no such gapless superfluid phase is seen. By allowing the pairing amplitude to become inhomogeneous, the gapless superconducting phase persists up to considerably higher disorder compared with the prediction of Abrikosov–Gorkov. The low-lying excited states are located predominantly in regions where the pairing amplitude vanishes and coexist with the superfluid regions with a finite pairing. Our results are based on inhomogeneous Bogoliubov–de Gennes mean field theory for a two-dimensional attractive Hubbard model with spin-dependent disorder.

023024
The following article is Open access

, , and

Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current–voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces of HOPG, reaching zero resistance at low enough temperatures.

023025
The following article is Open access

, , , , and

A sensor was developed to quantitatively measure perturbations which change the volume of a wave chaotic cavity while leaving its shape intact. The sensors work in the time domain by using either scattering fidelity of the transmitted signals or time-reversal mirrors. The sensors were tested experimentally by inducing volume changing perturbations to a 1 m3 mixed chaotic and regular billiard system. Perturbations that caused a volume change that is as small as 54 parts in a million were quantitatively measured. These results were obtained by using electromagnetic waves with a wavelength of about 5 cm; therefore, the sensor is sensitive to extreme sub-wavelength changes of the boundaries of a cavity. The experimental results were compared with finite difference time-domain simulation results, and good agreement was found. Furthermore, the sensor was tested using a frequency-domain approach on a numerical model of the star graph, which is a representative wave chaotic system. These results open up interesting applications such as: monitoring the spatial uniformity of the temperature of a homogeneous cavity during heating up/cooling down procedures, verifying the uniform displacement of a fluid inside a wave chaotic cavity by another fluid, etc.

023026
The following article is Open access

, , , and

We show that the recent hierarchy of semidefinite programming relaxations based on non-commutative polynomial optimization and reduced density matrix variational methods exhibits an interesting paradox when applied to the bosonic case: even though it can be rigorously proven that the hierarchy collapses after the first step, numerical implementations of higher-order steps generate a sequence of improving lower bounds that converges to the optimal solution. We analyze this effect and compare it with a similar behavior observed in implementations of semidefinite programming relaxations for commutative polynomial minimization. We conclude that the method converges due to the rounding errors occurring during the execution of the numerical program, and show that convergence is lost as soon as computer precision is incremented. We support this conclusion by proving that for any element p of a Weyl algebra which is non-negative in the Schrödinger representation there exists another element $\tilde {p}$ arbitrarily close to p that admits a sum of squares decomposition.

023027
The following article is Open access

and

The electromagnetic force on a polarizable particle is calculated in a covariant framework. Local equilibrium temperatures for the electromagnetic field and the particle's dipole moment are assumed, using a relativistic formulation of the fluctuation–dissipation theorem. Two examples illustrate radiative friction forces: a particle moving through a homogeneous radiation background and above a planar interface. Previous results for arbitrary relative velocities are recovered in a compact way.

023028
The following article is Open access

, , and

Interactions of a spiral wave with a pacemaker is studied in a mathematical model of two dimensional excitable medium. Faster pacemakers emitting target waves can abolish spirals by driving them to the border of the medium. Our study shows that a slower pacemaker can modify spiral wave behavior by changing the motion of the spiral core. We analyze the dynamics of the spiral wave near the spiral core and away from the core as a function of size and period of the pacemaker. The pacemaker can cause the spiral wave to drift towards it, and either speed up or slow down the reentrant activity. Furthermore, the drift induced by the pacemaker can result in irregular or quasiperiodic dynamics even at sites away from the pacemaker. These results highlight the influence of pacemakers on complex spiral wave dynamics.

023029
The following article is Open access

, , and

Pentamode materials are artificial solids with elastic properties that approximate those of isotropic liquids. The corresponding three-dimensional mechanical metamaterials or 'meta-liquids' have recently been fabricated. In contrast to normal liquids, anisotropic meta-liquids are also possible—a prerequisite for realizing many of the envisioned transformation-elastodynamics architectures. Here, we study several possibilities theoretically for introducing intentional anisotropy into three-dimensional pentamode metamaterials. In static continuum mechanics, the transition from anti-auxetic pentamode materials to auxetics is possible. Near this transition, in the dynamic case, approximately uniaxial versions of pentamode metamaterials deliver anisotropic longitudinal-wave phase velocities different by nearly a factor of 10 for realistically accessible microstructure parameters.

023030
The following article is Open access

and

We consider a generic interacting chain of qubits, which are coupled at the edges to baths of fixed polarizations. We can determine the non-equilibrium steady states, described by the fixed point of the Lindblad master equation. Under rather general assumptions about local pumping and interactions, symmetries of the reduced density matrix are revealed. The symmetries drastically restrict the form of the steady density matrices in such a way that an exponentially large subset of one-point and many-point correlation functions are found to vanish. As an example we show how in a Heisenberg spin chain a suitable choice of the baths can completely switch off either the spin or the energy current, or both of them, despite the presence of large boundary gradients.

023031
The following article is Open access

, , , , , , , , , et al

One of the least documented and understood aspects of gamma-ray bursts (GRBs) is the rise phase of the optical light curve. The Ultra-Fast Flash Observatory (UFFO) is an effort to address this question through extraordinary opportunities presented by a series of space missions including a small spacecraft observatory. The UFFO is equipped with a fast-response Slewing Mirror Telescope (SMT) that uses a rapidly moving mirror or mirror array to redirect the optical beam rather than slewing the entire spacecraft to aim the optical instrument at the GRB position. The UFFO will probe the early optical rise of GRBs with sub-second response, for the first time, opening a completely new frontier in GRBs and transient studies. Its fast response measurements of the optical emission of dozens of GRBs each year will provide unique probes of the burst mechanism and test the prospect of GRBs as a new standard candle, potentially opening up the z > 10 universe. For the first time we employ a motorized slewing stage in SMT that can point to the event within 1 s after the x-ray trigger provided by the UFFO Burst Alert and Trigger Telescope. These two scientific instruments comprise the UFFO-pathfinder payload, which will be placed onboard the Lomonosov satellite and launched in 2013. The UFFO-pathfinder is the first step of our long-term program of space instruments for rapid-response GRB observations. We describe early photon science, our soon-to-be-launched UFFO-pathfinder hardware and mission, and our next planned mission, the UFFO-100.

023032
The following article is Open access

, , , and

We explore the statistical behaviour of the discrete nonlinear Schrödinger equation as a test bed for the observation of negative-temperature (i.e. above infinite temperature) states in Bose–Einstein condensates in optical lattices and arrays of optical waveguides. By monitoring the microcanonical temperature, we show that there exists a parameter region where the system evolves towards a state characterized by a finite density of discrete breathers and a negative temperature. Such a state persists over very long (astronomical) times since the convergence to equilibrium becomes increasingly slower as a consequence of a coarsening process. We also discuss two possible mechanisms for the generation of negative-temperature states in experimental setups, namely, the introduction of boundary dissipations and the free expansion of wavepackets initially in equilibrium at a positive temperature.

023033
The following article is Open access

, , and

We present experimental evidence of the generation of distinct types of genuine multipartite entanglement between three degrees of freedom (spin, energy and path) within single-neutron quantum systems. This is achieved via the development of new spin manipulation apparatuses for neutron interferometry and the entanglement is detected via appropriately designed and optimized nonlinear witnesses. Via the applied criteria we reveal even finer properties of the type of the genuine multipartite entanglement that is produced in the experiment. In a subsequent analysis we show the extraordinarily high fidelity of the generated entangled states, proving the outstanding level of controllability of these systems.

023034
The following article is Open access

, , , , , and

We studied the dependence of dissociative ionization in H2 on carrier-envelope phase (CEP) of few-cycle (6 fs) near-infrared laser pulses. For low-energy channels, we present the first experimental observation of the CEP dependence of combined dissociation yield (with protons emitted in both directions), as well as the highest degree of asymmetry reported to date (40%). The observed modulations in both asymmetry and combined yield could be understood in terms of interference between different n-photon dissociation pathways—n and (n + 1) photon channels for asymmetry, n and (n + 2) photon channels for yield—as suggested by the general theory of CEP effects (Roudnev and Esry 2007 Phys. Rev. Lett. 99 220406). The yield modulation is found to be π-periodic in CEP, with its phase strongly dependent on fragment kinetic energy (and reversing its sign within the studied energy range), indicating that the dissociation yield does not simply follow the CEP dependence of maximum electric field, as a naïve intuition might suggest. We also find that a positively chirped pulse can lead to a higher dissociation probability than a transform-limited pulse.

023035
The following article is Open access

, , , , and

We investigate the magneto-transport through a 1.6 μm wide quantum dot (QD) with an adjacent charge detector, for different integer filling factors in the QD and constrictions. When this system is operated at a high transmission, it acts as a Fabry–Pérot interferometer, where transport is governed by a Coulomb blockade mechanism. For lower transmissions where the barriers are in the tunneling regime, we can directly measure the charge stability diagram of two capacitively and tunnel-coupled Landau levels. The tunneling regime has been investigated in direct transport, as well as in single-electron counting. The edge states within the dot are non-cyclically depopulated, which can be explained by a simple capacitive model and allows to draw conclusions about the edge state geometry within the QD.

023036
The following article is Open access

, and

We study the non-equilibrium dynamics of a quasiperiodic quantum Ising chain after a sudden change in the strength of the transverse field at zero temperature. In particular, we consider the dynamics of the entanglement entropy and the relaxation of the magnetization. The entanglement entropy increases with time as a power law, and the magnetization is found to exhibit stretched-exponential relaxation. These behaviors are explained in terms of anomalously diffusing quasiparticles, which are studied in a wave packet approach. The non-equilibrium magnetization is shown to have a dynamical phase transition.

023037
The following article is Open access

, , and

We propose a method to factor numbers based on the quantum dynamics of two interacting bosonic atoms where the single-particle energy spectrum depends logarithmically on the quantum number. We show that two atoms initially prepared in the ground state are preferentially excited by a time-dependent interaction into a two-particle energy state characterized by the factors. Hence, a measurement of the energy of one of the two atoms yields the factors. The number to be factored is encoded in the frequency of a sinusoidally modulated interaction. We also discuss the influence of off-resonant transitions and the limitation of the number to be factored imposed by experimental conditions.

023038
The following article is Open access

The electronic and magnetic structures of La4Ni3O8, an analogue of the hole doped cuprates, are studied using the configuration state constrained local-spin-density approximation plus Hubbard U calculations. It is found to be a C-type antiferromagnetic Mott insulator, in which an orbital hybridization strongly reduces an otherwise possible charge disproportionation. This state accounts for several experimental observations. The involved Ni2+ high-spin state and its orbital configuration are found to be against a crystal-field level picture, which predicts an Ni2+ low-spin state in the NiO2 square lattice. We note, however, that La4Ni3O8, if in the low-spin state, would be a charge-homogeneous ferromagnetic half-metal with only the up-spin x2y2 conduction band. Therefore, low-spin nickelates may be explored for any interesting property.

023039
The following article is Open access

, and

We propose a fast and efficient technique to create classes of highly entangled states of trapped ions, such as arbitrary Dicke states and superpositions of them, e.g. NOON states. The ions are initialized in the phonon ground state and are addressed globally with a composite pulse that is resonant with the first motional sideband. The technique is fairly robust to parameter fluctuations and operates on comparatively short time scales, as resonant interactions allow one to use the minimum laser pulse area. The number of single pulses from the composite sequence is equal to the number of ions; thus the implementation complexity grows only linearly with the size of the system. The approach does not require individual addressing of the ions in the trap and can be applied both inside and outside the Lamb–Dicke regime.

023040
The following article is Open access

, , , and

We predict the enhanced transparency of a modulated slab of layered superconductor for terahertz radiation due to the diffraction of an incident wave and the resonance excitation of eigenmodes. The electromagnetic field is transferred from the irradiated side of the slab to the other by excited waveguide modes (WGMs) which do not decay in layered superconductors, in contrast to metals, where the enhanced light transmission is caused by the excitation of evanescent surface waves. We show that a series of resonance peaks can be observed in the dependence of transmittance on the incidence angle when the dispersion curve of the diffracted wave crosses successive dispersion curves for the WGMs.

023041
The following article is Open access

and

In this paper, we extend the multiscale approach developed in Abel et al (2012 Rep. Prog. Phys. submitted) by exploiting the scale separation between ions and the electrons. The gyrokinetic equation is expanded in powers of the electron to ion mass ratio, which provides a rigorous method for deriving the reduced electron model. We prove that ion-scale electromagnetic turbulence cannot change the magnetic topology, and argue that to lowest order the magnetic field lies on fluctuating flux surfaces. These flux surfaces are used to construct magnetic coordinates, and in these coordinates a closed system of equations for the electron response to ion-scale turbulence is derived. All fast electron timescales have been eliminated from these equations. We also use these magnetic surfaces to construct transport equations for electrons and for electron heat in terms of the reduced electron model.

023042
The following article is Open access

, and

A quantitative analysis is conducted on the impacts of experimental imperfections in the input state, the detector properties, and their interactions on photon-subtracted squeezed vacuum states in terms of a quantum non-Gaussian character witness and Wigner function. Limitations of the non-classicality and quantum non-Gaussian characteristic of Schrödinger kitten states are identified and addressed. The detrimental effects of a photon-number detector on the generation of odd Schrödinger kitten states at near-infrared wavelengths (∼860 nm) and telecommunication wavelengths (∼1550 nm) are presented and analysed. This analysis demonstrates that the high dark count probability of telecommunication-wavelength photon-number detectors significantly undermines the negativity of the Wigner function in Schrödinger kitten state generation experiments. For a one-photon-subtracted squeezed vacuum state at ∼1550 nm, an avalanche photodiode-based photon-number-resolving detector provides no significant advantage over a non-photon-number-resolving detector when imperfections, such as dark count probability and inefficiency, are taken into account.

023043
The following article is Open access

, and

Measurements in classical and quantum physics are described in fundamentally different ways. Nevertheless, one can formally define similar measurement procedures with respect to the disturbance they cause. Obviously, strong measurements, both classical and quantum, are invasive—they disturb the measured system. We show that it is possible to define general weak measurements, which are noninvasive: the disturbance becomes negligible as the measurement strength goes to zero. Classical intuition suggests that noninvasive measurements should be time symmetric (if the system dynamics is reversible) and we confirm that correlations are time-reversal symmetric in the classical case. However, quantum weak measurements—defined analogously to their classical counterparts—can be noninvasive but not time symmetric. We present a simple example of measurements on a two-level system which violates time symmetry and propose an experiment with quantum dots to measure the time-symmetry violation in a third-order current correlation function.

023044
The following article is Open access

, and

We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate problems of spin–boson-type systems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system–bath coupling limit and the Markovian approximation. Given the time evolution of the system population and coherences, we study as an application the dynamics of entanglement between the pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death and revival. We find that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system–bath coupling, for a range of relevant qubit parameters.

023045
The following article is Open access

, , , , , , , , , et al

We present a method to determine the magnetic configuration of an in-plane magnetized permalloy layer using Fourier transform holography with extended references in an off-normal geometry. We use a narrow slit as an extended holographic reference to record holograms with the sample surface orthogonal to the incident x-ray beam, as well as rotated by 30° and 45° with respect to the beam. To demonstrate the sensitivity of the technique to in-plane magnetization, we present images of flux closed ground states in thin (∼50 nm) permalloy elements, less than 1 μm in lateral size. Images of the in-plane domain pattern which is magnetostatically imprinted into a permalloy film by the stray fields generated by an adjacent Co/Pt multilayer were obtained. It is found that, whilst the domain patterns within the two magnetic layers show a strong resemblance at remanence within a pristine sample, the similarities disappear after the sample is exposed to a saturating magnetic field.

023046
The following article is Open access

, , , , , , , , , et al

We experimentally demonstrate the generation of narrow-bandwidth emissions with excellent coherent properties at ∼391 and ∼428 nm from N2+ (B2Σu+ (v' = 0) → X2Σg+ (v = 0, 1)) inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i.e. 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 and 428 nm are measured to be ∼2.4 and ∼7.8 ps, respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an 'instantaneous' population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.

025001
The following article is Open access

, , , and

We investigate Josephson currents in mesoscopic rings with a weak link which are in or near a topological superconducting phase. As a paradigmatic example, we consider the Kitaev model of a spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions (MF) situated on both sides of the weak link even when fermion parity is not a good quantum number. In large rings, the MF hybridize only across the weak link. In this case, the Josephson current is h/e periodic in the flux threading the loop when fermion parity is a good quantum number but reverts to the more conventional h/2e periodicity in the presence of fermion-parity changing relaxation processes. In mesoscopic rings, the MF also hybridize through their overlap in the interior of the superconducting ring. We find that in the topological superconducting phase, this gives rise to an h/e-periodic contribution even when fermion parity is not conserved and that this contribution exhibits a peak near the topological phase transition. This signature of the topological phase transition is robust to the effects of disorder. As a byproduct, we find that close to the topological phase transition, disorder drives the system deeper into the topological phase. This is in stark contrast to the known behavior far from the phase transition, where disorder tends to suppress the topological phase.

025002
The following article is Open access

, and

Focus on Quantum Spin Liquids

Quantum spin liquids (QSLs) are phases of interacting spins that do not order even at the absolute zero temperature, making it impossible to characterize them by a local order parameter. In this paper, we review the unique view provided by the quantum entanglement on QSLs. We illustrate the crucial role of topological entanglement entropy in diagnosing the non-local order in QSLs, using specific examples such as the chiral spin liquid. We also demonstrate the detection of anyonic quasi-particles and their braiding statistics using quantum entanglement. In the context of gapless QSLs, we discuss the detection of emergent fermionic spinons in a bosonic wavefunction, by studying the size dependence of entanglement entropy.

025003
The following article is Open access

, and

Focus on High Energy Density Physics

We have studied plasma-induced smoothing due to stimulated Brillouin scattering (SBS) under the aspect of the extremal statistics of smoothed laser beams. As pointed out in the work by Rose and DuBois (1994 Phys. Rev. Lett.72 2883), scattered light can be subject to uncontrolled (or even 'explosive') behaviour, associated with a critical gain value for SBS. In this work we show how this critical behaviour can be predicted on the basis of the order statistics of laser speckle fields, and we analyse the transition to uncontrolled behaviour of the laser beam due to the dominance of high intensity speckles.

025004
The following article is Open access

, , and

Focus on Multidimensional Optical Spectroscopy and Imaging

Coherent multidimensional spectroscopy allows us to inspect the energies and the coupling of quantum systems. Coupled quantum systems—such as a coupled semiconductor quantum dot or pigments in photosynthesis—form delocalized exciton and two-exciton states. A technique is presented to decompose these delocalized wave functions into the basis of individual quantum emitters. This quantum state tomography protocol is illustrated for three coupled InAs quantum dots. To achieve the decomposition of the wavefunction, we combine the double-quantum-coherence spectroscopy with spatiotemporal control, which allows us to localize optical excitations at a specific quantum dot. Recently, a protocol was proposed for single exciton states (Richter et al 2012 Phys. Rev. B 86 085308). In this paper, we extend the method presented by Richter et al with respect to: the reconstruction of two-exciton states, a detailed analysis process of reconstruction and the effect of filtering to enhance the quality of the reconstructed wave function.

025005
The following article is Open access

, , and

Focus on Multidimensional Optical Spectroscopy and Imaging

Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded.

025006
The following article is Open access

, , , , , and

Focus on Multidimensional Optical Spectroscopy and Imaging

Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling.

025007
The following article is Open access

, , and

Focus on Multidimensional Optical Spectroscopy and Imaging

Photoinduced electrocyclic ring opening reactions in conjugated cylcoalkenes are among the most elementary processes in organic chemistry. One prototypical ring opening reaction transforms cyclohexadiene into hexatriene. It is known that a sequence of sub-100 fs internal conversion transitions precedes bond breaking in cyclohexadiene and some of its derivatives. However, these excited state dynamics have never been directly monitored in solution because of insufficient time resolution. Here we aim to uncover the extraordinary photophysics behind related ultrafast internal conversion processes in a derivative of cyclohexadiene, α-terpinene (α-TP), solvated in cyclohexane. Transient absorption anisotropy experiments conducted with 20 fs laser pulses at 267 nm expose non-exponential depopulation kinetics for the ππ* electronic state of α-TP. Our data show that population transfer rapidly accelerates within the first 100 fs after photoexcitation. In addition, recurrences in two-dimensional photon echo (2DPE) line shapes reveal strong vibronic coupling in a normal mode near 523 cm−1, which involves torsions of the C=C bonds and hydrogen out-of-plane (HOOP) wagging on a vinyl group. With the support of several experiments, we hypothesize that the excited state wavepacket in α-TP undergoes several recurrences in the C=C stretching coordinate before displacement along the C=C torsion/vinyl HOOP coordinate finally sets it free from the Franck–Condon region of the potential energy surface. The unconfined wavepacket departs the ππ* electronic state by way of a conical intersection with a lower energy excited state. The present observations are made possible by recent improvements to both the time resolution and detection sensitivity of our experimental setup. This work demonstrates that it is now possible to acquire 2DPE signals in the deep ultraviolet, which are comparable with high-quality measurements in the visible spectral region. These technical developments open the door to studies of many beautiful models for elementary chemical dynamics.

025008
The following article is Open access

, and

Focus on Multidimensional Optical Spectroscopy and Imaging

We calculate two-dimensional (2D) spectra reflecting the time-dependent electronic predissociation of a diatomic molecule. The laser-excited electronic state is coupled non-adiabatically to a fragment channel, leading to the decay of the prepared quasi-bound states. This decay can be monitored by the three-pulse configuration employed in optical 2D spectroscopy. It is shown that in this way it is possible to state-selectively characterize the time-dependent population of resonance states with different lifetimes. A model of the NaI molecule serves as a numerical example.

025009
The following article is Open access

and

Focus on Soft Mesoscopics: Physics for Biology at a Mesoscopic Scale

The mechanisms underlying the collective motion of molecular motors in living cells are not yet fully understood. One such open puzzle is the observed pulses of backward-moving myosin-X in the filopodia structure. Motivated by this phenomenon we introduce two generalizations of the 'total asymmetric exclusion process' (TASEP) that might be relevant to the formation of such pulses. The first is adding a nearest-neighbours attractive interaction between motors, while the second is adding an internal degree of freedom corresponding to a processive and immobile form of the motors. Switching between the two states occurs stochastically, without a conservation law. Both models show strong deviations from the mean field behaviour and lack particle–hole symmetry. We use approximations borrowed from the research on vehicular traffic models to calculate the current and jam size distribution in a system with periodic boundary conditions and introduce a novel modification to one of these approximation schemes.

025010
The following article is Open access

, , , , , and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

Nitrogen–vacancy centers in diamond have outstanding quantum optical properties that enable applications in information processing and sensing. As with most solid-state systems for quantum photonic applications, the great promise lies in the capability to embed them in an on-chip optical network. Here we present basic integrated devices composed of diamond micro-ring resonators coupled to waveguides that are terminated with grating out-couplers. Strong enhancement is observed for the zero-phonon line of nitrogen–vacancy centers coupled to the ring resonance. The zero-phonon line is efficiently coupled from the ring into the waveguide and then scattered out of plane by the grating out-couplers.

025011
The following article is Open access

, , , , , and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We address recent advances in microwave quantum optics with artificial atoms in one-dimensional (1D) open space. This field relies on the fact that the coupling between a superconducting artificial atom and propagating microwave photons in a 1D open transmission line can be made strong enough to observe quantum coherent effects, without using any cavity to confine the microwave photons. We investigate the scattering properties in such a system with resonant coherent microwaves. We observe the strong nonlinearity of the artificial atom and under strong driving we observe the Mollow triplet. By applying two resonant tones, we also observe the Autler–Townes splitting. Exploiting these effects, we demonstrate two quantum devices at the single-photon level in the microwave regime: the single-photon router and the photon-number filter. These devices provide important steps toward the realization of an on-chip quantum network.

025012
The following article is Open access

, and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.

025013
The following article is Open access

and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We present detuning-dependent spectral and decay-rate measurements to study the difference between the spectral and dynamical properties of single quantum dots embedded in micropillar and photonic crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes–Cummings model, whereas systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to the coupling of other exciton lines to the cavity and interference of different propagation paths toward the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities, we observe an anti-crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of a strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multi-exciton complexes giving rise to collective emission effects.

025014
The following article is Open access

, , and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We study the photon blockade phenomenon in a nanocavity containing a single four-level quantum emitter. By numerically simulating the second-order autocorrelation function of the intra-cavity field with realistic parameters achievable in a state-of-the-art photonic-crystal nanocavity, we show that significant photon blockade effects appear even outside the strong coupling regime. We introduce an intuitive picture of the photon blockade that explains the performance difference between the two-level and the four-level emitter schemes reported in previous works, as well as why—in contrast to a cavity containing a two-level atom—signatures of photon blockade appear and should be experimentally observable outside the strong coupling regime when a four-level emitter is used. Finally, we show that thanks to the emitter–cavity coupling achievable in a nanocavity, photon blockade can be realized despite the large frequency difference between the relevant optical transitions in realistic four-level emitters, which has so far prevented the experimental realization of this photon blockade scheme.

025015
The following article is Open access

and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We study a driven-dissipative array of coupled nonlinear optical resonators by numerically solving the von Neumann equation for the density matrix. We demonstrate that quantum correlated states of many photons can also be generated in the limit where the nonlinearity is much smaller than the losses, contrary to common expectations. Quantum correlations in this case arise from the interference between different pathways that the system can follow in the Hilbert space to reach its steady state under the effect of coherent driving fields. We characterize, in particular, two systems: a linear chain of three coupled cavities and an array of eight coupled cavities. We demonstrate the existence of a parameter range where the system emits photons with continuous-variable bipartite and quadripartite entanglement, in the case of the first and the second system, respectively. This entanglement is shown to survive realistic rates of pure dephasing and opens up a new perspective for the realization of quantum simulators or entangled photon sources without the challenging requirement of strong optical nonlinearities.

025016
The following article is Open access

, and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

A theory of nonlinear emission of localized excitons coupled to the optical mode of the microcavity is presented. Numerical results are compared with analytical ones. The effects of exciton–exciton interaction within the quantum dots and with the reservoir formed by non-resonant pumping are considered. It is demonstrated that the nonlinearity due to the interaction strongly affects the shape of the emission spectra. The collective superradiant mode of the excitons is shown to be stable against the nonlinear effects.

025017
The following article is Open access

, and

Focus on High Energy Density Physics

Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ∼30% (where Te is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.

025018
The following article is Open access

, , , and

Focus on High Energy Density Physics

Confined microexplosion produced by a tightly focused fs-laser pulse inside transparent material proved to be an efficient and inexpensive method for achieving high energy density up to several MJ per cm3 in the laboratory table-top experiments. First studies already confirmed the generation of TPa-range pressure, the formation of novel super-dense material phases and revealed an unexpected phenomenon of spatial separation of ions with different masses in hot non-equilibrium plasma of confined microexplosion. In this paper, we show that the intense focused pulse propagation accompanied by a gradual increase of ionization nonlinearity changes the profile and spectrum of the pulse. We demonstrate that the motion of the ionization front in the direction opposite to the pulse propagation reduces the absorbed energy density. The voids in our experiments with fused silica produced by the microexplosion-generated pressure above Young's modulus indicate, however, that laser fluence up to 50 times above the ionization threshold is effectively absorbed in the bulk of the material. The analysis shows that the ion separation is enhanced in the non-ideal plasma of microexplosion. These findings open new avenues for the studies of high-pressure material transformations and warm dense matter conditions by confined microexplosion produced by intense fs-laser.

025019
The following article is Open access

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

A quantum dot can be used as a source of one- and two-photon states and of polarization entangled photon pairs. The emission of such states is investigated here from the point of view of frequency-resolved two-photon correlations. These follow from a spectral filtering of the dot emission, which can be achieved either by using a cavity or by placing a number of interference filters before the detectors. A combination of these various options is used to iteratively refine the emission in a 'distillation' process and arrive at highly correlated states with a high purity. The so-called 'leapfrog processes', where the system undergoes a direct transition from the biexciton state to the ground state by direct emission of two photons, are shown to be central to the quantum features of such sources. Optimum configurations are singled out in a global theoretical picture that unifies the various regimes of operation.

025020
The following article is Open access

, , and

Focus on Quantum Memory

While solid-state devices offer naturally reliable hardware for modern classical computers, thus far quantum information processors resemble vacuum tube computers in being neither reliable nor scalable. Strongly correlated many body states stabilized in topologically ordered matter offer the possibility of naturally fault tolerant computing, but are both challenging to engineer and coherently control and cannot be easily adapted to different physical platforms. We propose an architecture which achieves some of the robustness properties of topological models but with a drastically simpler construction. Quantum information is stored in the symmetry-protected degenerate ground states of spin-1 chains, while quantum gates are performed by adiabatic non-Abelian holonomies using only single-site fields and nearest-neighbor couplings. Gate operations respect the symmetry, and so inherit some protection from noise and disorder from the symmetry-protected ground states.

025021
The following article is Open access

, and

Focus on Quantum Memory

The ability to detect single photons with a high efficiency is a crucial requirement for various quantum information applications. By combining the storage process of a quantum memory for photons with fluorescence-based quantum state measurement, it is, in principle, possible to achieve high-efficiency photon counting in large ensembles of atoms. The large number of atoms can, however, pose significant problems in terms of noise stemming from imperfect initial state preparation and off-resonant fluorescence. We identify and analyse a concrete implementation of a photon number resolving detector based on an ion Coulomb crystal inside a moderately high-finesse optical cavity. The cavity enhancement leads to an effective optical depth of 15 for a finesse of 3000 with only about 1500 ions interacting with the light field. We show that these values allow for essentially noiseless detection with an efficiency larger than 93%. Moderate experimental parameters allow for repetition rates of about 3 kHz, limited by the time needed for fluorescence collection and re-cooling of the ions between trials. Our analysis may lead to the first implementation of a photon number resolving detector in atomic ensembles.

025022
The following article is Open access

and

Focus on Soft Mesoscopics: Physics for Biology at a Mesoscopic Scale

We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel–substrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

025023
The following article is Open access

, , , , , , , , , et al

Focus on High Energy Density Physics

Experiments were performed on the Omega EP laser facility to study laser pulse propagation, channeling phenomena and electron acceleration from high-intensity, high-power laser interactions with underdense plasma. A CH plasma plume was used as the underdense target and the interaction of the laser pulse channeling through the plasma was imaged using proton radiography. High-energy electron spectra were measured for different experimental laser parameters. Structures observed along the channel walls are interpreted as having developed from surface waves, which are likely to serve as an injection mechanism of electrons into the cavitated channel for acceleration via direct laser acceleration mechanisms. Two-dimensional particle-in-cell simulations give good agreement with these channeling and electron acceleration phenomena.

025024
The following article is Open access

and

The principle behind quantum tomography is that a large set of observations—many samples from a 'quorum' of distinct observables—can all be explained satisfactorily as measurements on a single underlying quantum state or process. Unfortunately, this principle may not hold. When it fails, any standard tomographic estimate should be viewed skeptically. Here we propose a simple way to test for this kind of failure using the Akaike information criterion. We point out that the application of this criterion in a quantum context, while still powerful, is not as straightforward as it is in classical physics. This is especially the case when future observables differ from those constituting the quorum.

025025
The following article is Open access

, and

Focus on High Energy Density Physics

A complete description of high energy density physics experiments on laser systems incorporating short, picosecond, beamlines requires a daunting breadth of physics, which cannot reasonably be included in a single model. Modern particle in cell (PIC) codes, Vlasov–Fokker–Planck models and radiation hydrodynamic codes together constitute the tools required to model key aspects of short-pulse laser–plasma interaction in such experiments. A predictive modelling capability in this area requires that all these tools are applied to a given problem. Our approach is to develop an integrated modelling capability in which these detailed models for different aspects of the problem are linked together. We outline our methodology and demonstrate the approach taken to link PIC models of laser–plasma interaction into hybrid models of electron transport within a radiation hydrodynamics code. This integrated model is used to study the absorption and transport of short-pulse delivered energy in a solid diamond target, highlighting distinct differences between the integrated results and modelling which relies on an assumed hot electron spectrum. We extend this work to consider structured targets which show the promise of providing an additional element of control over target heating as well as presenting an opportunity to test the transport models employed. Finally we demonstrate the survivability of such targets to the pressures generated by isochoric heating over the timescales of the laser–plasma interaction.

025026
The following article is Open access

, , , , , , , and

Focus on High Energy Density Physics

We study theoretically and numerically the acceleration of protons by a combination of laser radiation pressure acceleration and Coulomb repulsion of carbon ions in a multi-ion thin foil made of carbon and hydrogen. The carbon layer helps to delay the proton layer from disruption due to the Rayleigh–Taylor instability, to maintain the quasi-monoenergetic proton layer and to accelerate it by the electron-shielded Coulomb repulsion for much longer duration than the acceleration time using single-ion hydrogen foils. Particle-in-cell simulations with a normalized peak laser amplitude of a0 = 5 show a resulting quasi-monoenergetic proton energy of about 70 MeV with the foil made of 90% carbon and 10% hydrogen, in contrast to 10 MeV using a single-ion hydrogen foil. An analytical model is presented to explain quantitatively the proton energy evolution; this model is in agreement with the simulation results. The energy dependence of the quasi-monoenergetic proton beam on the concentration of carbon and hydrogen is also studied.

025027
The following article is Open access

, and

Focus on Topological Quantum Computation

Here we investigate the effect lattice geometry has on the lifetime of two-dimensional topological quantum memories. Initially, we introduce various lattice patterns and show how the error-tolerance against bit-flips and phase-flips depends on the structure of the underlying lattice. Subsequently, we investigate the dependence of the lifetime of the quantum memory on the structure of the underlying lattice when it is subject to a finite temperature. Importantly, we provide a simple effective formula for the lifetime of the memory in terms of the average degree of the lattice. Finally, we propose optimal geometries for the Josephson junction implementation of topological quantum memories.

025028
The following article is Open access

, , and

Focus on Multidimensional Optical Spectroscopy and Imaging

We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analogue of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS)—a fluorescence-detected variation of 2D electronic spectroscopy—to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point–dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 ± 0.5 Å , twist angle θ12 = 5° ± 5° ), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV–2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein–nucleic acid complexes.

025029
The following article is Open access

, , , and

Focus on Soft Mesoscopics: Physics for Biology at a Mesoscopic Scale

Graph theoretical approaches have become a powerful tool for investigating the architecture and dynamics of complex networks. The topology of network graphs revealed small-world properties for very different real systems among these neuronal networks. In this study, we observed the early development of mouse retinal ganglion cell (RGC) networks in vitro using time-lapse video microscopy. By means of a time-resolved graph theoretical analysis of the connectivity, shortest path length and the edge length, we were able to discover the different stages during the network formation. Starting from single cells, at the first stage neurons connected to each other ending up in a network with maximum complexity. In the further course, we observed a simplification of the network which manifested in a change of relevant network parameters such as the minimization of the path length. Moreover, we found that RGC networks self-organized as small-world networks at both stages; however, the optimization occurred only in the second stage.

025030
The following article is Open access

, , , , , , and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We report on electrically pumped quantum dot–microlasers in the presence of polarized self-feedback. The high-β microlasers show two orthogonal, linearly polarized emission modes which are coupled via the common gain medium. This coupling is explained in terms of gain competition between the two lasing modes and leads to distinct differences in their input–output characteristics. By applying polarized self-feedback via an external mirror, we are able to control the laser characteristics of the emission modes in terms of the output power, the coherence time and the photon statistics. We find that linearly polarized self-feedback stabilizes the lasing of a given mode, while cross-polarized feedback between the two modes reduces strongly the intensity of the other emission mode showing particular high-intensity fluctuations and even super-thermal values of the photon autocorrelation function g(2)(τ) at zero delay. Measurements of g(2)(τ) under external feedback also allow us to detect revival peaks associated with the round trip time of the external cavity. Analyzing the damping and shape of the g(2)(τ) revival peaks by a phenomenological model provides us insight into the underlying physics such as the effective exciton lifetime and gain characteristics of the quantum dots in the active region of these microlasers.

025031
The following article is Open access

, , and

Focus on Dynamics of Particles in Turbulence

We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 5 × 10−4. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity 'seen' by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneously lagging the fluid only by a small amount. The particle-conditioned fluid velocity field shows that the particles preferentially reside in the low-speed streaks, leading to the observed apparent lag. Finally, a vortex eduction study reveals that spanwise particle motion is significantly correlated with the presence of vortices with the corresponding sense of rotation which are located in the immediate vicinity of the near-wall particles.

025032
The following article is Open access

, , and

The Hamiltonian encoding observable decoding (HE-OD) technique is experimentally demonstrated for process tomography of laser-induced dynamics in atomic Rb vapor. With the assistance of a laser pulse truncation method, a time dependent reconstruction of the quantum evolution is achieved. HE-OD can perform full as well as partial process tomography with appropriate measurements to characterize the system. The latter feature makes HE-OD tomography suitable for analyzing quantum processes in complex systems.

025033
The following article is Open access

, , , , and

Focus on Quantum Memory

We use a single trapped 40Ca+ ion as a resonant, polarization-sensitive absorber to detect and characterize the entanglement of tunable narrowband photon pairs from a spontaneous parametric down-conversion source. Single-photon absorption is marked by a quantum jump in the ion and heralded by coincident detection of the partner photon. For three polarization basis settings of the absorption and detection of the herald, we find maximum coincidences always for orthogonal polarizations. The polarization entanglement is further evidenced by tomographic reconstruction of the biphoton quantum state with an overlap fidelity of 93% with the Bell singlet state. This is an essential step toward a single-ion based quantum memory for photonic entanglement.

025034
The following article is Open access

, , , , , , and

Focus on High Energy Density Physics

Laser wakefield acceleration experiments were performed using a 30 fs, 1 J laser pulse interacting with an underdense helium plasma. Temporally resolved polarimetry measurements demonstrate the presence of magnetic fields at the ionization front within the plasma which had a peak strength of ∼2.8 MG and a radial extent of approximately 200 μm. The field was seen to vary in strength over picosecond time-scales. The field is likely generated by return current generated in the plasma at the interface between plasma and neutral gas and which is caused by hot electrons produced in the wakefield during formation of a plasma 'bubble' and prior to the time of wave-breaking (beam injection). These effects are confirmed using particle-in-cell simulations. Such measurements can be useful as a diagnostic of bubble formation in laser wakefield accelerators.

025035
The following article is Open access

, , , , , and

Focus on High Energy Density Physics

Laser plasma interaction experiments have been performed to characterize high order harmonic emission up to the 18th order using high rep rate mJ level laser pulses at relativistic intensities. The experiments were compared to two- and three-dimensional particle-in-cell simulations. The harmonic divergence was found to be less than 4° (full-width at half-maximum) at highest intensity and increased as the laser was defocused (i.e. as the intensity was reduced). The polarization dependence on the harmonic generation efficiency and divergence was also measured. Circular polarization was found to cause a deflection in the angle of emission of the harmonics—an effect which may be beneficial in the use of such harmonics for efficient isolated attosecond pulse production.

025036
The following article is Open access

, , , and

Focus on the Physics of Cancer

Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a finite-time Lyapunov exponent (FTLE) analysis, we find that—in spite of large fluctuations—the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e. positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric $D_{\min }^2$ , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.

025037
The following article is Open access

and

While surface science has traditionally focused on catalytic processes at surfaces, more recent developments have seen it evolve into a broad research area encompassing issues as diverse as single-molecule experiments, preparation and analysis of nanostructures, studies of novel and exotic materials, and elementary excitations in solids to name but a few.

The aim of this small, but very select, focus issue of New Journal of Physics is to present a snapshot of just some of the latest cutting-edge research now being carried out on these topics. As editors, we hope that you find the contributions of interest to you and your future research.

025038
The following article is Open access

, , , , and

We propose a scheme for the reconstruction of the quantum state without a priori knowledge about the measurement setup. Using the data pattern approach, we develop an iterative procedure for obtaining information about the measurement which is sufficient for an estimation of a particular signal state. The method is illustrated with the examples of reconstruction with on/off detection and quantum homodyne tomography.

025039
The following article is Open access

, , , and

Focus on Multidimensional Optical Spectroscopy and Imaging

Recent experimental progress has allowed for the implementation of nonlinear two-dimensional (2D) terahertz (THz) spectroscopy in the ultrafast time domain. We discuss the principles of this technique based on multiple phase-locked electric field transients interacting in a collinear geometry with a solid and the phase-resolved detection of the THz fields after interaction with the sample. To illustrate the potential of this new method, 2D correlation spectra of coupled intersubband-longitudinal optical phonon excitations in a double quantum well system and a study of ultrafast carrier dynamics in graphene are presented.

025040
The following article is Open access

, , , , , , , , , et al

Focus on High Energy Density Physics

Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D3He protons) are routinely measured from indirectly driven inertial-confinement fusion (ICF) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking and consistent feature of these images is that the fluence of protons leaving the ICF target in the direction of the hohlraum's laser entrance holes (LEHs) is very nonuniform spatially, in contrast to the very uniform fluence of protons leaving through the hohlraum equator. In addition, the measured nonuniformities are unpredictable, and vary greatly from shot to shot. These observations were made separately at the times of shock flash and of compression burn, indicating that the asymmetry persists even at ∼0.5–2.5 ns after the laser has turned off. These phenomena have also been observed in experiments on the OMEGA laser facility with energy-scaled hohlraums, suggesting that the underlying physics is similar. Comprehensive data sets provide compelling evidence that the nonuniformities result from proton deflections due to strong spontaneous electromagnetic fields around the hohlraum LEHs. Although it has not yet been possible to uniquely determine whether the fields are magnetic (B) or electric (E), preliminary analysis indicates that the strength is ∼1 MG if B fields or ∼109 V cm−1 if E fields. These measurements provide important physics insight into the ongoing ignition experiments at the NIF. Understanding the generation, evolution, interaction and dissipation of the self-generated fields may help to answer many physics questions, such as why the electron temperatures measured in the LEH region are anomalously large, and may help to validate hydrodynamic models of plasma dynamics prior to plasma stagnation in the center of the hohlraum.

025041
The following article is Open access

, , and

Focus on High Energy Density Physics

The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources.

025042
The following article is Open access

, , , , , , , , , et al

Focus on High Energy Density Physics

Intense, femtosecond laser interactions with blazed grating targets are studied through experiment and particle-in-cell (PIC) simulations. The high harmonic spectrum produced by the laser is angularly dispersed by the grating leading to near-monochromatic spectra emitted at different angles, each dominated by a single harmonic and its integer-multiples. The spectrum emitted in the direction of the third-harmonic diffraction order is measured to contain distinct peaks at the 9th and 12th harmonics which agree well with two-dimensional PIC simulations using the same grating geometry. This confirms that surface smoothing effects do not dominate the far-field distributions for surface features with sizes on the order of the grating grooves whilst also showing this to be a viable method of producing near-monochromatic, short-pulsed extreme-ultraviolet radiation.

025043
The following article is Open access

, and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

We propose microwave-controlled rotations for qubits realized as Majorana bound states. To this end, we study an inhomogeneous Kitaev chain in a microwave cavity. The chain consists of two topologically nontrivial regions separated by a topologically trivial, gapped region. The Majorana bound states at the interfaces between the left (right) regions and the central region are coupled, and their energies are split by virtual cotunneling processes. The amplitude for these cotunneling processes decreases exponentially with the number of sites of the gapped region, and the decay length diverges as the gap of the topologically trivial region closes. We demonstrate that microwave radiation can exponentially enhance the coupling between the Majorana bound states, both for classical and quantized electric fields. By solving the appropriate Liouville equation numerically, we show that microwaves can drive Rabi oscillations in the Majorana sector. Our model emerges as an effective description of a topological semiconductor nanowire in a microwave cavity. Thus, our proposal provides an experimentally feasible way to obtain full single-qubit control necessary for universal quantum computation with Majorana qubits.

025044
The following article is Open access

, , , and

Focus on Cavity and Circuit Quantum Electrodynamics in Solids

Single-electron tunneling processes through a double quantum dot can induce a lasing state in an electromagnetic resonator which is coupled coherently to the dot system. Here we study the noise properties of the transport current in the lasing regime, i.e. both the zero-frequency shot noise and the noise spectrum. The former shows a remarkable super-Poissonian behavior when the system approaches the lasing transition, but a sub-Poissonian behavior deep in the lasing state. The noise spectrum contains information about the coherent dynamics of the coupled dot–resonator system. It shows pronounced structures at frequencies matching that of the resonator due to the excitation of photons. For strong interdot Coulomb interaction, we observe asymmetries in the auto-correlation noise spectra of the left and right junctions, which we trace back to asymmetries in the incoherent tunneling channels.