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Abstract. We propose a new scheme for supplying voltages to the electrodes
of microfabricated ion traps, enabling access to a regime in which changes to the
trapping potential are made on timescales much shorter than the period of the
secular oscillation frequencies of the trapped ions. This opens up possibilities for
speeding up the transport of ions in segmented ion traps and also provides access
to control of multiple ions in a string faster than the Coulomb interaction between
them. We perform a theoretical study of ion transport using these methods in
a surface-electrode trap, characterizing the precision required for a number of
important control parameters. We also consider the possibilities and limitations
for generating motional state squeezing using these techniques, which could be
used as a basis for the investigation of Gaussian-state entanglement.

1 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 15 (2013) 023001
1367-2630/13/023001+25$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:alonso@phys.ethz.ch
http://www.njp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


2

Contents

1. Introduction 2
2. Electronic switches for ultra-fast motional control 4
3. Experimental implementation 7
4. Fast ion transport 8

4.1. Micromotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2. Effect of trap anharmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3. Switch timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4. Finite switching time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5. Extended transport throughout an array . . . . . . . . . . . . . . . . . . . . . 14

5. Motional-state squeezing 16
5.1. Motional heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2. Effect of anharmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. Outlook 18
6.1. Entanglement between radial motional modes . . . . . . . . . . . . . . . . . . 18
6.2. Dynamical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3. Interface with solid-state devices . . . . . . . . . . . . . . . . . . . . . . . . . 19

7. Conclusion 20
Acknowledgments 20
Appendix A. Finite switching time—linear and sinusoidal potential displacements 20
Appendix B. The heating rate of squeezed vacuum states 21
References 23

1. Introduction

Engineered states of the motion of atomic ions in radio-frequency (rf) traps [1–3] have provided
a number of pioneering demonstrations of quantum-state control and decoherence. Examples
include the creation of Fock-state superpositions, squeezed states and entangled states between
the internal and motional degrees of freedom [4–9]. The motional degrees of freedom are
also of primary importance in multi-qubit quantum logic gates, where the internal states can
be entangled by transient state-dependent excitation of the motion [10, 11]. More recently,
motional degrees of freedom have been used as a conduit to transmit quantum states between
different trap regions of a multi-zone trap array, whether by moving the ions themselves [12] or
by the use of the long-range Coulomb interaction [13, 14].

The motion of trapped ions can be controlled by the application of optical or microwave
fields or by changing the electric fields which generate the trap itself. While optical and
microwave fields can be used to create forces which are dependent on the ions’ internal
electronic state (and can therefore be used to produce spin–motion entanglement), this control
can generally be approximated by a perturbative Hamiltonian with respect to that describing the
trapping potential. By controlling the trap electric fields it is possible to produce large changes
in the Hamiltonian describing the motion, and this control is independent of the ions’ internal
state.
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Manipulating the motional states of trapped ions on fast timescales is desirable for
a number of reasons. The primary application of current interest is quantum information
processing, where transport of information is necessary for scaling to large numbers of ions
and has been predicted to be one of the most time-consuming operations in a large-scale
processor [15, 16]. One promising approach to scaling is to transport the ions themselves
through an array of microtraps, with the transport controlled by time-varying potentials applied
to a number of trap electrodes [17, 18]. These have traditionally been generated by voltage
supplies placed outside the vacuum system and connected to the trap via vacuum feedthroughs.
The feasibility of this approach has been demonstrated in a number of experiments, including
linear transport (and separation) of multiple ions [19–21], as well as two-dimensional transport
through T, X and Y junctions [22–25]. The important figures of merit in these experiments were
the operation time and the amount of motional excitation which persists after the transport has
taken place. The latter is important because errors in multi-qubit quantum logic gates increase
for higher motional excitation. Although this can be mitigated by sympathetic cooling [26–28],
it takes time and thus reduces the computing speed of the processor [29]. As a result of these
considerations, initial experiments on transport operated in the adiabatic regime, maintaining
the ion close to the ground state of motion of the co-moving time-dependent potential well
throughout the transport. The adiabatic constraint limits transport to timescales which are long
compared to the motional period of oscillation of the ion in the trap.

The use of low-noise, high-speed digital-to-analogue converters has recently enabled
diabatic transport of ions over distances of ∼300 µm in 5–16 oscillation cycles [20, 21], with
the ion returned to the ground state of the potential well at the end of the transport despite being
transiently excited during transport. With these techniques, the limit to the control rate is set by
the finite capacitances present in the lines going to the electrodes.

In this paper, we propose time-dependent control of the trapping potential using a new
method which involves placing electronic switches inside the vacuum system. The control for
the switches is digital, allowing trap electrodes to be switched between two potentials supplied
by standard analog supplies. Since the electronic switches we will consider can change their
output by up to ∼10 V on nanosecond timescales, this method provides the possibility of making
changes to the trapping potentials 100 times faster than the period of oscillation of the secular
motion, which is typically between 200 ns and 1 µs [17]. This would allow for ion transport in
times shorter than a single cycle of oscillation in the trap (section 4).

Fast control of the trapping potential could also be used for other applications. In strings
consisting of multiple ions, an additional important timescale is the speed of sound in the chain,
which is characterized by the frequency splitting of normal modes. Controlling the potential on
timescales that are fast compared to the speed of sound may allow for the realization of schemes
which have been proposed for entanglement generation and the investigation of continuous-
variable quantum information processing [30, 31].

This paper proceeds as follows. In section 2 of this paper, we introduce our fast control
scheme. In section 3, we present a generic ion-trap setup which will be used as a reference for
the quantitative studies throughout the text. In section 4, we review the application of ultra-fast
voltage switching to macroscopic ion transport in less than an axial oscillation cycle, while
in section 5 we consider a different application to continuous quantum-variable manipulation.
A number of further applications are outlined in section 6. Finally, a summary of the main
results is given in section 7.
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2. Electronic switches for ultra-fast motional control

The aim of this work is to achieve diabatic ultra-fast (for our purposes, this is defined as being
faster than 100 MHz) control of the trap potential of one or more trapped ions. Additionally,
we do not want to relax the requirements on voltage noise on the electrodes, which can lead to
ion heating, setting a limit to the coherence of the quantum states of motion and shortening the
lifetime of the ion in the trap. The rate of excitation of a single ion from the ground state to the
first excited state (which characterizes the rate of heating in a trap) is given by [32]

00→1 =
q2

4 mωh̄
SE(ω), (1)

where q is the ion charge, m its mass and ω the secular frequency in angular units. SE(ω) =

2
∫

∞

−∞
dτ 〈E(t)E(t + τ)〉 eiωτ is the spectral density of electric field fluctuations in the trap,

where t is time and 〈· · ·〉 indicates the time average of the argument. In order to prevent relevant
noise spectral components (hundreds of kHz to tens of MHz) from reaching a trapped ion, it
is common to place low-pass resistor-capacitor (RC) filters close to the ion trap (see figure 1).
These filters attenuate any contribution to SE(ω) which comes from outside the trap. However,
they also impede the ability to perform fast control of the trapping potentials from outside
the vacuum system, since they suppress high-frequency components in the analog signals and
therefore distort them.

One solution could be to replace the low-pass filters by band-stop filters which allow for
both slow and very fast signals. However, parasitic capacitances of the cables to the electrodes
(including vacuum feedthroughs) also filter the higher-frequency components and inhibit ultra-
fast control. Another possibility is to adjust the waveforms to the filters, such that the voltage
control sources deliver high amplitudes of the fast transients and a fraction of them reaches the
electrode [33]. In this case, the limit is set by the compromise between the filter strength and
the maximum amplitude, as well as the slew rate of the voltage source.

As an alternative to these approaches, we propose to generate the time-dependent control
close to the electrodes themselves. The primary ingredient is a single-pole double-throw (SPDT)
switch, the state of which is controlled by a digital line. The SPDT switch provides a connection
from one of two input lines to the output dependent on the logical state of the digital input. The
chosen input switches abruptly when the digital input reaches a threshold value; thus the precise
details of the digital signal arriving at the switch are not important as long as the time at which
it reaches the switching value does not fluctuate. The speed at which the voltage switches is
determined exclusively by the characteristics of the switch itself and the capacitive load at the
output.

Figure 1(c) shows the electronic scheme for wiring up a control electrode to analog inputs
in our proposal. The switch is placed between the low-pass filter and the electrode; otherwise
the filter would also attenuate the fast components of the switched signal.

A possible implementation of an SPDT switch based on more common single-pole single-
throw (SPST) switches is shown in figure 2. An illustration of the analog output of a candidate
SPDT switching circuit based on complementary metal-oxide-semiconductor (CMOS) SPST
switches (74HC4066M chip from Texas Instruments) operating at 4 K is shown in figure 3,
taken from tests of a range of technologies which will be published elsewhere [34]. The digital
control signals are not shown, but the rise/fall times are much longer than those of the switched
output (∼50 ns). Despite a slower digital signal, the output switches in ∼4 ns. Also visible in the
signal is a slow component which changes over a time of 15 ns. This is due to our measurement
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Figure 1. Electronic schemes for setting the voltages at the control electrodes
of a trap. The standard configuration is shown in (a) and consists of a voltage
supply and a low-frequency filter (rfil,a and cfil,a can be chosen such that the
corner frequency is fc ∼ 10 Hz). The configuration in (b) allows for waveforms,
typically at frequencies close to but lower than the secular frequency. The idea
is the same as in the standard configuration, only the voltage supply is replaced
by a digital-to-analog converter and the corner frequency of the low-pass filter is
set to a higher value ( fc ∼ 100 kHz). The ultra-fast switching scheme described
in the text is shown in (c). The values of rfil,c and cfil,c can be chosen such that
fc ∼ 10 Hz. In all cases, the capacitors cfil have two functions: they form part
of the low-pass filters for preventing high-frequency noise from getting into the
trap; and they serve as a low-impedance path for the rf drive to the ground. ctrap

is the capacitance between the rf and the control electrodes, and ccable represents
the parasitic capacitance of the typically long cables and feedthrough assemblies
from the external electronics to the trap chamber. The small insets next to the
supplies indicate the generic time-dependent voltages on the respective lines.

setup, including the capacitance of a 1 m co-axial cable that was used to connect the output
of the switch to the high-impedance oscilloscope and other electronics, introducing an extra
capacitive load (∼50 pF).

As a result of our proposed wiring scheme, the route from the electrode to the rf ground now
includes the internal impedance of the switch on the on state. It is important that this impedance
is low to pull the electrode to the rf ground. The on-resistance of the 74HC4066M is specified
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Figure 2. Simplified SPDT implementation with two SPST switches. This
scheme requires proper synchronization of both digital control signals. Further
electronic components required for the experimental implementation of the
SPDT have been omitted.

0 5 10 15 20 25 30
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

90%

10%

S
w

itc
h

ou
tp

ut
(V

)

Time (ns)

3.8 ns

Figure 3. Switching behavior at 4 K of an SPDT switching circuit based on
CMOS SPST switches (74HC4066M from Texas Instruments) following the
scheme shown in figure 2. The input voltages are Vin,1 = 0 V and Vin,2 = 3.8 V.
The 10–90% rise time of the switched output is below 4.0 ns. The upper part of
the curve is the expected response due to the load of the detection electronics
(the coaxial cables and the oscilloscope introduce a capacitive load of ∼50 pF),
which would not be present in the wiring scheme of a trap electrode.

to be ∼15 � at 300 K,2 and is probably smaller at 4 K, for which we found the switching
time to be three times faster than at room temperature. As a reference, the typical reactance
of the capacitors in the RC filters ranges from 0.5 to 10 � for trapping-drive frequencies of

2 Texas Instruments, datasheet from CD54HC4066, CD74HC4066, CD74HCT4066 High-Speed CMOS Logic
Quad Bilateral Switch.
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Figure 4. A surface-electrode trap suitable for ultra-fast quantum-control
experiments. The rf electrodes are labeled rf and the control electrodes e. The
main trapping zone is the area sandwiched between the five pairs of narrower
(50 µm) control electrodes, denoted as e2−8.

20–200 MHz and capacitors close to 1 nF (above ∼1 nF parasitic inductive effects are relevant).
These values have been used in previous experiments [35] (see also [44]).

Another relevant aspect is to design the electronics such that the coupling between the
digital and analog sides of the electronics is minimized and noise on the digital lines does not
reach the electrode (crosstalk).

A scheme including multiple-throw switches or a series of cascaded SPDT switches (as
opposed to the single SPDT switch depicted in figure 1(c)) would allow for a finer control of
the electrode voltages.

3. Experimental implementation

As an illustration of the considerations which must be taken into account when working in this
new regime, we next consider the application of our scheme to two tasks in quantum control:
diabatic transport of ions and the generation of squeezed states of the motional degrees of
freedom of ions. In order to provide an experimental setting, we introduce the fixed geometry
of a surface-electrode ion trap [36–38] which we have fabricated recently. This trap design
provides a setting which gives an idea of the size of relevant experimental parameters. However,
the methods and routines which we give are general and can, in principle, be carried out in
any other ion-trap setup, as long as there are a sufficient number of independently controllable
electrodes. The central region of the trap is shown in figure 4. The rf electrodes and the control
electrode em run parallel to the trap axis. By applying an rf voltage with an amplitude of 100 V
at a frequency of 100 MHz, this structure yields a three-dimensional confining pseudo-potential
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Figure 5. Sketch of the fast ‘throw-catch’ transport routine. (a) Starting point:
the ion is in the motional ground state of a potential well displaced from the trap
center by an offset voltage on an external electrode. (b) Ion transport: the offset
voltage is ‘instantaneously’ switched off so that the potential is centered in the
trap and the ion starts its coherent oscillation. (c) Ion catch: the offset is switched
onto a symmetric external electrode and the ion is caught at the instant when it
has no kinetic energy, exactly half an oscillation after beginning the transport.

for positively charged particles at a trap–electrode distance of ∼60 µm. The array of control
electrodes allows for flexible creation of potential wells along the axis of the trap.

4. Fast ion transport

The basic principle of fast transport using sudden switching of potentials is illustrated in figure 5
for an ion considered a one-dimensional harmonic oscillator [39, 40]. The ion starts in the
ground state of an initial potential well situated at z = −z0 given by

Vinit(z) =
1

2
mω2(z + z0)

2. (2)

At time t = 0 the potential is suddenly displaced to the transport well, which has the same
curvature but is centered at z = 0. At this point the ion is in a coherent state of the transport
well, with the coherent state parameter α0 = −z0/a0, where a0 =

√
h̄/2mω is the rms extent

of the ground-state wavefunction. Under free evolution, this coherent state will gain and lose
momentum, returning to rest periodically at times t = pπ/ω where p is an integer. For p = 1,
the wavepacket is positioned at z = z0. If at this time the potential is suddenly displaced again
to a final potential well which is centered at z = z0 and has the same curvature as the transport
well, the ion will end up in the ground state of the final potential, having been transported over
a distance of 2z0.

Such a ‘throw-catch’ transport routine can be carried out in the trap shown in figure 4. One
possibility is to start with a potential well centered above the pair of electrodes e6 and end above
the pair e4. The full transport distance would then be 100 µm. At a typical frequency of 1 MHz,
this gives a mean velocity of 200 m s−1 and α0 ∼ 4500 for a 40Ca+ ion.

There are a number of experimental challenges behind this conceptually simple transport
routine, which we outline below.
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Table 1. Example trap voltages for implementing the fast transport routine in the
trap shown in figure 4 with a single 40Ca+ ion. The transport takes place from
e6 to e4 (100 µm) in half an axial oscillation (500 ns). The largest voltage switch
is <6 V. The energy E of the ion and the relevant potential parameters (defined
in section 4.2) are also given. Some electrodes require three different voltages,
for which two SPDT switches can be used. Note that the numbers are particular
to a specific trap geometry and conditions, but may be used as a reference for
different scenarios. The labeling of the electrodes is given in figure 4.

Control voltages (V) Motional parameters
e1,3,7,9 e2 e4 e5 e6 e8 fz L3 L4 E

Step l r l r l r l r l r l r em (MHz) (µm) (µm) (eV)

(1) t 6 0 0.38 0.38 1.38 −5.45 −0.97 0.08 −6.38 −1.11 −0.97 0.08 0.98 −3.16 0.51 1.0 140 −200 2 × 10−9

(2) 0 < t < π
ω

0.38 0.38 0.38 0.38 −0.97 0.08 −6.38 −1.11 −0.97 0.08 0.38 0.38 0 1.0 1010
−120 2 × 10−2

(3) t > π
ω

0.38 0.38 0.98 −3.16 −0.97 0.08 −6.38 −1.11 −0.97 0.08 1.38 −5.45 0.51 1.0 140 −200 2 × 10−9

4.1. Micromotion

Micromotion is the driven motion of trapped ions in rf traps which occurs when the rf component
of the electric field is non-zero.

Radial micromotion arises when the dc minimum does not lie on the rf minimum, which
is given solely by the geometry of the trap. There are two causes of radial micromotion: stray
fields and trapping dc voltages. The former are a priori unpredictable and should be canceled
experimentally. In the transport routine, the effect of changing the potential of any single
electrode is not only to displace the ion along the z-axis, but also in the radial directions. Thus,
it will be necessary to switch multiple electrodes simultaneously both in steps (a) and (c) in
figure 5. The set of voltages required in order to cancel radial micromotion can be determined
from simulations [41–43]. As an example, we give in table 1 the results of such simulations for
the trap described in section 3.

Axial micromotion arises when the axial component of the rf drive does not vanish, usually
due to misalignment, manufacturing imperfections or finite electrode structures. There are
two relevant components to axial micromotion: one arising from a residual electric field of
homogeneous amplitude along the axis, and the second due to the curvature of the pseudo-
potential along the trap axis. For an ion of charge Q and mass m, the combined effect leads to a
time-dependent motion which can be approximated by [44]

x(t) ≈ C0 cos(ωt) + C2 cos[(� + ω)t] + C−2 cos[(� − ω)t] + D2 cos(�t), (3)

where � and ω are the drive and secular angular frequencies, respectively, C0 is the (classical)
amplitude of the secular oscillation (100 µm in the transport example above), C±2 are due to the
curvature of the pseudo-potential and D2 is due to the residual oscillating electric field. The size
of C±2 is given by

C±2 ≈ −C0
qz

az − (±2 + βz)2
, (4)

New Journal of Physics 15 (2013) 023001 (http://www.njp.org/)
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with

β ≈

√
az + q2

z /2,

az =
8Q

m�2
c2, (5)

qz =
4Q

m�2
d2.

Here, c2 and d2 are the second-order coefficients in the dc and rf contributions to the axial
potential, respectively. In our trap, c2 ' 8 × 106 V m−2 and d2 ' 4 V m−2, so C±2 ' 2.5 fm. D2

could be larger, but its effect will time average to zero during ion transport, since the drive
frequency is required to be much higher than the axial secular frequency for stable trapping.

In practice, a careful experimental characterization of the potentials created by the
electrodes will be required in situ before the proposed methods can be implemented, because
any real electrode structure will be finite, have gaps and be subject to fabrication imperfections.

4.2. Effect of trap anharmonicity

For macroscopic transport distances (100 µm in the example considered), the anharmonicities
experienced by the ion during its coherent oscillation might not be negligible. The trapping
potential can be expanded as

V (z) ≈ 2π 2m f 2
z z2

(
1 +

z

L3
+ sgn(L4)

z2

L2
4

)
, (6)

where fz is the oscillation frequency of the ion (determined from the curvature of the potential),
and L3 and L4 are, respectively, the length scales at which the effects of the cubic and quartic
terms of the potential are of the same size as the quadratic term. The principal anharmonicity
relevant in the dynamics described above is a quartic term which causes a variation of the
curvature of the potential between z = ±z0 and 0 (the odd term in the expansion in equation (6)
is negligible due to symmetry, see table 1). The effect of L4 on the frequency can be evaluated
by taking the second spatial derivative of the potential in equation (6). Simple calculations lead
to

ω2(z) = ω2(0)

(
1 + 6

sgn(L4)

L2
4

z2

)
. (7)

The consequences of equation (7) were simulated numerically using a Suzuki–Trotter
expansion [46] of the full Hamiltonian (the split-operator method). Due to the size of the
coherent state under consideration, the simulation required a time resolution of 360 ps (1400
time steps) and a position resolution of ∼8 pm to describe the wavepacket (rms extent of
∼10 nm).

Figure 6 shows the effect of the quartic anharmonicity on the probability of overlap of
the final state with the lowest Fock states in the final well. All three potential wells were
taken to have the same curvature at their respective centers, leading to an axial frequency of
1 MHz. For negative values of L4, the curvature of the transport potential becomes negative at
|z1|> |L4|/

√
6 and the potential becomes anti-confining at |z2|> |L4|/

√
2. In general, the final

state is no longer a minimum uncertainty state, since the variance in momentum increases. Using

New Journal of Physics 15 (2013) 023001 (http://www.njp.org/)

http://www.njp.org/


11

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.0

0.5

1.0

n = 0
n = 2
n = 4
n = 6

P
ro

ba
bi

lit
y

of
ov

er
la

p

1/L
4

(µm-1)

Figure 6. Probability of overlap of the final state with the Fock states n =

0, 2, 4, 6 of the final potential as a function of the strength of the quartic
anharmonic term during transport. The data points have been simulated for a
40Ca+ ion at an axial frequency of 1 MHz which undergoes a transport of 100 µm
(z0 = 50 µm). For 1/L4 < −0.014 µm−1, the potential becomes anti-confining at
the edges of the transport region. The results of the simulations are independent
of the axial frequency to within the numerical uncertainties.

the parameters listed in table 1 (1/L4 = −0.008 µm−1), the probability of overlap of the state
in the catch potential with its ground state is 90%, and with the n = 2 state 10% at t = 583 ns.

One possibility to minimize this effect is to design the transport well such that the
quartic term in the potential is reduced, either using geometry or suitably chosen electrode
potentials [45]. For the trap geometry described above, we find a combination of voltages which
cancels out higher-order contributions; however, this requires switching over a voltage range
that exceeds the capabilities of any device we have tested. This forms an extra consideration for
any chosen implementation.

We also investigated having a larger curvature in the initial and final wells than in the
transport well. In that case, the ground state of the initial well projects onto a squeezed
(rather than coherent) state of the transport well. The probability of overlap with the ground
state of the final well is shown in figure 7 as a function of the frequency of the initial
and final potentials, given a fixed transport potential. The highest frequency simulated was
3.0 MHz due to computational limitations. Until that value, the probability of overlap increases
because the effect of the anharmonicity of the transport potential is smaller across the squeezed
wavefunction. It might come as a surprise that the curve seems to asymptotically approach a
probability of overlap of 100%. Indeed, we expect that it will reach a maximum. The reason is
that, close to the trap center, the wavefunction of the squeezed state broadens. Above a certain
frequency, the effect of the anharmonicity on the broadened wavefunction will be large enough
to reduce the probability of overlap with the final potential well.
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potential is fixed so that ω(0) = 2π · (1 MHz) and L4 = −120 µm. The total
transport distance is 100 µm (z0 = 50 µm). The highest frequency simulated was
3.0 MHz due to computational limitations.

4.3. Switch timing

Since the timing of the switch to the final potential well is a critical part of the transport protocol,
it is worth examining the tolerance of the scheme to timing imprecision. We can make an
estimate by considering that the ion in the transport potential is in a coherent state characterized
by the eigenvalue

α0 = −
z0

a0
(8)

of the harmonic oscillator annihilation operator, where z0 is the initial displacement from the
midpoint and a0 =

√
h̄/(2mω) as before. If the catch potential is switched on at tf = π/ω + δt

(rather than at t = π/ω), the ion was in the coherent state

|αf〉 =
∣∣−α0 e−iωδt

〉
(9)

of the transport potential. The overlap with the ground state of the final well is then given by

〈0| D̂†(−α0) |αf〉 =
〈
0

∣∣−α0

(
−1 + e−iωδt

) 〉
' exp

{
−

1

2
(α0ωδt)2

}
, (10)

where we have approximated δt � 1/ω.
The probability of overlap is PO = |〈0| D̂†(−α0) |αf〉 |

2, so the constraint on δt in order to
achieve an overlap of PO is

δt =

√
− ln PO

|α0|ω
. (11)

As a reference, for a 40Ca+ ion at ω = 2π · (1 MHz) and z0 = 50 µm, the rms extent of the
initial ground-state wavefunction is a0 ' 11 nm, the initial coherent state is |α0| ' 4450 and the
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Figure 8. Position of the potential minimum as a function of time during
transport. The transitions from 0 to τ and from T to T + τ ′ will be given by
the experimental setup, and in general not be linear.

timing resolution required is δt 6 12 ps for PO > 0.9. This poses a demanding constraint on the
trapping potential, which should be stable to ∼10 ps/1 µs = 10−5 throughout a measurement
to avoid recalibration of the digital delays within an experiment. All active electronics as well
as the delays due to impedances in the connections to the trap and the trap itself must also be
stable at this level so that they can be calibrated out. Timing resolutions of the order of tens of
picoseconds are achievable with currently available electronics [34, 47]3.

4.4. Finite switching time

Until now, we have assumed that the voltage switching is instantaneous. In our proposed
transport scheme, the ion is transported by two subsequent displacements of a constant-
curvature harmonic potential, which we can describe by 1

2mω2(z − s(t))2, where s(t) is the
position of the potential minimum. Finite switching times of electrode potentials will mean that
the potential minimum takes a certain time τ to move from the initial position s(0) = −z0 to
the transport well centered at s(τ ) = 0. The same applies to the catch procedure, which will
start at s(T ) = 0 and will end at s(T + τ ′) = z0 (see figure 8). Note that τ and τ ′ are related to
the switching time of the electrode potentials, but may slightly differ from it if more than one
electrode is switched.

In [48], it is shown that if the ion is initially in the ground state of motion on the starting
potential s(0), it will evolve into a coherent state with amplitude

α(t) = −

√
mω

2h̄
e−iωt

∫ t

0
dt ′ṡ(t ′)eiωt ′ (12)

with respect to the frame centered at s(t). For our case, this means that the ion will finish in a
coherent state with amplitude

α(T + τ ′) = −

√
mω

2h̄
e−iω(T +τ ′)

[∫ τ

0
dt ′ṡ(t ′)eiωt ′ +

∫ τ ′

0
dt ′ṡ(t ′ + T )eiω(t ′+T )

]
(13)

with respect to the frame centered at s(T + τ ′).

3 See, e.g., Berkeley Nucleonics, datasheet from Model 745 250 fs Digital Delay Generator Stanford Research
Systems, datasheet from Model DG535 Digital Delay/Pulse Generator Picosecond Pulse Labs and datasheet from
Model 12000 165 MHz Digital Pulse/Pattern Generator.
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Figure 9. Black solid line (left axis): minimum size of the final coherent state |α|

as a function of τ ′. Red dashed line (right axis): probability of overlap of the final
coherent state with the ground state of the final potential. Data calculated for a
40Ca+ ion at ω = 2π · (1 MHz), z0 = 50 µm and τ = 5 ns. The displacements of
the potential minima are assumed to be linear.

From equation (13) it can be seen that the effects of finite switching times can be canceled
out, i.e. it is possible to catch the ion in the ground state of a final potential, at the expense of
having T and s(T + τ ′) as variable parameters. However, it is, in general, not possible to make
the transport symmetric, i.e. fix s(T + τ ′) = −s(0), and at the same time catch the ion in the
ground state by controlling only T .

In order to estimate the size of the effects of finite switching times, we performed analytical
calculations (see appendix A) for the case of linear and sinusoidal transitions. For realistic
experimental parameters their effect is very similar. As an illustration, the size of the final
coherent state for the linear case (equation A.1) is shown as a function of τ ′ in figure 9 for
a 40Ca+ ion at ω = 2π · (1 MHz), z0 = 50 µm and τ = 5 ns. In such a setup, to catch the ion
with a probability of overlap above 90% with the ground-state wavefunction, it suffices to have
τ ′ < 1.5τ .

For an arbitrary-shaped transition, if s(T + τ ′) = z0, T = π/ω and τ ′
= τ , then

equation (13) becomes

α(T + τ) =

√
mω

2h̄
e−iωτ

∫ τ

0
dt ′

[
ṡ(t ′) − ṡ(t ′ + T )

]
eiωt ′ . (14)

Hence, if the transitions are equivalent, i.e. ṡ(t ′) = ṡ(t ′ + T ), we can recover the ion in
the motional ground state after transport, making the process first-order insensitive to finite
switching times.

4.5. Extended transport throughout an array

In a large-scale trapped-ion quantum information processor based on the architecture described
by Kielpinski et al [18], it is necessary to move ions between many remote trapping regions.
Therefore, it is worth considering how the scheme outlined above could be extended and
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Figure 10. (a) Connections required for switching multiple trapping regions,
in an ideal case. One row of electrodes and connections to the bus are shown.
The ions are separated by three electrodes in this scheme. Electrodes A are
switched between voltages H and LL and electrodes B between 0 and L, with
H > 0 > L > L L . Control lines CA and CB switch the voltages applied to the
pairs of electrodes A and B, respectively. (b) Switching steps for the transport
operations. The ions’ positions (centered above an electrode) are indicated by
a shaded cell. It allows an ion to be moved two electrodes to the right with
a time period π/ω. 1ti account for the time delays during which the ions
are in the ground state of the potential wells centered above the B electrodes.
1ti = 0 would be desirable for fast transport, while finite values would allow for
operations to be carried out on the ions.

implemented in a repeated fashion. Here, experimental simplicity means that it is desirable
to minimize the number of connections which are required. In figure 10, we give a simplified
outline of a switch fabric which could be used to wire up electrodes in order to implement
transport between a number of adjacent zones of a multi-zone trap. Although this does not
include all electrodes required to control transport over a single zone, it illustrates that increasing
the number of zones does not imply a direct increase in the number of digital and analog control
lines, since repeated transport in this scheme is realized by a total of four analog voltages
controlled by three digital lines.

In a real experiment, it is likely that fabrication imperfections and stray environmental
electric fields would require additional electrodes which could be used to tune the trap frequency
of the ion. In addition, switch timing could be controlled by adding phase-shifting elements such
as varactors, which have previously been proven to work in cryogenic ion trap settings [50].
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With a chain of ions of equal mass, it should be possible to shunt the whole string along
by one trap zone by switching the electrodes in the same manner as for a single ion. This is due
to the fact that, as long as the curvature of the potential seen by the ions during the transport
process remains the same, no motional modes will be affected other than the center-of-mass
mode, which is excited exactly as a single ion would be [49]. In addition to transport, in a large-
scale processor it is likely that the ability to separate and deterministically re-order ion strings
will be necessary. It is conceivable that methods similar to those we have described above could
be used for these tasks. Separation and recombination will inevitably involve anharmonicity in
the potential (trapping and Coulomb repulsion), which may require methods such as those we
describe in section 4.2 to keep the ions close to the ground state.

5. Motional-state squeezing

An alternative application of the fast switching method is in generation of non-classical states.
Previous work by Serafini and co-workers has described methods for generating continuous-
variable entanglement by applying ultra-fast control of the radial degrees of freedom of an ion
chain [30, 31]. A critical ingredient of the Serafini scheme is the generation of squeezing of one
of the ions, with the Coulomb interaction between ions then giving rise to entanglement. As a
first step toward such experiments, we consider the lifetime of the states squeezed by applying
ultra-fast control of the trapping potential, which is limited by the presence of a quartic term in
the potential as well as heating due to fluctuating electric fields.

Squeezing refers to a state in which quantum fluctuations in one quadrature are suppressed
relative to their value in the ground state [51]. The orthogonal quadrature has increased
fluctuations, preserving the Heisenberg uncertainty relation. Mathematically, a squeezed state
can be obtained from the vacuum state by applying the operator

6̂(ξ) = e(ξ∗(â)2
−ξ(â†)2)/2, (15)

where the parameter ξ = rei8 is the complex squeezing parameter, denoted by a real magnitude
r and phase 8. The squeezed state is one example of a Gaussian continuous variable state,
which can be characterized in terms of the first moments Tr[R̂ jρ], and the second moments,
embodied in the covariance matrix σ [52, 53]

σ jk =
1

2
Tr[{R̂ j , R̂k}ρ] − Tr[R̂ jρ]Tr[R̂kρ]. (16)

Here, ρ is the Gaussian state and R̂ is a vector of normalized position and momentum operators.
For one ion, R̂ = (x̂, p̂)T. The amount of squeezing of the state is given by the smallest
eigenvalue of the covariance matrix. For details, see e.g. [54].

Squeezing of motional states of trapped ions has already been reported using optical fields
to create a parametric drive which squeezed the vacuum state [4]. Instead, we consider the
squeezing procedure proposed in [30]. It involves an abrupt change of the trapping frequency
from ω to λω at time t = 0, followed by the opposite transformation at time t = π/(2λω)

(see figure 11). For a Gaussian initial state with mean zero, the time evolution can be fully
characterized by the transformation of the covariance matrix according to σt = S(t)σ S(t)T,
where [30]

S(t) =

(
cos(ωλt) λ sin(ωλt)

−λ−1 sin(ωλt) cos(ωλt)

)
(17)

New Journal of Physics 15 (2013) 023001 (http://www.njp.org/)

http://www.njp.org/


17

Figure 11. Illustration of the squeezing mechanism based on voltage switching.
The ion starts in the motional ground state of the first potential and at t = 0 its
curvature is suddenly switched. The wavefunction starts breathing periodically
with angular frequency 2ω2, accommodating the new potential. At t = π/(2ω2)

it reaches a maximum width and the potential is switched back, leaving the state
squeezed. Black solid lines represent the wavefunction and the potential at the
beginning of the period indicated and red dashed lines at the end of it.

is a symplectic transformation. For t = π/(2λω), we find that

σt =

(
λ2σ22 −σ21

−σ12 σ11/λ
2

)
, (18)

i.e. the variance of one quadrature is squeezed by a factor λ2 if λ < 1, while the other increases
by the inverse amount.

The major and minor quadrature normalized variances can be shown to be e2r h̄/2
and e−2r h̄/2, respectively [55]. Therefore, the maximum rms extent of the squeezed-state
wavefunction for a trapped ion is simply 1x = a0er

= a0/λ, where the last equality comes from
equation (18).

The trap frequency is proportional to the square root of the voltage applied to the central
trap electrodes (e5 in figure 4), given that the rest of the electrodes are grounded. For the
trap described above, switching the trapping voltage from 10 V (ω1 ' 2π · (1.2 MHz)) to 1 V
(ω2 ' 2π · (400 kHz)), waiting for a time of π/(2ω2) ' 625 ns and switching back to ω1,
would give λ2

= −10 dB (λ2
= 0 dB corresponds to the non-squeezed case). Furthermore, the

wavefunction of a squeezed state breathes at 2ω1, so the squeezing procedure described above
can be repeated with a period 1t = π/(2ω2) + π/(2ω1) = (1 + 1/λ)π/(2ω1) to enhance the
results.

In the following, we consider the two main experimental limitations to such a procedure:
motional heating of the ion in the trap and anharmonicities in the trapping potential.

5.1. Motional heating

An important factor which limits quantum-state engineering of the motional states of trapped
ions is heating due to fluctuating electric fields at the position of the ion [56, 57]. In order to
estimate the degree to which heating might limit squeezing using the methods discussed in the
previous section, we consider the effect of a time-varying electric field E(t) on a squeezed state.
In appendix B (equation (B.16)), we show that the loss of fidelity with the original squeezed state
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is characterized by a time constant τ , which we can rewrite as

τ−1
= 00→1

cosh(2r)

2
≈ 00→1

e2r

4
=

00→1

4λ2
, (19)

where 00→1 is given in equation (1) and the approximation is valid for r � 1.
Extrapolating heating-rate measurements in [58] to the temperature and ion–electrode

distance for the trap in figure 4 yields heating rates down to 00→1 ∼ 10 quant s−1. For λ2
∼

−20 dB, which is 10 dB stronger than the maximum squeezing obtained with other continuous-
quantum-variable systems to date [59], equation (19) yields a lifetime of the squeezed state of
∼4 ms, much longer than the creation time for this state with our scheme.

5.2. Effect of anharmonicity

Anharmonicity in the trapping potential presents another limit to the amount of squeezing
which could be achieved. Finite quartic terms in the potential are the most relevant anharmonic
contribution for a symmetric trap (see table 1) and result in an effective spatial frequency
distribution ω(z) as given in equation (7).

In the phase-space representation given by the Wigner distribution [60], a squeezed vacuum
state takes a two-dimensional Gaussian form centered at the origin [61]. If we let it evolve in
time in a harmonic potential, it will rotate around the origin at the trap angular frequency ω.
However, in an anharmonic potential the wavefunction will distort. To quantify the lifetime of
the squeezed state in the anharmonic trap, we can calculate the overlap between its wavefunction
and the one it would have become had it evolved in a harmonic potential

PO(t) =

∣∣∣∣∫ 9∗

anharm(z, t)9harm(z, t) dz

∣∣∣∣2

. (20)

We have used the same numerical techniques as in section 4.2 to carry out simulations
for the lifetimes of squeezed states. For a 40Ca+ ion at ω = 2π · (1 MHz) with λ2

= −20 dB
and L4 = −120 µm, the lifetime is ∼3 ms. This is comparable to the lifetime expected from
the motional heating effects considered in the previous section. However, as discussed in
section 4.2, it is possible to improve on the harmonicity of the trapping potential by optimizing
the trap geometry and the trapping potentials, whereas reducing motional heating effects is
experimentally very challenging. Therefore, we expect that heating effects, not anharmonicities
in the potential, will ultimately set the limit to the lifetime of the squeezed motional states in the
trap.

6. Outlook

In the following, we outline a range of further applications which could profit from ultra-fast
motional control.

6.1. Entanglement between radial motional modes

Linear couplings between two harmonic oscillator modes which are prepared in Gaussian states
squeezed along orthogonal quadratures can give rise to entanglement [53, 62]. In the case
of a string of trapped ions, the motional oscillations of the individual ions are coupled by
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the Coulomb interaction, for which the lowest order term in the expansion of the interaction
potential energy is

q2

4πε0d3
χξ1ξ2, (21)

where ξ1 and ξ2 are the excursions of the ion about equilibrium in a given direction, and χ = 2
if the oscillation is aligned with the vector connecting the equilibrium positions of the two ions
and χ = 1 otherwise. For two identical ions trapped in the same potential well, the distance
between the ions is

d =

(
q2

2πmε0ω2
z

)1/3

, (22)

where m is the mass of a single ion.
Entanglement can be characterized when the two subsystems which are entangled can

be accessed locally on timescales which are fast compared to the interaction between these
systems. For the case of ions trapped in a single potential well, the interaction energy can be
characterized by the splitting of the normal modes, which is typically of the order of a few
hundreds of kHz, and thus the local access to variables (in this case changes in the potential)
must happen on timescales that are short compared to 1 µs. Once the voltages are set back to
the initial configuration, the squeezing will be transferred from local quadratures to a non-local
combination of the coordinates, which will lead to the entanglement.

A similar scheme has been proposed for entangling the modes of nanoelectromechanical
oscillators by suddenly switching on an electric interaction between them [63].

6.2. Dynamical studies

A trapped ion is subject to ‘kicks’ due to elastic collisions with background-gas atoms and
molecules. In order to understand the mechanisms that lead to Paul-trap instabilities, it might
be interesting to map the effect of such kicks as a function of the collisional energy and the
resulting impulse direction of the ion.

Collisions could be emulated by pulsing on electric fields. The effect of such collisions
can be created in our trap with a routine that starts by cooling an ion to the motional ground
state and then adding a sudden offset potential to one or more electrodes, in order to displace
the potential minimum and kick the ion in a certain direction. If the ion is left to evolve in the
new potential for a time π/(2ω), it will acquire the maximum kinetic energy. At that moment,
suddenly removing the offset potential would leave the ion with a high kinetic energy in the
original potential well. Another possibility would be to let the ion evolve for a time π/ω in
the second well and then remove the offset to leave the ion with a higher potential energy in the
final well.

At room temperature, the mean thermal energy of the background-gas particles is Eth ∼

25 meV, so the offset voltages required for the routine above are very similar to those required
for the ion transport routine (voltages below 10 V on electrodes e2−8 are enough for energy kicks
above 20 meV, see table 1).

6.3. Interface with solid-state devices

Fast voltage switching could also be used to help in realizing an interface between a trapped
ion and a solid-state quantum device, which could be used to map quantum information from a
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solid-state qubit to an ion and vice versa [64]. In order to enhance the coupling, it is desirable
to place the ion close to the solid-state device, where anomalous heating could be significant.
A fast transport routine similar to that described in section 4 could be of use to quickly bring
the ion close to and away from the device, thus limiting heating effects which occur outside the
desired interaction time.

7. Conclusion

We have proposed a method for controlling the potentials in a radio-frequency ion trap on
nanosecond timescales. This would allow for ultra-fast control of the potentials seen by the
trapped ions, i.e. control at rates much faster than the ions’ secular oscillation frequencies. The
switching time in our proposal is limited by the capacitive load on the semiconductor-based
voltage switches used. We have experimentally measured this to be around 4 ns in a 4 K test
apparatus with a load of ∼50 pF.

One possibility opened up by this new approach is to transport an ion within a single
oscillation cycle. We have shown that this is experimentally challenging but should be possible
for transporting a single 40Ca+ ion at an axial angular frequency ω = 2π · (1 MHz) over a
distance of 100 µm in 500 ns.

Another application is the generation of motional squeezed states, where squeezing the
ground wavefunction of a 40Ca+ ion at ω = 2π · (1 MHz) by a factor λ2

= −20 dB should be
within experimental reach.
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Appendix A. Finite switching time—linear and sinusoidal potential displacements

Here we calculate and then compare the effect of two different transitions between the initial and
transport potential wells for the case where voltage switching takes a finite time (see section 4.4).

Let us consider first that the transitions from t = 0 to τ and from t = T to T + τ ′ are linear
(as in figure 8), such that their slopes are ṡthrow = z0/τ and ṡcatch = z0/τ

′, respectively. In this
case, equation (13) becomes

αlin(T + τ ′) = i

√
m

2h̄ω

z0

τ
e−iωτ ′

f lin(T ),

f lin(T ) ≈ ωτ

[
e−iωT

(
i −

ωτ

2

)
+ i −

ωτ ′

2

]
,

(A.1)

where the approximation is for τ, τ ′
� 1/ω. The value of T which minimizes | f lin(T )| has the

analytical form

T lin
min = −

1

ω
Im

{
log

(
2i − ωτ

−2i + ωτ ′

)}
, (A.2)
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Figure A.1. Relative difference between the linear and the cosine transitions for
a 40Ca+ ion at ω = 2π · (1 MHz), z0 = 50 µm and τ = 5 ns for |αmin| and |Tmin|.

and yields an |αlin
min(T + τ ′)| shown in figure 9, for the specific case of a 40Ca+ ion at ω =

2π · (1 MHz), z0 = 50 µm and τ = 5 ns.
A sinusoidal transition,

sthrow(t) = −
z0

2

[
1 + cos

(
π t

τ

)]
,

scatch(t) =
z0

2

[
1 − cos

(
π t

τ ′
−

πT

τ ′

)]
,

(A.3)

resembles more closely the pulse shown in figure 3, while still yielding an analytic solution

αcos(T + τ ′) =

√
mω

2h̄

π2z0

2
e−iωτ ′

f cos(T ),

f cos(T ) ≈

2 + iωτ −
(ωτ)2

2
π 2 − (ωτ)2

e−iωT +
2 + iωτ ′

−
(ωτ ′)2

2
π2 − (ωτ ′)2

,

(A.4)

where the approximation is again for τ, τ ′
� 1/ω. In this case,

T cos
min = −

1

ω
Im

{
log

(
−

(π 2
− ω2τ ′2)(−4 − 2iωτ + ω2τ 2)

(π 2 − ω2τ 2)(−4 − 2iωτ ′ + ω2τ ′2)

)}
. (A.5)

A comparison of the amplitude of the final coherent states for the two different examples
(equations (A.1) and (A.4)) is shown in figure A.1, for the same conditions as above. The small
difference between them seems to indicate that the exact shape of scatch,throw(t) is not greatly
important.

Appendix B. The heating rate of squeezed vacuum states

Here we will calculate the lifetime of squeezed vacuum states, which can be generated in a
trapped-ion experiment as discussed in section 5. We will start by considering the transition rate
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out of an arbitrary state |φ〉, given by

d

dt
〈| 〈φ| Û (t) |φ〉 |

2
〉, (B.1)

where Û (t) is the time-evolution operator and the right and left angle brackets average over all
realizations.

We consider here the effect of a time-dependent perturbation Hamiltonian Ĥ(t) which can
be written as

Ĥ(t) = −q E(t)ẑ, (B.2)

where q is the charge of the ion, E(t) is the electric field and ẑ is the coordinate of the ion center
of mass. We restrict our study to a single dimension, since the normal modes of a trapped ion
are independent and thus the extension to other dimensions is trivial. Heating (or decoherence)
is measured as an average over many runs of an experiment, so E(t) is a stochastic variable. If
it is derived from a stationary process with fluctuations around a mean value of zero, we can
write averaged quantities

〈E(t)〉 = 0, (B.3)

〈E(t)E(t + τ)〉 = C(τ ), (B.4)

where C is a function to be determined experimentally, but which depends only on τ .
A Hamiltonian of the form given in equation (B.2) gives evolution according to

Û (t) = D̂(αE(t))ei8(t), (B.5)

where D̂(αE) is the displacement operator by an amount αE given by

αE(t) = −
iqa0

h̄

∫ t

0
dt ′E(t ′)eiωt ′ (B.6)

in the interaction picture. Starting from an initial state |φ〉, the resulting state is

D̂(αE(t))ei8(t)
|φ〉 . (B.7)

The overlap with the initial state is

ei8(t)
〈φ|D̂(αE(t)) |φ〉 (B.8)

for which the modulus squared gives the probability of overlap

PO(t) = |〈φ|D̂(αE(t)) |φ〉 |
2. (B.9)

For a squeezed vacuum state

|6̂(ξ)〉 = 6̂(ξ) |0〉 ≡ e(ξ â†2
−ξ∗â2)/2

|0〉 , (B.10)

one can use [65]

6̂(−ξ)â†6̂(ξ) = â† cosh r − âe−i8 sinh r,

6̂(−ξ)â6̂(ξ) = â cosh r + â†ei8 sinh r
(B.11)

to find that

PO(t) = exp

{
−|αE |

2 cosh(2r)

2
− (α2

Eei8 + (α∗

E)2e−i8)
sinh(2r)

2

}
. (B.12)
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The loss of overlap with the initial state will be the ensemble average of this quantity. In
order to evaluate it, we need to find that

〈e−|αE (t)|2
〉, (B.13)

with the exponent given by

|αE(t)|2 =
q2a2

0

h̄2

∫ t

0
dt ′

∫ t

0
dt ′′E(t ′)E(t ′′) e−iωz(t ′′−t ′). (B.14)

We can relate the expectation value of the exponential in equation (B.13) to the exponential of
the expectation value of its argument if we assume that the averaging time is short compared to
the time scale over which the level populations vary, but large compared to the correlation time
of the fluctuations. The expectation value of the argument can be found to be [66]〈

|αE(t)|2
〉
=

q2a2
0

2h̄2 SE(ωz)t, (B.15)

where SE(ωz) is the spectral noise density in the trap (see equation (1)).
This gives a decay constant (considering only the |αE |

2 term):

τ−1
=

q2

4 mωh̄
SE(ωz)

cosh(2r)

2
= 00→1

cosh(2r)

2
, (B.16)

with 00→1 defined by equation (1).
The exponent in equation (B.12) also contains two terms with α2

E and (α∗

E)2. The α2
E term

contains the integral∫ t

0
dt ′

∫ t

0
dt ′′E(t ′)E(t ′′)e−iωz(t ′′+t ′). (B.17)

This is a symmetric integral, in which we can make the substitution τ = t ′′
− t ′ to obtain∫ t

0
dt ′ e−2iωz t ′

∫ t−t ′

−t ′
dτ E(t ′)E(t ′ + τ)e−iωzτ . (B.18)

Note the complex exponential in the integral over t ′, not present in equation (B.14). Under the
same approximation as before, and again taking the ensemble average, we obtain an additional
sinc function, meaning that this term tends to zero for t � 2π/ω. This reflects the fact that the
phase of the field in the Hamiltonian is uncertain and will be distributed over the full range from
zero to 2π . Hence, it will be averaged to zero over many realizations or over long interaction
times. Therefore, taking the ensemble average, we see that the loss of probability of overlap is
at a rate τ−1 as given in equation (B.16).
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