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Abstract. Motivated by recent experimental data on thin film superconductors
and oxide interfaces, we propose a random-resistor network apt to describe the
occurrence of a metal–superconductor transition in a two-dimensional electron
system with disorder on the mesoscopic scale. We consider low-dimensional
(e.g. filamentary) structures of a superconducting cluster embedded in the two-
dimensional network and we explore the separate effects and the interplay
of the superconducting structure and of the statistical distribution of local
critical temperatures. The thermal evolution of the resistivity is determined by
a numerical calculation of the random-resistor network and, for comparison, a
mean-field approach called effective medium theory (EMT). Our calculations
reveal the relevance of the distribution of critical temperatures for clusters with
low connectivity. In addition, we show that the presence of spatial correlations
requires a modification of standard EMT to give qualitative agreement with the
numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide
interface, we find that the measured resistivity curves are compatible with a
network of spatially dense but loosely connected superconducting islands.
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1. Introduction

Although two-dimensional (2D) electron systems have always been a topical subject in
condensed matter physics, further renewed interest in this field has been triggered by the
recent discovery of superconductivity at the metallic interface between two insulating oxide
layers [1–4]. In addition, experiments on certain thin conventional superconducting films [5–8]
reveal pseudogap effects, a phenomenon that could unveil new features of the superconducting
transition in low-dimensional (low-D) disordered systems. In the particularly interesting
cases of homogeneously disordered superconducting titanium nitride or indium oxide thin
films, scanning tunneling spectroscopy data display inhomogeneities in the local density of
states on mesoscopic spatial scales, clearly indicating the existence of an inhomogeneous
superconducting state. Since tunneling experiments cannot directly access the 2D metallic layers
at the oxide interfaces (although some attempts made on samples with very few top layers have
detected interesting inhomogeneous textures [9]), magnetization and transport measurements
are the only way to investigate these systems. Also in this case, evidence for an electronic phase
separation has been found in LaAlO3/SrTiO3 (LAO/STO) layers [10]. Moreover, the sheet
resistance curves R�(T ) near Tc, both in LAO/STO [2] and LaTiO3/SrTiO3 (LTO/STO) [3, 4]
systems, show the peculiar feature of a marked tail on the low-temperature side.

Despite their differences, oxide interfaces and thin films often share the common feature
of a broad superconducting transition. In a previous work [11], we investigated the possible
origin of this pronounced width and found that superconducting fluctuations (alone) cannot
account for its occurrence, while a model of global superconductivity arising from percolation of
superconducting regions in the presence of quenched mesoscopic disorder can well produce the
observed broad transitions. In this previous work, we also found that ‘tailish’ features can occur
in the resistivity curves when disorder has spatial correlations. Specifically, while uncorrelated
disorder can generically account for the pronounced width of the metal–superconductor
transition, tails only occur when disorder displays a correlated character or when it occurs on
nearly one-dimensional (1D) subsets of the system. We also found that the tailish resistivity can
be obtained from a bimodal distribution of critical temperatures phenomenologically indicating
that some parts of the system can have finite superconducting critical temperatures, while others
can have very low or vanishing critical temperatures.

It is therefore important to understand how (correlated) disorder can act so as to give rise
to the tailish resistivity because this feature can be a signature of specific physical mechanisms
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at work in these systems. One natural possibility is that disorder correlations and/or nearly
1D (filamentary) structures arise in the system from nanofractures, topological defects such as
crystal dislocations, steps, twinning domains and so on. In this regard, it was recently proposed
that step edges on the surface of the STO substrate on which the LAO and LTO layers are grown
can give rise to 1D metallic structures embedded in an insulating interface [12].

Percolative physics would also naturally emerge in the case of an inhomogeneous
electronic reconstruction (phase separation) in which interface regions at different electronic
filling are created, with the regions at higher filling possibly giving rise to a percolating
superconducting cluster. Such a possibility of electronic phase separation has recently been
proposed as the result of an intrinsic tendency of the interface to reconstruct differently due
to substantial Rashba spin–orbit coupling of the electronic gas [13]. Of course, this intrinsic
mechanism could easily cooperate and strengthen the effect of extrinsic defects.

Another possibility is that low-D superconducting subsets can spontaneously arise in the
electronic gas even in the presence of homogeneously distributed disorder. In particular, one
should remember that, besides fluctuations of the energy gap 1, disorder can cause localization
of electrons, transforming an otherwise metallic system into an insulator. If the metal is also
a superconductor then at low temperatures, disorder can induce a superconductor–insulator
transition [14–16]4. In this case, a theoretical proposal has been put forward, which predicts that
superconductivity at high disorder is maintained by coherence within a small set of preformed
Cooper pairs. Consequently, in the vicinity of the superconductor–insulator transition, both the
insulator and the superconductor contain these preformed Cooper pairs that either localize,
leading to an insulating state, or condense into a coherent state with glassy behavior around
the transition [14, 15, 17, 18]. The superconducting state then occurs on a small (filamentary)
subset of the system, which forms in the electron gas around Tc with an important but rare
path similar to the statistics of directed polymers [17, 18]. This picture is also supported by
a theoretical analysis based on a disordered negative-U Hubbard model [19], where, at strong
disorder, the current of the superconducting phase was found to flow along a low-D subset of
the 2D lattice.

Therefore, both on phenomenological [11] and microscopic [12, 15, 17–19] grounds, the
question naturally arises whether the tailish resistivity in LAO/STO and LTO/STO interfaces
is due to the formation of a low-D superconducting cluster embedded in the 2D electronically
reconstructed interface.

To shed light on the physics of these low-D superconducting clusters, we carry out a
specific investigation of a 2D disordered metallic system represented by a random-resistor
network (RRN). As in our previous work [11], the resistors represent mesoscopic metallic
islands where superconductivity occurs at a local critical temperature Tc. The superconducting
regions are assumed to be large enough to have a fully established local coherence and to
make charging effects negligible. Mutual phase coherence immediately establishes between
two neighboring superconducting islands, as soon as both become superconducting. This clearly
distinguishes our framework from the case of granular superconductors, where the grains have
usually nanoscopic sizes of the order of the coherence length of the pure system. We also stress
that the matrix embedding the low-D superconductor is metallic so that our model, were it not
for the role of phase fluctuations, bears some resemblance to the model of superconducting
‘puddles’ in a conducting metal [20]. The assumption of a metallic background seems to us

4 For a discussion on possible scenarios of superconductor–insulator transition, see, e.g., [16].
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appropriate because oxide interfaces (especially that of LTO/STO [3, 4]) do not show sizable
temperature variations of the normal-state resistance as long as one is not too close to the
superconductor–insulator transition.

To understand the effects of spatial (cluster) correlations, the resistances of our RRN
are divided into two classes. The background matrix is formed by resistances which never
become superconducting, embedding a cluster of resistances, each becoming superconducting
below some local, randomly distributed Tc. These superconducting clusters are taken with
spatially fractal-like distributions, which should describe the supposedly low-D character of
the superconducting oxide interfaces, while keeping a rather ‘dense’ structure, as indicated
by the moderately large mobilities of these interfaces and by the rather high slope of the
resistivity near the transition. Since we are investigating transport properties, which could
be crucially affected by the long-distance connectivity of the cluster, we explore different
low-D structures. In particular, we will consider a diffusion-limited aggregation (DLA) and a
symmetrized random walk (SRW) cluster (see below), which have similar dimensionality (and
similar local connectivity), but are markedly different in long-range connectivity. In this way, we
hope to highlight the specific role of (long-distance) connectivity for different low-D structures
embedded in a 2D metal.

The paper is organized as follows. In section 2, we introduce the generic aspects of our
model, while in section 3 we report the results of our numerical calculations for various kinds
of low-D structures and of disorder distributions. Section 4 contains a discussion of the results
and our concluding remarks.

2. The random-resistor model and effective medium theory

In [11], we considered a model of a 2D electron gas with mesoscopic defects as a square lattice
whose bonds are assigned a random resistivity ρi . More precisely, each bond is assigned a local
superconducting transition temperature T (i)

c , extracted from a given distributionW(Tc), and the
resistivity of the bond is written as ρi = ρ0θ(T − T (i)

c ), with the same high-temperature value
ρ0 on all bonds, θ(x) being the Heaviside step function. By decreasing the temperature T , more
and more bonds become superconducting, and global superconductivity establishes as soon as
a percolating superconducting path is formed in the system.

The simplest description of an RRN is provided by the effective medium theory
(EMT) [21, 22], which is a mean-field treatment replacing the random resistors ρi with an
effective medium resistivity ρem such that∑

i

ρi − ρem

αρi + ρem
= 0, (1)

where the parameter α is related to the connectivity of the network. For a cubic network in D
spatial dimensions, α = D − 1.

In [11] (see [11] for further details), we used EMT as a benchmark and compared ρem with
the exact numerical determination of the resistance of the RRN, obtained solving the Kirchhoff
equations for the network in the presence of a difference of potential V between two opposite
sides of an N × N square lattice. Once the current I (T ) flowing through the network at a
temperature T is obtained, the resistance is found to be R(T ) = V/I (T ). We showed that EMT
provides a very good description of the temperature dependence of the resistivity, independently
of the distribution of Tc, provided that disorder is spatially uncorrelated.
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The solution of (1), specialized to our case, reads [11, 22]

ρem(T ) = (1 + α)ρ0θ(T − Tα)

∫ T

Tα

dTcW(Tc). (2)

Here, Tα is the critical temperature of the effective medium and is determined by

ws(Tα) ≡

∫ +∞

Tα

dTcW(Tc) =
1

1 + α
, (3)

where ws(T ) ≡
∫ +∞

T dTcW(Tc) is the statistical weight of the superconducting bonds at a
temperature T , measuring the frequency of occurrence of bonds with Tc > T . From (2) it is
readily seen that ρem → ρ0 for T → ∞ and ρem(Tα) = 0.

In the present paper, we consider a model in which the superconducting bonds only form
a spatially correlated subset of the whole system. This subset provides a ‘skeleton’ network of
bonds which become superconducting below a random local T (i)

c , while the embedding system
is a metal with temperature-independent resistive bonds. We shall explore the joint effects of
the connectivity of the network and of the statistical distribution of the local critical temperature
W(Tc). We shall mainly rely on the exact numerical solution of the Kirchhoff equations, but we
shall refer to the EMT results to provide an interpretation of the outcomes of our calculations.
When dealing with EMT, the presence of spatial correlations requires the introduction of an
effective connectivity α, different from the standard connectivity.

3. Effects of low-dimensional disordered structures

3.1. The general framework

To investigate the effects of spatially correlated disorder, we consider the occurrence of a
cluster where the zero-resistance state is carried by only a minor set of superconducting
regions, reducing the effective dimension of the 2D electron gas near the superconducting
transition. We disregard the physical origin (classical, such as due to mechanical stresses, non-
uniform growth and so on, or quantum-mechanical, such as—for example—associated with the
occurrence of coherence on a thin cluster of Cooper pairs near the superconductor–insulator
transition) of this low-D superconducting ‘skeleton’ and we translate it into the framework of
the RRN. Specifically, we consider an RRN on which low-D structures exhibiting strong spatial
correlations and scale invariance are superimposed. Although the scale invariance is limited,
once the structure is implemented on a finite lattice, this requirement leads to the formation of
a rather dense cluster.

The fractal character of the cluster has no stringent physical grounds (even though it
shares similarities with the theoretical arguments reported in [17, 18]), but is merely a technical
way to produce rather dense subsets to represent strongly inhomogeneous systems with space
correlations on a large scale.

Each bond of these spatially correlated clusters is given a critical temperature extracted
from a probability distribution W(Tc), while the bonds not belonging to the ‘fractal’ cluster
have fixed resistances ρ0 (throughout the paper we take ρ0 = 1). By varying the geometry
of the clusters, as well as the probability distribution, the influence of these two aspects
on the temperature dependence of the resistivity is studied. Note that in this approach the
spatial distribution of superconducting bonds is considered to be independent of the probability
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distribution of the critical temperatures. This is a simplifying assumption, made in the lack of a
theory relating the mesoscopic inhomogeneity to the local superconducting temperature. It does
allow, however, for a general and systematic analysis of the separate effects of geometry and of
statistical distribution.

It is worth pointing out that in the previously considered models of uniform uncorrelated
disorder [11], global superconductivity occurred as a true percolative phenomenon: upon
lowering the temperature, more and more bonds became superconducting until a percolative
cluster of superconducting bonds was reached. The geometrical support and the general features
of this transition were typical of the percolation transition. On the other hand, in the present
model the geometric support of bonds which can become superconducting is provided by a
predetermined low-D subset of the network. When T is lowered, more and more bonds on
this low-D support become superconducting and global superconductivity only occurs when a
percolating path through the whole system is formed inside the filamentary subset. In this case,
for instance, the dimension of the superconducting support is not due to pure percolation, but it
clearly depends on the dimensionality of the supporting low-D subset.

In order to cover a different range of possible Tc distributions, we choose the two extreme
cases of Gaussian and Cauchy statistics. The choice is motivated by their different asymptotic
behavior: while the first has small tails and well-defined moments at all orders, the second
is characterized by strong tails causing all moments except the mean to diverge. We take a
Gaussian defined by the mean value µ1 and variance σ ,

W(Tc) =
1

√
2πσ

e−(Tc−µ1)
2/2σ 2

(4)

and a Cauchy (i.e. Lorentzian) distribution defined by the mean value µ2 and the width γ ,

W(Tc) =
γ

π [γ 2 + (Tc − µ2)2]
. (5)

Throughout the paper, the same parameters µ1 = µ2 = 1, σ = 0.1 and γ = 0.08 will be adopted.
The parameters σ and γ are chosen so that the resistivity curves obtained with the Gaussian and
Cauchy distributions have the same slopes close to the transition when space correlations are
absent (figure 1).

As recalled in section 2, one of the findings of [11] was that in the absence of space
correlations EMT performs remarkably well in reproducing the exact results of the RRN,
irrespective of the specific Tc distribution. As an illustration, we report in figure 1 the resistivity
curves of a uniform system obtained with the distributions here considered: the Gaussian (blue
curves) and the Cauchy distribution (green curves). One notes that the resistance curves obtained
with EMT (markers) match very well the exact numerical solutions (full lines). Thus, in the
absence of correlations, EMT provides a useful tool to investigate the ρ(T ) dependence. In
particular, the theory states that the resistivity of an RRN vanishes as soon as the weight of
superconducting bonds ws exceeds 1/(1 + α), where α is the connectivity of the system. In the
present case of a uniform 2D lattice, α = 1 and the percolation threshold at the transition yields
ws = 1/2. Referring to the resistance curves in figure 1, one notes that the critical temperature
of the system is Tα = 1, coinciding with the mean value of the (symmetric) distributions where
half of the bonds have become superconducting. Thus, we correctly reproduce the predicted
value of ws = 1/2. At high temperature, the heavier tail of the Cauchy distribution results in a
greater number of bonds with switched-off resistance. The resistivity for the Cauchy distribution
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Figure 1. Resistivity curves of the uniformly disordered system. The blue curves
correspond to a Gaussian distribution with µ = 1, σ = 0.1 and the green ones
to a Cauchy distribution with µ = 1, γ = 0.08. The markers report the thermal
evolution of the resistance obtained through the exact numerical calculations and
the full lines the EMT solution.

remains smaller than that for the Gaussian distribution down to the establishment of global
superconductivity on a percolating cluster.

To give a quantitative picture of the resistivity close to Tα, one can take the derivative of
equation (2) defined in the framework of EMT:

ρ ′

em(T ) = (1 + α)ρ0W(Tc = T ), (6)

for T > Tα, which shows that the slope of the resistivity is proportional to the value of the
distribution at equal temperatures. Combining this equation with the previous result ws(Tα) =

1/2, where the distribution has a maximum, one concludes that it is impossible to obtain
‘tails’ in the present case. In fact, due to the bell shape of the distributions the slope of the
ρ(T ) is maximal at the mean value and thus also at the critical temperature of the system.
By the same line of reasoning, one realizes that tailish behavior can be obtained even for a
spatially uncorrelated distribution, in the very specific case of a symmetric bimodal distribution
of Tc (see [11]). Here, we disregard this possibility and focus instead on the issue of space
correlations. Quite importantly, our interest being devoted to transport properties, we will
investigate the role of long-distance connectivity. In particular, we will consider two different
low-D structures, which have similar short-distance connectivity (i.e. similar dimensionality
and ‘density’), but differing in their topology, which gives rise to substantially different long-
distance connectivity.

3.2. Diffusion-limited aggregation

The first low-D cluster we implement is obtained through a simple growth process, generated
by Brownian motion and known as diffusion-limited aggregation. Its construction is simple:
a particle is released at the left edge of a 2D lattice and allowed to diffuse to the right. More
precisely, the particle moves one bond to the right and then with equal probability one bond up or
down. This procedure is iterated until the particle stops, as soon as it reaches the top, bottom or
right edge, where it sticks. Then, other particles are launched in sequence and halted either when
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Figure 2. Spatial distribution of superconducting bonds obtained through DLA.
The red square indicates the 100 × 100 lattice which is used for the calculations.

reaching one of the three edges or a bond already occupied by one of the previously diffused
particles. The cluster obtained in a 250 × 250 square lattice after diffusing 50 000 particles is
defined by the bonds where the particles stuck. Due to saturation at the left edge, the total
number of superconducting bonds only amounts to about 25 000. Once this large cluster is
obtained, we select a 100 × 100 sub-lattice as shown in figure 2 and perform the calculations
for this smaller cluster. In this way, we try to model a more physical case where the low-D
cluster covers the whole sample. So, henceforth we consider a 100 × 100 lattice, where only
bonds belonging to the cluster are assigned a critical temperature Tc. The other bonds form a
resistive background and are assigned the resistivity ρ0 at all temperatures.

Figure 3 reports the resistance curves calculated on the 100 × 100 DLA cluster. We remark
that for T & 1 the curves for the Gaussian and Cauchy distributions are rather similar. Lowering
the temperature, the system starts to exhibit stronger dependence on the specific statistics. In the
Gaussian case, a percolating path is already formed around Tα = 0.78, whereas for the Cauchy
distribution one has to go as low as Tα = 0.33 for the system to become fully superconducting.
Examining the formation of the superconducting cluster, one finds that at Tα, the fractions of
superconducting bonds are wG

s = 0.99 and wC
s = 0.97, respectively. So, practically all the bonds

have to be superconducting in order for the phase transition to occur.
The reason for this strong condition lies in the very small set of percolating paths, i.e. the

effective connectivity of the cluster is very close to zero. In other words, the cluster has rather
marked 1D character and a few missing superconducting bonds are enough to prevent the system
from percolating. To give a quantitative estimate of the effective connectivity of the cluster, we
define the following measure (inspired by equation (3) defined in the EMT framework):

αeff
=

1

ws(Tα)
− 1. (7)
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Figure 3. Resistivity curves of DLA cluster. The blue curves correspond to a
Gaussian distribution with µ = 1, σ = 0.1 and the green to a Cauchy distribution
with µ = 1, γ = 0.08. The markers report the thermal evolution of the resistance
obtained by exact numerical calculations, the dashed lines by EMT on the system
and the full lines by EMT on the cluster.

For instance, comparing wU
s (Tα) = 0.5 and wG,DLA

s (Tα) = 0.99, where the superscripts U and
DLA refer to the case of a uniform and DLA superconducting cluster, respectively, one realizes
that the statistical weight of the superconducting bonds close to the critical temperature Tα

clearly depends on the geometry of the cluster and, in particular, on its effective connectivity.
In addition, we shall show below that taking αeff

DLA = 1/0.99 − 1 = 0.01 the EMT restricted
to the cluster produces ρ(T ) curves close to the exact results. Therefore, even though space
correlations do not enter explicitly, (7) still provides a good estimate of an effective connectivity,
once the relevant space correlations are accounted for by restricting EMT to the cluster. A
second effect of the small set of percolation paths is a strong dependence on the specific
realization of the distribution: two different realizations of the same distribution might be
quite different. This effect is particularly severe for the Cauchy distribution, which has larger
deviations from the mean. Since the Gaussian distribution, having small deviations from the
mean, produces a superconducting cluster with an effective connectivity αeff

DLA = 0.01, we
assume this value to be representative of the appropriate connectivity of the underlying DLA
cluster. On the other hand, the realization of the Cauchy distribution of critical temperatures on
the cluster in figure 2 is such that a percolating path forms at a finite temperature but calculations
of ρ(T ) for different realizations of W(Tc) show that on average the phase transition does not
occur. This result can be understood by noting that the Cauchy distribution has rather wide tails
so that wC

s (T 6 0) ≈ 0.025. Thus the fraction of bonds which never become superconducting
is substantial and, owing to the low connectivity of the DLA cluster (requiring wDLA

s = 0.99),
it may well happen that non-superconducting bonds prevent full percolation being established
down to zero temperature.

This effect makes it apparent that, on correlated clusters, the low values of connectivity
(like αeff

DLA = 0.01) render the system very sensitive to the statistics of the critical temperatures.
Figure 3 also shows that the EMT, when applied to the whole RRN (which is formed both

by the low-D cluster and its complementary background), clearly misses the correct temperature
dependence of the resistivity. According to its construction, outlined in section 2, this

New Journal of Physics 15 (2013) 023014 (http://www.njp.org/)

http://www.njp.org/


10

mean-field-like theory neglects all spatial correlations and this discrepancy is expected. In
addition, we remark that the decrease of ρ with T is a finite-size effect: as soon as spatial
correlations are neglected what matters is the statistical weight of superconducting bonds only.
This weight is smaller than (or equal to) N D/N 2, which tends to zero for N → ∞, leading to a
vanishing drop of resistance when calculated by EMT on the whole system.

One can try to circumvent the shortcomings of EMT by evaluating it on the bonds
belonging to the DLA cluster only. With this adjustment, the relevant space correlations can
be taken into account using αeff, and EMT reproduces quite accurately the main features of the
exact solution: the regular behavior for T > µ and the stronger dependence on the distribution
at low temperatures, due to the cluster’s low connectivity. However, there is an overall shift
from the restricted EMT solution with respect to the exact calculation. At high temperatures,
where only a very few bonds have become superconducting, it is not favorable to force the
current to flow through many resistive bonds simply to reach a few superconducting bonds.
Therefore, the current still flows through the system in parallel (only locally perturbed by the
few superconducting bonds present). By decreasing the temperature the superconducting cluster
increases and, consequently, also the amount of current going through it. Close to the transition
the shift then nearly vanishes because the resistive background ceases to play an important role.
More precisely, the current is essentially carried by one or a few large quasi-percolating paths,
which only need a few resistors to switch off in order to fully percolate. For these paths, it
is immaterial whether they are embedded in a 2D (markers in figure 3) or simply a quasi-1D
system (full lines in figure 3).

3.3. Symmetrized random walk

The topology of the DLA cluster considered in the previous section is characterized by a few
backbones (forming connected paths between the two vertical edges of the lattice) and many
dangling branches. Now, we explore a different situation in which the low-D geometry does not
contain any dangling branches.

We modify the construction scheme of the DLA in the following way. Instead of keeping
only the final position of the diffused particles, their entire trajectory is incorporated into the
cluster. In addition, the particles are free to cross the paths of previously diffused particles.
Launching 50 particles from each of the four edges and letting them diffuse perpendicular to the
initial edge, a cluster of the form shown in figure 4 is obtained.

As was the case for the DLA, the resistance curves of the SRW shown in figure 5 are
very similar for T ∼ 1. The difference at higher temperatures originates from the difference in
the distributions. Looking at the superconducting cluster formed at T = 0.9, one finds that the
weights of superconducting bonds are wG

s = 0.84 and wC
s = 0.79, respectively. Interestingly, this

difference has little effect on the resistivity. In fact, at this temperature, the size of the connected
superconducting regions is of the order of ten bonds for both distributions. In this regime,
having a few superconducting bonds more or less does not produce a noticeable difference
in the resistivity.

This behavior clearly changes as one approaches the transition temperature. For T slightly
larger than Tα the current is carried by long-range superconducting regions which lack only a
few bonds to fully percolate. Inspection of the superconducting cluster growth reveals that the
percolation threshold is reached as soon as wG

s (T G
α ) = 0.92 and wC

s (T C
α ) = 0.90. The closeness

of these two values is again an indication that the threshold weight ws(Tα) only depends on the
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Figure 4. Spatial distribution of superconducting bonds obtained through an
SRW on a 100 × 100 lattice.

Figure 5. Resistivity curves of the SRW cluster. The blue curves correspond to a
Gaussian distribution with µ = 1, σ = 0.1 and the green to a Cauchy distribution
with µ = 1, γ = 0.08. The markers report the thermal evolution of the resistance
obtained by exact numerical calculations, the dashed lines by EMT on the system
and the full lines by EMT on the cluster.

‘geometry’ (i.e. the effective connectivity) of the underlying cluster and not on the specific Tc

distribution. While the threshold is reached at T G
α = 0.86 in the first case, the heavy tail of the

Cauchy distribution obliges the system to go as low as T C
α = 0.76 in the second case.

These considerations on wU
s , wDLA

s and wSRW
s suggest that the high-temperature behavior is

mainly determined by the dimensionality of the cluster. In fact, coarse-graining analysis using
the box-counting method [23] shown in figure 7 reveals that the dimension of the clusters is
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(a)

(b)

Figure 6. (a) Comparison of the resistivity curves for a Gaussian Tc distribution
(µ = 1, σ = 0.1) in a uniform system (stars), in an SRW cluster (circles) and in
a DLA cluster (squares). (b) Comparison of the resistivity curves for a Cauchy
Tc distribution (µ = 1, γ = 0.08) in a uniform system (stars), in an SRW cluster
(circles) and in a DLA cluster (squares).

DDLA
≈ DSRW

≈ 1.8. This is reflected in the congruence of ρDLA(T ) and ρSRW(T ) for T > 0.9,
as well as in their leftward shift with respect to ρU(T ) (with DU

= 2), as is shown in figure 6.
In contrast, the calculation of the connectivity at the transition point reveals that αeff

SRW ≈

0.1. This value is much larger than in the DLA case (αeff
DLA ≈ 0.01) signaling a substantially

larger long-distance connectivity, but it is still relatively small. So, despite its 2D appearance,
the low-temperature region, being more sensitive to the effective connectivity than to the
dimensionality, behaves as quasi-1D. As far as the comparison between the EMT and the
numerical exact results is concerned, the conclusions are analogous to the discussion given
for the DLA cluster.

To develop a quantitative understanding of ρ(T ) close to the transition, we turn to an
analytic approach based on a coarse-grained picture of the cluster. We consider the random walk
cluster as a uniform system made up of large conducting segments containing M � 1 bonds.
In the framework of EMT, the percolation threshold is reached when 1/2 of the segments are
superconducting. One can reformulate the condition in terms of the single bonds; since in order
for a large segment to become superconducting, all its single bonds have to be superconducting,
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Figure 7. Determination of fractal dimension using the box-counting method: the
lattice is subdivided into Nbox = (N/Lbox)

2 boxes of size Abox = Lbox × Lbox. For
each box k, we calculate the ratio µk = N k

bond/Nc, between the number of bonds
belonging to the portion of the cluster inside this box N k

bond and the total number
of bonds belonging to the cluster Nc. The quantity Rq =

∑Nbox
k=1 µ

q
k is then related

to the box size according to Rq = L D(q−1)

box , where D is the fractal dimension. The
figure shows a log–log plot with Lbox varying from 1 to N/2 in the DLA cluster
(circles) and in the SRW cluster (pluses). The dashed lines are linear regressions
of ln Rq=2 ∝ D ln Lbox in the DLA cluster (black line) and in the SRW cluster
(red line): both lines have the same slope D = 1.8 and are hardly distinguishable.

one has

pM
= 1/2, (8)

where p is the probability for a single bond to be superconducting. Close to the global critical
point, the resistivity can be approximated by

ρ(T & Tα) = Cρ0

(
1

2
− pM

)
, (9)

with C > 0. The purpose of the model is to analyze the possible occurrence of a tail in the
resistivity curve, i.e. the behavior of the slope of ρ(T ) at T ≈ Tα:

dρ

dT

∣∣∣
T ≈Tα

= −MpM−1 p′, (10)

where Cρ0 was set to 1 for simplicity and p′
= dp/dT . Since T ≈ Tα and M � 1, the following

approximations can be made:

pM
≈

1

2
, (11)

p ≈ exp

[
−

1

M
ln(2)

]
≈ 1 −

1

M
ln(2) (12)

⇒ M =
ln(2)

1 − p
. (13)
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Inserting the two expressions into (10), we obtain an expression for the derivative of the
resistivity as a function of the single bond probability close to the critical point,

dρ

dT

∣∣∣
T ≈Tα

= −
1

2
ln(2)

p′

p(1 − p)
, (14)

≈ −
1

2
ln(2)

p′

1 − p
, (15)

=
1

2
ln(2)

W(Tc = Tα)

1 −
∫

∞

Tα
W(Tc) dTc

. (16)

In terms of the distribution the condition p ≈ 1 (see (14)) means that the leading behavior is
obtained taking the limit W(Tc → −∞) (or, more precisely, µ − Tα � σ, γ ; we point out that
the critical temperature stays finite). This implies that the slope of the resistivity is proportional
to the ratio of two small numbers. For the Gaussian distribution, the ratio is

W(Tc = Tα)

1 −
∫

∞

Tα
W(Tc) dTc

≈

1
√

2πσ
e−x2

1 −

(
1 −

e−x2
√

π |x |

)
=

|x |
√

2σ
≈

|Tα − µ1|

2σ 2
, (17)

where the shorthand notation x = (Tα − µ1)/
√

2σ was used. For the Cauchy distribution, the
ratio is

W(Tc = Tα)

1 −
∫

∞

Tα
W(Tc) dTc

≈

γ

π [γ 2 + (Tα − µ2)2]

1 −

(
1 −

γ

πTα

)
≈

1

|Tα − µ2|
. (18)

One observes that the slope for the Gaussian distribution depends linearly on the deviation
from the critical temperature, while in the case of the Cauchy distribution the dependence is
inversely proportional. Thus, for large M and comparable widths σ ≈ γ , the slope in (17) is
proportional to |Tα − µ1|/σ � 1 and the slope in (18) is proportional to γ /|Tα − µ2| � 1. This
result highlights the strong influence of the distribution for low-D structures with M � 1.

4. Discussion

Our analysis is purely phenomenological in character: we embed a given low-D structure in a
metallic environment, we impose a given Tc distribution on it and then we calculate the resulting
resistivity curve. While this approach lacks any (possible, but not mandatory) microscopic
connection between the geometrical and the Tc distribution, we separately access the distinct
effects of these two ingredients.

As a first result, we point out that the geometrically correlated character of the
superconducting clusters considered here greatly degrades the performance of the EMT mean-
field-like approach. According to our experience in spatially uncorrelated disorder [11],
this failure has nothing to do with the strength of disorder or the relative density of the
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superconducting and the non-superconducting bonds, but is a mere result of space correlations.
On the other hand, we showed that it is possible to find good qualitative agreement by restricting
EMT to the cluster. In this case, one needs to introduce an effective connectivity (see (7)).

Calculating the standard (local) connectivity given by α = 〈z〉/2 − 1, where 〈z〉 is the
average number of nearest neighbors, we obtain αDLA = 0.38 and αSRW = 0.15, formally
expressing the visual impression that the DLA cluster is ‘denser’ than the SRW. On the other
hand, for the transport properties at issue in this paper it is important to have connected long-
distance paths. In other words, the presence of regions with large internal connectivity is
rather immaterial for transport if these regions are weakly connected to one another, thereby
requiring the definition of an appropriate long-range connectivity [24]. Here, based on the
EMT approach, we choose to introduce an effective connectivity to deal with a simple and
‘handy’ quantity immediately representing this average (i.e. long-distance) connectivity. Then,
the comparison with αeff

DLA = 0.01 and αeff
SRW = 0.1 reveals that the effective connectivity is very

different from the locally defined connectivity and formally translates the visual impression of
different topological properties of the two clusters. However, despite this markedly different
effective connectivity, one interesting finding of our work, reported in figure 6, clearly shows
that, for a given Tc distribution, the different superconducting clusters display similar resistive
behavior over most of the temperature range. This apparently contrasts with the finding of
different effective connectivities (the effective connectivity of SRW is about ten times larger
than the effective connectivity of the DLA cluster). This ineffectiveness of the connectivity is
due to the metallic matrix, which carries a substantial part of the current unless the embedded
cluster is (almost completely) superconducting. Only in these latter cases, near the global critical
temperature at which percolation occurs (Tα), the current predominantly moves inside the almost
completely superconducting cluster and its connectivity properties matter. One can then focus
on this low-temperature region to pinpoint the specific role of this connectivity. Inspecting
this part of figure 6 for the case of a Cauchy Tc distribution (b), one can make the following
observations: both DLA and SRW clusters are low-D enough (αeff

DLA = 0.01 and αeff
SRW = 0.1) to

display tailish behavior. This should be emphasized by the choice of the relatively long-tailed
Cauchy distribution.

However, even in this more favorable case, the tail in the SRW case is much smaller
than that of DLA. Furthermore, the DLA tail is even underestimated since the specific
superconducting realization of the Tc configuration in figure 5 on the DLA is rather rare and
in most realizations we found no complete superconductivity. This implies that going from
the practically 1D connectivity of the DLA to the SRW with αeff

SRW = 0.1 is enough to largely
suppress the tail. Therefore, our findings indicate that tailish resistances are only present when
very few links determine the occurrence of long-distance connected paths (even large ‘bulky’
superconducting regions are immaterial near Tα if these are only very sparsely connected
throughout the sample).

We also find that the effective connectivity is an intrinsic property of the cluster and
is independent of the Tc distribution. This result is natural because upon reducing T , the
Tc distribution only determines how ‘fast’ the resistances are switched off. However, this is
irrelevant as far as the number of superconducting bonds needed to percolate is concerned.

Another interesting outcome of our analysis is that the effects of space correlations render
the superconducting transition strongly dependent on the disorder distribution and, in particular,
on its low-temperature asymptotics: as soon as percolation occurs through a quasi-1D path, the
system needs to explore (almost) the entire Tc distribution, and thus becomes very sensitive to
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Figure 8. Fit of experimental resistance curves measured in the LTO/STO
interface with a gate voltage VG (see [4] for details) with theoretical curves
obtained on a DLA cluster with a Gaussian distribution of Tc. The experimental
data obtained for VG = 50 V (yellow dots) are fitted with µ = 0.148 K, σ =

0.033 K (black crosses) and the data obtained for VG = 70 V (red dots) are fitted
with µ = 0.163 K, σ = 0.031 K (black pluses). Inset: enlarged view of the low-
temperature behavior of R(T ).

its low-temperature part. This effect can be made particularly clear within the analytic approach
of section 3.3, where the slope of the resistivity at Tα was shown to depend in inverse ways on
the distance of Tα from the mean of the Cauchy or Gaussian distribution.

After the detailed analysis of the various effects of space correlations and Tc statistics, we
come back to the initial question of whether and which of these aspects is relevant in explaining
the tailish behavior of ρ(T ) in oxide interfaces. Based on the above results, we confirm that
a rather dense but filamentary structure of superconducting bonds is a likely ingredient to
account for a tailish resistivity. Due to their dimensionality, (i.e. larger than a purely 1D cluster),
the clusters here considered are formed by superconducting bonds densely enough distributed
to cause a linear decrease of the resistance with a relatively high slope, when lowering the
temperature starting from the high-temperature metallic phase. In this regime, only the width of
the statistical distribution of Tc matters, while none of the other details of the distribution play
a significant role (as in a homogeneous cluster): the narrower the Tc distribution and the denser
the support, the faster ρ decreases with T .

However, with further reducing the temperature, one gets close to the global critical
temperature, where the global superconducting state appears via the percolative ‘chaining’
of superconducting regions on the low-D support. Here, the crucial property determining the
shape of the transition is not the dimensionality but the effective long-distance connectivity αeff.
The filamentary (quasi-1D) behavior of the DLA and SRW clusters results in a more or less
pronounced tail of ρ(T & Tα). The details of the shape of the tail (e.g. the slope of ρ(T ) at
percolation) are controlled by the low-temperature asymptotics of the Tc distribution.

Applying our approach to an LTO/STO interface [4], we show that it is possible to fit
the experimental resistance curves with theoretical curves obtained on a DLA cluster with a
Gaussian Tc distribution. Figure 8 shows that our model successfully reproduces the shape of
R�(T ) measured in such interfaces: the linear decrease of the resistance with a relatively high
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slope and the tailish behavior close to the global critical temperature. We note only a small
mismatch around T ∼ 0.2 K where the resistance starts to bend down.

We also remark that the fit with a Gaussian distribution on an SRW cluster, as well as a
Cauchy distribution on both DLA and SRW clusters, does not produce satisfactory agreement
with the experimental data. According to our theory, the actual interface might thus be composed
of superconducting islands with a spatial distribution slightly denser than a DLA cluster (to
account for the above-mentioned small mismatch around T ∼ 0.2 K) but with a similar long-
range connectivity and a Gaussian distribution of local critical temperatures.

In conclusion, our approach and results may provide a guideline for more refined models,
which should take into account the physical mechanisms that rule, e.g., the intra-grain pair
formation leading to a local Tc (Cooper pairs in the presence of quenched impurities [25],
disordered bosonic preformed pairs [26] and glassy superconducting transition [17, 18]), and
the emergence of the inhomogeneous metal–superconductor structure with coexisting metallic
and superconducting islands with a distribution of Tc.

Eventually, with the insight gained from such microscopic considerations, e.g., the relation
between the local Tc and the local high-temperature resistivity (which was kept constant in our
analysis), the present approach could be refined and the results should be tested against the
experimental findings.
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[5] Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R and Sanquer M 2008 Phys. Rev. Lett.

101 157006
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