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Abstract. The electromagnetic force on a polarizable particle is calculated in
a covariant framework. Local equilibrium temperatures for the electromagnetic
field and the particle’s dipole moment are assumed, using a relativistic
formulation of the fluctuation–dissipation theorem. Two examples illustrate
radiative friction forces: a particle moving through a homogeneous radiation
background and above a planar interface. Previous results for arbitrary relative
velocities are recovered in a compact way.
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1. Introduction

Friction is ubiquitous in everyday life and omnipresent in almost every mechanical system, but
still very difficult to grasp at the level of elementary forces. For example, internal friction in
fluids (viscosity) or contact friction between two solids can be attributed to electromagnetic
interactions who couple individual atoms. Building a bridge from the microscopic realm to the
macroscopic world is a challenge because of the huge diversity at the atomistic level: surface
reconstruction, adsorbates, roughness, etc. A common feature of friction forces, however, is
the conversion of directed motion into thermal motion or material excitations. This feature can
be studied with the help of simple models at the fundamental level. In recent years, studies of
moving objects have been developed from first principles: consider, for example, a flat surface
separated by vacuum from another body in constant parallel motion. On a length scale of a
few nanometres, the electromagnetic interactions between the two can be characterized by a
few macroscopic parameters (refractive index, conductivity, surface impedance, etc). In this
framework, consistent quantum field theories have been formulated [1–3] that in principle
can take full advantage of Lorentz invariance. An example is the reflection of light from a
moving plate that is evaluated by transforming the incident field into the plate’s rest (or co-
moving) frame and back. In the same spirit, this co-moving frame is a natural candidate for
local thermodynamic equilibrium, at least for macroscopic objects. (For a discussion on the
transformation law of temperature and its dependence on the definition of relative motion,
see [4].) From the viewpoint of relativistic thermodynamics [5, 6], the two situations of bodies in
relative motion or fixed at different temperatures indeed represent very similar non-equilibrium
settings.

In this paper, we construct a fully covariant formulation of radiation-induced forces on a
small neutral particle. We consider stationary, non-equilibrium motion at arbitrary speed parallel
to a planar surface. Local temperatures are assigned to the particle and the surface, in their
respective rest frames. Covariance is maintained from the beginning and expresses in a compact
form the transformation properties of the electromagnetic field, the material polarization and
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the particle’s dipole moments. The fluctuation–dissipation theorem that determines the spectra
of thermal fluctuations is formulated in local (co-moving) frames of particle or surface,
respectively, which provides a natural link to relativistic thermodynamics. We check our general
expression for the radiation force by specializing to motion through the blackbody radiation field
and to a particle above a dielectric surface. In the two cases, we use different gauges, but come
to results fully consistent with previous work [7, 8]. We believe that the present formulation is
useful because it is compact and flexible, and illustrates the assumptions behind the macroscopic
quantum field theory in a physically transparent way. This may pave the way to interpret
electromagnetic friction phenomena that have attracted some interest in recent years [9–13].

The outline is as follows: the covariant framework is constructed in section 2, resulting
in the fluctuation–dissipation theorem for the electromagnetic field and the particle’s dipole
moment in section 2.3. The force is split in two contributions that can be attributed to radiation
reaction and vacuum fluctuations [14, 15], both are given in general form in section 3. We
specialize to blackbody friction in section 3.3 and to radiation forces above a surface in
section 3.4.

2. Covariant framework

2.1. Polarization and force density

In this part, we introduce a covariant expression for the force acting on a polarizable body. We
start with some basic identities from electrodynamics: polarization and magnetization fields P
and M are defined from

ρ = −∇ · P, j = ∂tP + ∇ × M, (1)

where ρ is the charge density and j the spatial current density. In terms of the four vector
( jµ) = (ρ, j) = (ρ, j1, j2, j3):

jµ
= ∂ν Mνµ, (2)

where Mνµ is the polarization tensor with the matrix representation

(Mνµ) =


0 P1 P2 P3

−P1 0 M3
−M2

−P2
−M3 0 M1

−P3 M2
−M1 0

 . (3)

Its antisymmetry ensures charge conservation. The electromagnetic force density

f = ρE + j × B (4)

is part of the four-vector

fµ = Fµν j ν, (5)

where the field strength (Faraday) tensor has components

(Fµν) =


0 E1 E2 E3

−E1 0 B3
−B2

−E2
−B3 0 B1

−E3 B2
−B1 0

 . (6)
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Pulling these relations together, we can write the covariant force density in terms of the field
and polarization tensors

fµ = Fµν∂κ Mκν. (7)

The total force on a body is found by integrating over a volume containing the body. Up
to surface terms in this integral, equation (7) is equivalent to the Einstein–Laub formula for
the force on polarizable matter [16, 17]. There are some experiments where this formula is
not appropriate, as effects like electrostriction must be taken into account; for a discussion,
see [18]. A recent suggestion that the Lorentz force equation (4) is not compatible with special
relativity [19] has been met with criticism 2.

In the following, we focus on the situation that the force fµ (equation (7)) arises from
fluctuations of the field and of the body’s polarization. In the spirit of perturbation theory, we
split the polarization, for example, into

Mµν(x) = Mµν

fl (x) + Mµν

in (x), (8)

where the first term ‘fl’ describes the free fluctuations of the electric and magnetic dipole
moments, while the second term ‘in’ (induced) gives their response to a field. This split has
a long tradition in quantum optics, related to the distinction between ‘vacuum fluctuations’
and ‘radiation reaction’, see for example Milonni’s book [20]. In [14], the two terms of
equation (8) arise from the homogeneous plus particular solution to the equations of motion
for the polarization field. An alternative justification can be found in the appendix. A similar
split for the fields yields an average force density

fµ(x) = 〈Ffl
µν(x)∂σ Mσν

in (x)〉 + 〈F in
µν(x)∂σ Mσν

fl (x)〉. (9)

In the lowest non-vanishing order of perturbation theory (see the appendix), the operators
appearing here evolve freely. In particular, the field and body observables can be averaged
with respect to local thermal equilibrium (temperatures TF and TA). To make the two terms
real-valued, the operator products must be symmetrized (see after equation (21)), as discussed
in [14]. In the following sections, we spell out the linear response functions and the fluctuation
spectra, respectively.

2.2. Response functions

2.2.1. Polarizability. For simplicity, we focus on a pointlike particle (‘atom’) at position xA

with an electric dipole polarizability which is often the dominant response. The particle carries
an electric dipole moment that responds to the electric field vector

d(t) = αE(t, xA), (10)

where α is called the polarizability. It is actually frequency dependent (dispersion) and can be
calculated from a dipole correlation function, according to linear response theory:

i

h̄

〈
[di(t), d j(t

′)]
〉
2(t − t ′) =

∫
dω e−iω(t−t ′)αi j(ω). (11)

This formula holds in a frame where the atom is stationary. We assume in the following an
isotropic response, αi j(ω) = δi jα(ω).

2 See ‘The Net Advance in Physics’ at http://web.mit.edu/redingtn/www/netadv/srLzMa.html.
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Introducing the four-velocity uµ tangent to the particle’s worldline xA, we define the
covariant polarization density

Mµν(x) = [uµ(t)dν(t) − dµ(t)uν(t)]δ(x − xA(t)). (12)

The component of dµ parallel to uµ can be chosen arbitrarily, it drops out from this construction.
The atom responds to the electric field in the co-moving frame so that the covariant form of
equation (10) becomes

dµ(xA) = αgµκ Fκλ(xA)uλ, (13)

where gµκ is the metric tensor. This four-vector dµ is indeed perpendicular to uµ. A similar
construction can be given for the magnetic polarizability. Making the approximation that the
atom’s worldline is inertial (constant uµ), we get in Fourier space (k · x = kµxµ)

Mµν(x) =

∫
d4k

(2π)4
e−ik·x Mµν(k) =

∫
d4k

(2π)4

d4 h

(2π)4
e−ik·xαµνκλ(k, h)Fκλ(h), (14)

αµνκλ(k, h) = 2πδ(u · (k − h))α(u · h){uµgνκuλ + uνgµλuκ
} ei(k−h)·xA . (15)

Here we have restored dispersion via the argument of the polarizability: the quantity ω′

A = u · h
plays the role of the frequency of a wavevector component hµ of the applied field, as seen in
the atom’s rest frame. This describes in particular the first- and second-order Doppler shifts.
The dipole radiates at the same frequency as the applied field (linear response), hence the
δ(u · (k − h)). We work in this paper with retarded response functions: the dipole responds to the
electric field in its past and therefore, α(ω′

A) is analytic in the upper half-plane of complexified
frequencies ω′

A. For the radiation force (9), equation (14) gives the polarization Mµν

in induced by
the fluctuating field Ffl

κλ.

2.2.2. Green function. It is well known that for the electromagnetic field, the vector potential
created by a source current can be found with the help of a Green function

Aµ(x) =

∫
d4 y Gµν(x, x ′) j ν(x ′). (16)

In free space, for example, we have, adopting the Feynman gauge (k2
= k · k = ω2

− k2, we set
c = ε0 = 1)

Gµν(x, x ′) =

∫
d4k

(2π)4
e−ik·(x−x ′) −gµν

k2 + i0 sgn ω
. (17)

In the general case, translation invariance in time or space can only hold under special
circumstances, so we adopt the Fourier expansion

Gµν(x, x ′) =

∫
d4k

(2π)4

∫
d4h

(2π)4
e−i(k·x−h·x ′)Gµν(k, −h). (18)

If we represent the current density in terms of the polarization Mκλ (equation (2)), we get the
field amplitude from

Fµν(x) =

∫
d4k

(2π)4

∫
d4h

(2π)4
e−ik·xGµνκλ(k, −h)Mκλ(h), (19)

Gµνκλ(k, −h) = kµGνκ(k, −h)hλ + kνGµλ(k, −h)hκ, (20)

where the antisymmetry of Mκλ was used. Note the formal analogy to the fourth rank
polarization tensor αµνκλ (equation (15)). For the radiation force (9), we shall use equation (19)
to express the field F in

µν radiated by the fluctuating polarization Mκλ
fl .

New Journal of Physics 15 (2013) 023027 (http://www.njp.org/)

http://www.njp.org/


6

2.3. Fluctuation spectra

To evaluate the radiation force (9), we need correlation functions of the fluctuating polarization
and fields. These are provided by the fluctuation–dissipation theorem, assuming thermal states
for atom and field.

2.3.1. Dipole and polarization. The non-relativistic form of the dipole correlation function
is [21, 22] (i, j are spatial components)

〈d i(ω), d j(ω′)〉A = 2π h̄δ(ω + ω′)δi j coth

(
h̄ω

2kBTA

)
Im α(ω), (21)

where the operator product is symmetrized: 〈B, C〉A =
1
2〈BC+C B〉A =

1
2 tr {ρA(BC + C B)}

with the equilibrium density operator ρA. Im α(ω) describes the spectral distribution of the
atomic oscillator strength that may also depend on the atomic temperature TA. In the relativistic
formulation, the inverse temperature becomes a time-like four-vector β

µ

A = (h̄/kBTA)uµ tangent
to the atom’s worldline [5, 6]. We recover equation (21) in the spacelike hypersurface
perpendicular to uµ when the following correlation function for the polarization field Mµν(x)

localized on the atom is assumed (written in four-dimensional Fourier space)

〈Mµν

fl (k), Mκλ
fl (h)〉 = 2π h̄δ(u · (k + h))0[µν][κλ] coth

(
βA · k

2

)
Im α(u · k) ei(k+h)·xA, (22)

0[µν][κλ]
= u[µgν][κuλ]. (23)

Here the square brackets are denoting odd combinations of paired indices

u[µgν][κuλ]
= uµgνκuλ

− uνgµκλ

− uµgνλuκ + uνgµλuκ (24)

and ensure the antisymmetry of the fluctuating polarization tensor. For a non-inverted atom, the
absorption spectrum ∼ ω Imα(ω) is positive for all frequencies; this property is inherited by the
correlation spectrum (22).

2.3.2. Field correlations. The correlations of the electromagnetic fields E and B are well
known at thermal equilibrium in the rest frame [22, 23]:

〈Ei(ω, x), E j(ω
′, x′)〉F = ih̄πδ(ω + ω′) coth

βFω

2
ω2[Gi j(ω; x, x′) −G j i

∗(ω; x′, x)], (25)

〈Ei(ω, x), B j(ω
′, x′)〉F = −h̄πδ(ω + ω′) coth

βFω

2
ω εkl j∂

′

k[Gil(ω; x, x′) −Gli
∗(ω; x′, x)], (26)

〈Bi(ω, x), B j(ω
′, x′)〉F = ih̄πδ(ω + ω′) coth

βFω

2
εkliεmnj ∂k∂

′

m[Gln(ω; x, x′) −Gnl
∗(ω; x′, x)],

(27)

where now βF is the inverse field temperature. In the presence of macroscopic bodies, we assume
that the field relaxes to their temperature. The Green tensor in equations (25)–(27) is calculated
from the Kubo formula

Gik(ω; x, x′) = −
i

h̄

∫
∞

t ′
dt eiω(t−t ′)

〈Ai(t, x)Ak(t
′, x′) − Ak(t

′, x′)Ai(t, x)〉F (28)
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in the Dzyaloshinskii gauge (zero scalar potential). Note that this definition assumes that the
field is stationary in the chosen frame, i.e. correlations 〈Ai(x)Ak(x ′)〉F of the vector potential
depend only on the time difference t − t ′. The integration is over retarded times t > t ′ in
this frame. It is a fundamental result of linear response theory that the correlation function
of equation (28) also provides the Green function for the vector potential, i.e. the kernel in
equation (16).

We proceed to combine the field spectra into a covariant formulation. In a first step,
we complete equations (25)–(27) by performing a spatial Fourier transformation, yielding
(h = (ω′, h))

〈Ei(k), E j(h)〉F = ih̄πδ(ω + ω′) coth
βFω

2
ω2[Gi j(ω, k, h) −G∗

j i(ω, −h, −k)], (29)

〈Ei(k), B j(h)〉F = −ih̄πδ(ω + ω′) coth
βFω

2
ε jklωhk[Gil(ω, k, h) −G∗

li(ω, −h, −k)], (30)

〈Bi(k), B j(h)〉F = −ih̄πδ(ω + ω′) coth
βFω

2
εiklε jmn kkhm[Gln(ω, k, h) −G∗

nl(ω, −h, −k)]

(31)

using for the Green tensor the expansions

Gi j(ω, x, x′) =

∫
d3k

(2π)3

d3 h

(2π)3
Gi j(ω, k, h) ei(k·x+h·x′), (32)

G∗

j i(ω, x′, x) =

∫
d3k

(2π)3

d3 h

(2π)3
G∗

j i(ω, −h, −k) ei(k·x+h·x′). (33)

In the frame where the field is in equilibrium and in the Dzyaloshinskii gauge, we construct the
covariant Green tensor Gµν(k, h) from

Gi j(k, h) = 2πδ(ω + ω′)Gi j(ω, k, h), G0ν = Gµ0 = 0. (34)

One can check straightforwardly that the field correlations (29–31) are equivalent to the
following spectrum of the Faraday tensor:

〈Ffl
µν(k), Ffl

κλ(h)〉F =
ih̄

2
coth

βF · k

2
[k[µGν][κ(k, h)hλ] − h[λG∗

κ][ν(−h, −k)kµ]], (35)

where the brackets denote again antisymmetrized pairs of indices (see equation (24)). As in
equation (22), we have expressed the inverse temperature in terms of the four-vector β

µ
F =

(h̄/kBTF)u
µ
F , where uµ

F is the velocity of the field’s equilibrium frame.
With equation (35), the fluctuation–dissipation theorem for the fields is now in manifestly

covariant form. We emphasize that the only input parameters required are the photon propagator
and the four-velocity of the field’s equilibrium frame. A general observer notices the Doppler
shift via the contraction uµ

F kµ and a net energy flow (Poynting vector) parallel to uµ
F . A general

proof that this expression is also gauge-invariant will be given elsewhere. We show below that
with a Green tensor Gµν in the generalized Coulomb gauge [2], we recover the spectrum of the
radiation force in the presence of a macroscopic medium discussed in [8, 24]. We have also
checked that in free space, the Green tensor in the Feynman gauge (equation (17)) reproduces
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from the fluctuation–dissipation theorem (35) the well-known expressions for the electric and
magnetic field spectra.

As a side remark, we note that the fluctuation–dissipation theorems (22), (35) display tensor
structures that are manifestly antisymmetric in the double indices carried by the polarization
and electromagnetic fields. The response functions written in equations (15) and (20) are only
apparently of lower symmetry. They do preserve the parity of the index pairs, however, so that an
antisymmetric field induces an antisymmetric polarization, for example. But since the response
functions are read off from the linear relations between antisymmetric quantities (see, e.g.,
equation (19)), their symmetric part actually remains undetermined. In other words, we can
also use in the fourth rank polarizability (15) a tensor with the structure

1

4

{
u[µgν][κuλ] + u[νgµ][λuκ]

}
=

0[µν][κλ]

2
, (36)

so that the structural simplicity in the fluctuation–dissipation relation is preserved even in
the covariant formulation. (For a simplification of the field spectra, see the planar geometry
discussed below.)

3. Calculation of the force

The two terms in the radiation force density (9) yield a force acting on the atom, combining the
response functions with the fluctuation–dissipation theorems for field and polarization,

F = F (1) + F (2)

=

∫
d3x

{
f (1)(x) + f (2)(x)

}
, (37)

f (1)
µ (x) = −i

∫
d4k

(2π)4

d4w

(2π)4

d4 h

(2π)4
wη αηνκλ(w, h)

〈
Ffl

µν(k)Ffl
κλ(h)

〉
e−i(k+w)·x , (38)

f (2)
µ (x) = −i

∫
d4k

(2π)4

d4w

(2π)4

d4 h

(2π)4
wη Gµνκλ(k, −h)

〈
Mκλ

fl (h)Mην

fl (w)
〉
e−i(k+w)·x . (39)

The two contributions are worked out separately in sections 3.1 and 3.2. We specialize first the
geometry of the field to a stationary situation.

We focus on a planar geometry for the equilibrium field, with the atom moving along
a translation-invariant direction in the xy-plane. We choose a frame where the field is in
equilibrium, and denote spatial projections onto the xy-plane by the index ‖. In this situation,
translational invariance entails that the Green tensor has the property

Gµν(k, h) = (2π)3δ(k0 + h0)δ(k‖ + h‖)Gµν(k, hz),

G∗

νµ(−h, −k) = (2π)3δ(h0 + k0)δ(h‖ + k‖)G∗

µν(−h, −kz).
(40)

Note that this property holds in any inertial frame moving parallel to the xy-plane. This leaves
only the integration over hz in equations (38) and (39). In addition, the spatial integration over
x in equation (37) yields a δ(k + w).
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3.1. Field fluctuations

In the equilibrium frame of the field, we have βF · k = βk0. Inserting the correlation spectrum
of Fµν in equation (38) and performing the simplifications mentioned above, the contribution of
field fluctuations to the force can be written in the form (wµ

= (w0, −k), hµ
= (−k0, −k‖, hz))

F (1)
µ =

h̄

2

∫
d4k

(2π)4

dw0

2π

dhz

2π
coth

(
βk0

2

)
wηα

ηνκλ(w, h)

×[k[µGν][κ(k, hz)hλ] − h[λG∗

κ][ν(−h, −kz)kµ]] e−i(w0+k0)t . (41)

The polarizability αηνκλ(w, h) (equation (15)) contains a δ-function whose argument becomes
for an atom with velocity uµ

= γ (1, v) in the xy-plane:

u · (w − h) = γ (w0 + k0) + γ v · (k‖ − k‖) = γ (w0 + k0). (42)

This allows to perform the w0 integral and completes the identification w = −k. We are
therefore justified to work with the following expression for the polarizability tensor:

αηνκλ(w, h) = 2π
δ(w0 + k0)

γ
α(−u · k)

{
uηgνκuλ + uνgηλuκ

}
ei(kz+hz)zA . (43)

As expected, the force resulting from equation (41) is constant in time and depends only on the
atom-surface distance zA.

The contraction of the two terms in brackets in equation (41) with the fourth rank tensor in
the polarizability (43) gives

−kη

{
uηgνκuλ + uνgηλuκ

}
k[µGν][κ(k, h)hλ] = kµφ(k, h), (44)

−kη

{
uηgνκuλ + uνgηλuκ

}
h[λG∗

κ][ν(−h, −k)kµ] = kµφ̄(−h, −k), (45)

where we defined the scalar function

φ(k, h) = −(u · k)(u · h)Gκ
κ(k, h) − (k · h)uνuκGνκ(k, h)

+(u · h)uνkκGνκ(k, h) + (u · k)hνuκGνκ(k, h). (46)

The function φ̄(−h, −k) in equation (45) is obtained by the replacement Gνδ(k, h) 7→

G∗

δν(−h, −k) in the definition (46) of φ(k, h). We note that this formula is valid for arbitrary
k and h.

We end up with the following integral for this piece of the radiation force (kµ
= (ω, k‖, kz)

and hµ
= (−ω, −k‖, hz)):

F (1)
µ =

h̄

2

∫
d4k

(2π)4

dhz

2π
coth

(
βFω

2

)
kµ

γ
α(−u · k)

[
φ(k, h) − φ̄(−h, −k)

]
ei(kz+hz)zA . (47)

This formula and equation (49) below, giving the two pieces in Fµ, are our main result.

3.2. Dipole fluctuations

The contribution of dipole fluctuations (equation (39)) is worked out in a similar way. We find
again that only w = −k is relevant. The contraction of the fourth rank tensors involves the
remarkable identity

−kη

{
kµGνκ(k, −h)hλ + kνGµλ(k, −h)hκ

}
u[κgλ][ηuν]

= kµ8(k, −h), (48)
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where the function 8(k, −h) has the same definition as φ(k, h) in equation (46), except for the
replacement Gνδ(k, h) 7→ Gνδ(k, −h). The force due to dipole fluctuations finally takes the form
(here, h = (k0, k‖, hz))

F (2)
µ = −ih̄

∫
d4k

(2π)4

dhz

2π
coth

(
βA · k

2

)
kµ

γ
Im α(u · k)8(k, −h) ei(kz−hz)zA, (49)

which has a structure quite similar to F (1)
µ (equation (47)).

3.3. Blackbody friction

As an illustration and check of this approach, we consider two simple situations: motion in
blackbody radiation (this section) and above a planar dielectric (section 3.4). In the first case,
we use the free-space photon Green’s function (17) in the Feynman gauge, in the second case,
the Green function obtained in [2] in a generalized Coulomb gauge. Recall that friction forces in
the blackbody radiation field have been studied in the early days of quantum theory by Einstein
and Hopf [25] and Einstein [26].

The full translational symmetry of the photon propagator (17) entails the additional
δ-function δ(kz + hz) in Gµν(k, h) (equation (40)). Using the resulting values for the four-vector
h, the scalar functions in the two pieces F (1) and F (2) are worked out to be

φ(k, h), φ̄(−h, −k) 7→ −
2(u · k)2 + k2

k2 ± i0 sgn(ω)
, (50)

8(k, −h) 7→
2(u · k)2 + k2

k2 + i0 sgn(ω)
. (51)

The combination φ(k, h) − φ̄(−h, −k) becomes proportional to a δ-function localized on the
light cone k2

= 0, thus removing the term k2 in the numerator. The integration over the direction
of k remains: we observe that only the components F0 and Fx are non-zero (due to parity) in
a frame where v is along the x-axis. Under the reflection (ω, kx) 7→ (−ω, −kx) that flips the
sign of u · k, only the imaginary part Im α(−u · k) = −Im α(u · k) gives an even integrand in
equation (47). Pulling these facts together, we find (solid angle d� for unit vector k/|ω|)

F (1)
µ =

h̄

2πγ

∫
∞

−∞

dω

2π

∫
d�

4π
coth

(
βFω

2

)
ωkµ(u · k)2 Im α(u · k). (52)

For the second contribution

F (2)
µ = −ih̄

∫
d4k

(2π)4
coth

(
βA · k

2

)
kµ

γ
Im α(u · k)

2(u · k)2 + k2

k2 + i0 sgn (ω)
, (53)

we make the integrand even under the reflection mentioned above equation (52) and get again
an −2π i sgn (ω)δ(k2) from the last term. The integral then reduces to

F (2)
µ = −

h̄

2πγ

∫
∞

−∞

dω

2π

∫
d�

4π
coth

(
βA · k

2

)
ωkµ(u · k)2 Im α(u · k), (54)

which has nearly the same structure as F (1) (equation (52)) except that coth (βA · k/2) involves
the atomic temperature and the Doppler-shifted frequency ω′

A = u · k in the atom’s rest frame.
The total force thus features the difference

coth
βA · k

2
− coth

βFω

2
= 2N (ω′

A, TA) − 2N (ω, TF), (55)
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where N (ω, T ) is the Bose–Einstein distribution. (The co-moving frequency ω′

A has necessary
the same sign as ω for field modes on the light cone.) This makes the frequency integration
converge exponentially fast at |ω| → ∞. And it is easy to check that the sum of equations (52)
and (54) is equal to the radiative friction force calculated in [7, 24] for the case of a small
polarizable particle (for a review and discussion, see [27, 28]).

3.4. Friction above a dielectric surface

We finally address the situation that a neutral particle is moving parallel to a dielectric surface
where the radiation force acts as friction. This issue has recently received some regain of interest
in particular after the claim in [12] that for two macroscopic bodies in relative motion, the
frictional stress should vanish for T → 0. (See [29–31] for further discussion.)

3.4.1. Reflected photon Green function. The starting point is the photon Green function
Gµν(x, x ′) for which we take the expression derived in [2] (both z, z′ > 0, outside the surface)

Gµν(x, x ′) = −

∫
dk0

2π

d2k‖

(2π)2
e−i[k0(t−t ′)−k‖·(x−x′)]

×

{∫
dkz

2π

gµν eikz(z−z′)

k2 + i0 sgn ω
+
∫
C

dkz

2π

∑
σ

rσ P (σ )
µν eikz(z+z′)

k2 + i0 sgn ω

}
, (56)

where σ is a polarization index and the quantities rσ , P (σ )
µν are detailed in equation (57) below.

This is written in the rest frame of the dielectric medium. The first term in curly brackets is
the same as in free space (equation (17)), and we can focus here on the second term. It is built
from waves that are reflected from the planar surface, as illustrated by the sign flip in front of
the second coordinate z′. The integral is over a contour C in the complex kz plane, including
the real axis and two segments running on opposite sides of the imaginary axis. In our notation
where z, z′ > 0, these segments are between kz = 0 and kz = i|k‖|

√
1 − 1/n2 where n > 1 is the

refractive index of the dielectric medium below the surface [2]. The reflection matrices involve
two transverse polarizations σ = s, p which are gauge-independent, and two gauge-dependent
ones, scalar σ = l and longitudinal σ = k:

rs =
kz − k ′

z

kz + k ′
z

, P (s)
i j =

−k2
y kxky 0

kxky −k2
x 0

0 0 0

 1

k2
‖

,

rp =
n2kz − k ′

z

n2kz + k ′
z

, P (p)
i j =

k2
z k2

x k2
z kxky kzkxk2

‖

k2
z kxky k2

z k2
y kzkyk2

‖

−kzkxk2
‖

−kzkyk2
‖

−k4
‖

 1

k2
‖
k2

,

rl =
kz − n2k ′

z

kz + n2k ′
z

, P (l)
00 = 1,

rk =
kz − n2k ′

z

kz + n2k ′
z

, P (k)

i j =

−k2
x −kxky kxkz

−kxky −k2
y kykz

−kxkz −kykz k2
z

 1

k2
.

(57)
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All other components vanish. (The gauge chosen in [2] is a generalized Coulomb one.) Note
that the scalar and longitudinal polarizations have the same reflection amplitude rl = rk . Finally,
the reflection amplitudes involve the medium wavevector k ′

z given by

k ′

z =

√
n2k2

z + (n2 − 1)k2
‖
, (58)

where the square root must be evaluated with a branch cut joining the points kz =

− i|k‖|
√

1 − 1/n2 and kz = + i|k‖|
√

1 − 1/n2. The integration contour C avoids this branch cut
from above. In the following, we denote byR the reflected part of the photon Green function and
keep only this contribution. From the expression (56) of R(x, x ′), we read off that the double
Fourier representation used before in equation (32) has the property

Rµν(k, h) = (2π)4δ(k0 + h0)δ(k‖ + h‖)δ(kz − hz)Rµν(k), (59)

so that h = −kr = −(k0, k‖, −kz) is fixed to the reflected wavevector.
We have checked that this formulation (with the contour integral over kz and the

relation (59) fixing hz) carries through the previous calculation in place of the ordinary Fourier
integrals over kz and hz. A similar expansion also holds for the conjugate tensor R∗. Indeed,
using the fact that the contour is mapped according to C∗

= − C−1, and the properties of the
scattering amplitudes under complex conjugation compiled in [2], one can convince oneself that
the conjugate tensor [Rνµ(x ′, x)]∗ can be written exactly as the second term in equation (56),
except that the retarded denominator must be replaced by the advanced one, k2

− i0 sgn (ω).

3.4.2. Reduction to the light cone. We perform the integration over kz by closing the contour
C with a half-circle at infinity in the upper half-plane (observe eikz(z+z′) in equation (56)). There
are two poles, one at kz = i|k‖| from the normalization factor k2 in the projectors, and another
one at

kz = i
√

k2
‖
− (ω + i0)2 ≡ iκ (60)

from the photon propagator (on the light cone). It is easy to check that the residues at the former
pole compensate between the p- and longitudinal polarizations, the reflection coefficients taking
the values rp = (n2

− 1)/(n2 + 1) = −rk . For more technical details, see [32].
Another cancellation happens between the longitudinal and scalar polarizations on the light

cone when the scalar function φ(k, h) (equation (46)) is evaluated. Let us write φσ (k) (σ = l, k)
for the corresponding expressions when the projectors P (σ )

µν are replaced for Rµν(k, h) (we use
h = − kr ):

φσ (k) = (u · k)(u · kr)P (σ )λ
λ + (k · kr)u

νuλ P (σ )
νλ − (u · kr)u

νkλ P (σ )
νλ − (u · k)kν

r uλ P (σ )
νλ . (61)

The scalar polarization picks the time-like components, while the longitudinal polarization
projects onto k and kr . Indeed, the latter projector is re-written (on the light cone) as

P (k)

i j = −
ki kr j

k2
= −

ki kr j

ω2
, (62)

where kr = (k‖, −kz) is the reflected wavevector. Straightforward algebra shows that

k2
= 0 ⇒ rlφl(k) + rkφk(k) = 0. (63)

This is again an indication that our covariant expression for the radiation force is gauge invariant.
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The conjugate Green tensor R∗ is handled in a similar way, taking care of the positions of
the poles in kz. The sum of the two terms in F (1) (equation (47)) results in:∫
C

dkz

2π

dhz

2π
kµ

[
φ(k, h) − φ̄(−h, −k)

]
ei(kz+hz)zA

=
1

2

∑
σ = s,p

φσ (k)

[
kµ

rσ e−2κzA

κ
− k̄µ

r∗

σ e−2κ∗zA

κ∗

]
, (64)

where the light-like vectors kµ and k̄µ have z-components given by iκ (equation (60)) and iκ∗,
respectively. The polarizations come with real-valued weight functions

φs(k) = γ 2(ω − v · k‖)
2 + 2γ 2(v × k‖)

2

(
1 −

ω2

k2
‖

)
, (65)

φp(k) = γ 2(ω − v · k‖)
2 + 2γ 2(k2

‖
− (v · k‖)

2)

(
1 −

ω2

k2
‖

)
. (66)

3.4.3. Field fluctuations. For comparison with [8], we work out the friction force Fx parallel
to v. The terms in brackets in equation (64) are then complex conjugates one of the other. From
equation (60) for κ and the properties of the reflection coefficients in [2], we observe that this
function is odd under a sign flip of both ω and kx . Keeping only even terms in the integrand,
we end up from equations (47) and (64) with the manifestly real expression for that part of the
force that depends on the field temperature

F (1)
x =

h̄

2γ

∫
dω

2π

d2k‖

(2π)2
coth

(
βFω

2

)
kx Im α(u · k)

∑
σ = s,p

φσ (k) Im

(
rσ e−2κzA

κ

)
. (67)

3.4.4. Dipole fluctuations. The integral over dipole fluctuations (49) is similar. The Green
function Rµν(k, −h) (equation (59)) involves δ(kr − h) and fixes h. Performing the kz-
integration, we get

h = kr :
∫
C

dkz

2π

dhz

2π
kµ8(k, −h)ei(kz−hz)zA =

∑
σ = s,p

(−φσ (k))
rσ e−2κzA

2κ
, (68)

where the weight functions defined in equation (61) appear again. Putting this into equation (49)
and picking the even part of the integrand, we get

F (2)
x = −

h̄

2γ

∫
dω

2π

d2k‖

(2π)2
coth

(
βA · k

2

)
kx Im α(u · k)

∑
σ = s,p

φσ (k) Im

(
rσ e−2κzA

κ

)
. (69)

The net force thus involves the same difference of thermal occupations as in free space
(equation (55)).

3.4.5. Comparison to previous results. In [8, 24], the same problem was treated in a not
manifestly covariant way. We compare here to equation (13) in the review [33] which is the
sum of the friction force in free space (section 3.3) and above a magneto-dielectric surface.
The free-space piece is equal to the sum of equations (52) and (54), as can be shown with the
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Table 1. Dictionary of symbols. In [33], Gauss units are used.
Particle Field Particle (Electric) Co-moving Parallel Propagating Evanescent Reflection Polarization
temperature temperature velocity polarizability frequency wave waves waves amplitude weight

vector

Reference [33] T1 T2 βc, V 4παe γω− k q̃0 iq0 1̃m,e, 1m,e γ 2χ−
m,e

This paper TA TF vx α u · k k‖ kz ∈ R kz = iκ rs,p φs,p

translation table 1. We have checked that also the surface friction is the same as our result, in
both propagating and evanescent sectors (k‖ < ω/c and k‖ > ω/c, respectively), taking care of
the symmetry of the integrand with respect to the signs of ω and kx . In [13], the scenario for
calculating the force is slightly different because the parameters in the atomic polarizability
(frequency shift, linewidth) are modified themselves due to the interaction with the surface. We
assume here that α(ω) is an independent input parameter. Alternatively, one may work with a
‘dressed polarizability’ that depends, in general, on the atom-surface distance.

In [11], the near-surface change in the polarizability is emphasized as well, and
contributions up to order O[α2(ω)] are calculated. The starting point for radiative friction is
not equation (4) for the (average) force. A friction coefficient to linear order in the velocity v

is calculated from a force autocorrelation function, essentially similar to the Kubo formula in
equation (28). The terms to lowest order in the polarizability α and for a common temperature
coincide with the result of [8] and therefore with ours.

In [34], perturbation theory to the second order is used for the power dissipated at
T = 0 by a neutral atom coupled in the electrostatic limit to the surface plasmon modes of a
conducting half-space. The surface plasmons are modelled as harmonic oscillators using the
Huttner–Barnett model. This microscopic description entails the atomic polarizability and the
dielectric function of the half-space. The final results are calculated for an atom moving with a
non-relativistic velocity and agree with [13], on the one hand, and with [33], on the other [35].
In this limit (low velocities, short distances and zero temperature), the preceding approaches
including ours are therefore consistent.

3.4.6. Normal force. For completeness, we also give here the two contributions to the
normal component of the radiation force. This provides the generalization of the well-known
Casimir–Polder interaction to the situation of a moving particle at a different temperature than
the surface. The calculations are the same and lead to

F (1)
z = −

h̄

2γ

∫
dω

2π

∫
d2k‖

(2π)2
coth

(
βFω

2

)
Re α(u · k)

∑
σ = s,p

φσ (k) Im
[
rσ e−2κzA

]
, (70)

F (2)
z = −

h̄

2γ

∫
dω

2π

∫
d2k‖

(2π)2
coth

(
βA · k

2

)
Im α(u · k)

∑
σ = s,p

φσ (k) Re
[
rσ e−2κzA

]
. (71)

Both contributions are manifestly real. We have checked that these results coincide with
equation (12) of [33] for both propagating and evanescent modes.
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4. Conclusions

The problem of radiative friction on neutral particles near macroscopic bodies or between two
such objects has been addressed by several authors in recent years, using different approaches.
We have constructed here a framework that embodies several of these results, and has the
advantage of being manifestly compatible with the requirements of special relativity. The
formulation highlights the different geometric objects that are involved in the electromagnetic
coupling, the material polarization is for example an antisymmetric rank-two tensor, conjugate
to the Faraday tensor. We believe that one advantage of the formulation is to expound
clearly the concept of local thermodynamic equilibrium which is a prerequisite to apply
the fluctuation–dissipation theorem in the relativistic context. From this viewpoint, the two-
temperature situations that have been studied quite intensively over the previous years, appear
on the same footing as two objects in relative motion.

We found hints that the radiative force on the particle is a gauge-independent quantity, by
retrieving previous results from different choices for the relativistic photon propagator (Green
tensor). It is also interesting that the covariant formulation displays the force (equations (47)
and (49)) as being proportional to the four-wavevector kµ. This may help to interpret the
associated potential energy in a covariant way and to compare with other results.
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Appendix

We give here an elementary justification of equation (8) where the polarization operator is split
into a fluctuating and an induced part. For the sake of simplicity, it is not necessary to evoke a
relativistic formalism. Consider the following Hamiltonian:

H = HF + HA + Hint (A.1)

in an obvious notation where the atom–field interaction is

Hint = −d · E(xA) (A.2)

for a point-like atom at position xA. We want to calculate the average force on the atom [33]

f(t) = 〈d j(t)∇E j(t, xA)〉 (A.3)

in the limit of large times t → ∞ (implicit summation over cartesian index j). We work in the
interaction picture and approximate the time evolution operator up to first order in the dipole
moment

U (t) = 1 −
i

h̄

∫ t

0
dt ′ dk(t

′)Ek(t
′, xA). (A.4)

We thus get

f(t) = 〈U †(t)d j(t)∇E j(t, xA)U (t)〉 (A.5)
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=
i

h̄

∫ t

0
dt ′ (〈dk(t

′)Ek(t
′, xA)d j(t)∇E j(t, xA)〉 − 〈d j(t)∇E j(t, xA)dk(t

′)Ek(t
′, xA)〉). (A.6)

In this order of perturbation theory, the operators evolve according to the respective non-
perturbed Hamiltonians of atom and field. Assuming that the two are in a factorized state
initially, we get

〈d j(t)∇E j(t, xA)〉 = 0. (A.7)

With the operator identity

ab =
1

2
({a, b} + [a, b]) (A.8)

and neglecting commutators that lead to higher order terms, we find

f(t) =
i

2h̄

∫ t

0
dt ′ (〈

[
d j(t), dk(t

′)
]
〉〈
{
∇E j(t, xA), Ek(t

′, xA)
}
〉

+〈
[
∇E j(t, xA), Ek(t

′, xA)
]
〉〈
{
dk(t

′), d j(t)
}
〉). (A.9)

We can now recognize the commutators as response functions (polarizability and Green tensor).
Because the system is in a stationary state, both the response functions and the anti-symmetrized
correlations only depend on the time difference t − t ′. The force becomes stationary in the limit
that the initial time t = 0 → −∞:

f(t) =
i

h̄

∫
∞

−∞

dt ′

[
αi j(t − t ′)

〈
1

2

{
∇E j(t, xA), Ek(t

′, xA)
}〉

+ ∇1Gi j(t − t ′
; xA, xA)

〈
1

2

{
dk(t

′), d j(t)
}〉]

, (A.10)

where the gradient ∇1 in the last line indicates differentiation with respect to the first argument.
In the main text, these integrals are worked out in Fourier space.

Equation (A.10) can now be given a physical interpretation: in the first line, the
symmetrized correlations characterize the quantum fluctuations of the electric fields which
polarize the atom that responds linearly (polarizability α). The reciprocal is true for the
second line: the atomic dipole fluctuations generate radiation reaction fields (Green tensor G).
Equation (A.10) is consistent with the heuristic splitting of the field and dipole into induced and
fluctuating parts (equation (8)) and formalizes the way to take the corresponding averages in
this interpretation (equation (9)).

One can apply the same reasoning to the following interaction in covariant form:

H = Fµν Mµν (A.11)

to get the average four-force density

fµ = 〈Fµν∂κ Mκν
〉 . (A.12)

This leads to equations (38) and (39) of the main text.
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