Table of contents

Volume 751

Number 1, 2012 May 20

Previous issue Next issue

1

, , and

Observations of 14 rotational transitions of hydroxylamine (NH2OH) using the NRAO 12 m telescope on Kitt Peak are reported toward IRC+10216, Orion KL, Orion S, Sgr B2(N), Sgr B2(OH), W3IRS5, and W51M. Although recent models suggest the presence of NH2OH in high abundance, these observations resulted in non-detection. Upper limits are calculated to be as much as six orders of magnitude lower than those predicted by models. Possible explanations for the lower-than-expected abundance are explored.

2

and

We present results from the analysis of Fe i 630 nm measurements of the quiet Sun taken with the spectropolarimeter of the Hinode satellite. Two data sets with noise levels of 1.2 × 10−3 and 3 × 10−4 are employed. We determine the distribution of field strengths and inclinations by inverting the two observations with a Milne–Eddington model atmosphere. The inversions show a predominance of weak, highly inclined fields. By means of several tests we conclude that these properties cannot be attributed to photon noise effects. To obtain the most accurate results, we focus on the 27.4% of the pixels in the second data set that have linear polarization amplitudes larger than 4.5 times the noise level. The vector magnetic field derived for these pixels is very precise because both circular and linear polarization signals are used simultaneously. The inferred field strength, inclination, and filling factor distributions agree with previous results, supporting the idea that internetwork (IN) fields are weak and very inclined, at least in about one quarter of the area occupied by the IN. These properties differ from those of network fields. The average magnetic flux density and the mean field strength derived from the 27.4% of the field of view with clear linear polarization signals are 16.3 Mx cm−2 and 220 G, respectively. The ratio between the average horizontal and vertical components of the field is approximately 3.1. The IN fields do not follow an isotropic distribution of orientations.

3

and

We report a theoretical investigation of the infrared (IR) spectra of polycyclic aromatic hydrocarbons (PAHs) containing (5, 7)-member ring defects based on a C48H18 model. Calculations are mostly performed using the hybrid B3LYP density functional theory (DFT) with a 6-31G(d) or 4-31G basis set. The results show that the Stone–Wales defect in PAHs can yield a strong IR band at 1448 cm−1 and a weak band at 611 cm−1, which may contribute to the UIR (unidentified infrared) bands at 6.9 μm and 16.4 μm observed in the interstellar medium. The charge effect on the IR spectra is discussed. The stability of the ring defected PAHs is also addressed by exploring the minimum energy pathway on the potential energy surface and through their UV–visible spectra, which are computed using a TDDFT method.

4

and

This work provides a statistical analysis of the massive star binary characteristics in the Cygnus OB2 association using radial velocity information of 114 B3–O5 primary stars and orbital properties for the 24 known binaries. We compare these data to a series of Monte Carlo simulations to infer the intrinsic binary fraction and distributions of mass ratios, periods, and eccentricities. We model the distribution of mass ratio, log-period, and eccentricity as power laws and find best-fitting indices of α = 0.1 ± 0.5, β = 0.2 ± 0.4, and γ = −0.6 ± 0.3, respectively. These distributions indicate a preference for massive companions, short periods, and low eccentricities. Our analysis indicates that the binary fraction of the cluster is 44% ± 8% if all binary systems are (artificially) assumed to have P < 1000 days; if the power-law period distribution is extrapolated to 104 years, then a plausible upper limit for bound systems, the binary fraction is ∼90% ± 10%. Of these binary (or higher order) systems, ∼45% will have companions close enough to interact during pre- or post-main-sequence evolution (semi-major axis ≲4.7 AU). The period distribution for P < 26 days is not well reproduced by any single power law owing to an excess of systems with periods around 3–5 days (0.08–0.31 AU) and a relative shortage of systems with periods around 7–14 days (0.14–0.62 AU). We explore the idea that these longer-period systems evolved to produce the observed excess of short-period systems. The best-fitting binary parameters imply that secondaries generate, on average, ∼16% of the V-band light in young massive populations. This means that photometrically based distance measurements for young massive clusters and associations will be systematically low by ∼8% (0.16 mag in the distance modulus) if the luminous contributions of unresolved secondaries are not taken into account.

5

, , , and

Magnetic field topology, thermal structure, and plasma motions are the three main factors affecting the polarization signals used to understand our star. In this theoretical investigation, we focus on the effect that gradients in the macroscopic vertical velocity field have on the non-magnetic scattering polarization signals, establishing the basis for general cases. We demonstrate that the solar plasma velocity gradients may have a significant effect on the linear polarization produced by scattering in chromospheric spectral lines. In particular, we show the impact of velocity gradients on the anisotropy of the radiation field and on the ensuing fractional alignment of the Ca ii levels, and how they can lead to an enhancement of the zero-field linear polarization signals. This investigation remarks on the importance of knowing the dynamical state of the solar atmosphere in order to correctly interpret spectropolarimetric measurements, which is important, among other things, for establishing a suitable zero-field reference case to infer magnetic fields via the Hanle effect.

6

The multi-object fiber-fed spectrograph AAOmega at the Anglo-Australian Telescope has been used to establish and measure accurate (⩽1 km s−1) radial velocities for a new sample of members in the outer parts of the stellar system ω Centauri. The new sample more than doubles the number of known members with precise velocities that lie between 25' and 45' from the cluster center. Combining this sample with earlier work confirms that the line-of-sight velocity dispersion of ω Cen remains approximately constant at ∼6.5 km s−1 in the outer parts of the cluster, which contain only a small fraction of the total cluster stellar mass. It is argued that the approximately constant velocity dispersion in the outer regions is most likely a consequence of external influences, such as the tidal shock heating that occurs each time ω Cen crosses the Galactic plane. There is therefore no requirement to invoke dark matter or non-standard gravitational theories.

7

, , , and

In active galactic nucleus spectra, a series of Fe ii multiplets form a pseudo-continuum that extends from the ultraviolet to the near-infrared (NIR). This emission is believed to originate in the broad-line region, and it has been known for a long time that pure photoionization fails to reproduce it in the most extreme cases, as does the collisional excitation alone. The most recent models by Sigut & Pradhan include details of the Fe ii ion microphysics and cover a wide range in the ionization parameter log Uion = (− 3.0 → −1.3) and density log nH = (9.6 → 12.6). With the aid of such models and a spectral synthesis approach, we studied for the first time in detail the NIR emission of I Zw 1. The main goals were to confirm the role played by Lyα fluorescence mechanisms in the production of the Fe ii spectrum and to construct the first semi-empirical NIR Fe ii template that best represents this emission, consequently allowing its clean subtraction in other sources. A good overall match between the observed Fe ii+Mg ii features with those predicted by the best-fitted model was obtained, corroborating the Lyα fluorescence as a key process to understand the Fe ii spectrum. The best model was fine-tuned by applying a deconvolution method to the observed Fe ii+Mg ii spectrum. This derived semi-empirical template was then fitted to the spectrum of Ark 564, showing that it nicely reproduced its observed Fe ii+Mg ii emission. Our work extends the current set of available Fe ii templates into the NIR region.

8

, , and

We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5 M and 9 M, with an initial metallicity of Z = 0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis & Wood mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis & Wood noted that for stars over 2.5 M the superwind should be delayed until P ≈ 750 days at 5 M. We calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P ≈ 700–800 days in models of M = 5, 6, and 7 M. Post-processing nucleosynthesis calculations show that the 6 and 7 M models produce the most Rb, with [Rb/Fe] ≈1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] ≈1.4 ± 0.8 dex). Changing the rate of the 22Ne +α reactions results in variations of [Rb/Fe] as large as 0.5 dex in models with a delayed superwind. The largest enrichment in heavy elements is found for models that adopt the NACRE rate of the 22Ne(α, n)25Mg reaction. Using this rate allows us to best match the composition of most of the Rb-rich stars. A synthetic evolution algorithm is then used to remove the remaining envelope resulting in final [Rb/Fe] of ≈1.4 dex although with C/O ratios >1. We conclude that delaying the superwind may account for the large Rb overabundances observed in the brightest metal-rich AGB stars.

9

, , , , and

We present Spitzer Space Telescope 5–36 μm mapping observations toward the southeastern lobe of the young protostellar outflow HH 211. The southeastern terminal shock of the outflow shows a rich mid-infrared spectrum including molecular emission lines from OH, H2O, HCO+, CO2, H2, and HD. The spectrum also shows a rising infrared continuum toward 5 μm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v = 1–0 fundamental band. This interpretation is supported by a strong excess flux observed in the Spitzer/IRAC 4–5 μm channel 2 image compared to the other IRAC channels. The extremely high critical densities of the CO v = 1–0 ro-vibrational lines and a comparison to H2 and CO excitation models suggest jet densities larger than 106 cm−3 in the terminal shock. We also observed the southeastern terminal outflow shock with the Submillimeter Array and detected pure rotational emission from CO 2–1, HCO+ 3–2, and HCN 3–2. The rotationally excited CO traces the collimated outflow backbone as well as the terminal shock. HCN traces individual dense knots along the outflow and in the terminal shock, whereas HCO+ solely appears in the terminal shock. The unique combination of our mid-infrared and submillimeter observations with previously published near-infrared observations allow us to study the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help us to understand the nature of some of the so-called green fuzzies (Extended Green Objects), and elucidate the physical conditions that cause high OH excitation and affect the chemical OH/H2O balance in protostellar outflows and young stellar objects. In an appendix to this paper, we summarize our Spitzer follow-up survey of protostellar outflow shocks to find further examples of highly excited OH occurring together with H2O and H2.

10

, , , , and

In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: LIR ≳ 1011L) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called Xco = M(H2)/Lco, 1–0 factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an Xco distribution with 〈Xco〉 ∼ (0.6 ± 0.2) M (K km s−1 pc2)−1 over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining Xco, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3–2, 4–3, and/or J = 6–5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (⩾104 cm−3) rather than a simple one-phase analysis, we find that near-Galactic Xco ∼ (3–6) M (K km s−1 pc2)−1 values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high Xco to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain Xco in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low Xco but very little mass. Only well-sampled high-J CO SLEDs (J = 3–2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only way that the global Xco of such systems could be significantly lower than Galactic is if the average dynamic state of the dense gas is strongly gravitationally unbound. This is an unlikely possibility that must nevertheless be examined, with lines of rare isotopologues of high gas density tracers (e.g., H13CN, high-J13CO lines) being very valuable in yielding (along with the lines of the main isotopes) such constraints. For less IR-luminous, disk-dominated systems, we find that the galaxy-averaged Xco deduced by one-phase models of global SLEDs can also underestimate the total molecular gas mass when much of it lies in an star-formation-quiescent phase extending beyond a central star-forming region. This is because such a phase (and its large Xco) remains inconspicuous in global CO SLEDs. Finally, detailed studies of a subsample of galaxies find ULIRGs with large amounts (∼109M) of very warm (⩾100 K) and dense gas (≳105 cm−3), which could represent a serious challenge to photon-dominated regions as the main energy portals in the molecular ISM of such systems.

11

, , , , , , , , and

We report the detection of strong, resolved emission from warm H2 in the Taffy galaxies and bridge. Relative to the continuum and faint polyclic aromatic hydrocarbon (PAH) emission, the H2 emission is the strongest in the connecting bridge, approaching L(H2)/L(PAH 8 μm) = 0.1 between the two galaxies, where the purely rotational lines of H2 dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephan's Quintet (SQ). The surface brightness in the 0–0 S(0) and S(1) H2 lines in the bridge is more than twice that observed at the center of the SQ shock. We observe a warm H2 mass of 4.2 × 108M in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of ∼5 × 106M kpc−2 and typical excitation temperatures of 150–175 K. H2 emission is also seen in the galaxy disks, although there the emission is more consistent with normal star-forming galaxies. We investigate several possible heating mechanisms for the bridge gas but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H2 is short (∼5000 yr), shocks must be permeating the molecular gas in the bridge region in order to continue heating the H2.

12

, , , , , , , , , et al

We present follow-up observations with the Sunyaev–Zel'dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022–0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022–0036 is a newly discovered, massive (≃ 1015M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev–Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the ≲ 20% level for some fraction of clusters.

13

, , , , , and

A deep Spitzer Infrared Spectrograph map of the PKS 1138−26 galaxy protocluster reveals ultraluminous polycyclic aromatic hydrocarbon (PAH) emission from obscured star formation in three protocluster galaxies, including Hα-emitter (HAE) 229, HAE 131, and the central Spiderweb Galaxy. Star formation rates of ∼500–1100 M yr−1 are estimated from the 7.7 μm PAH feature. At such prodigious formation rates, the galaxy stellar masses will double in 0.6–1.1 Gyr. We are viewing the peak epoch of star formation for these protocluster galaxies. However, it appears that extinction of Hα is much greater (up to a factor of 40) in the two ULIRG HAEs compared to the Spiderweb. This may be attributed to different spatial distributions of star formation–nuclear star formation in the HAEs versus extended star formation in accreting satellite galaxies in the Spiderweb. We find extremely luminous mid-IR rotational line emission from warm molecular hydrogen in the Spiderweb Galaxy, with L(H2 0–0 S(3)) = 1.4 × 1044 erg s−1 (3.7 × 1010L), ∼20 times more luminous than any previously known H2 emission galaxy (MOHEG). Depending on the temperature, this corresponds to a very large mass of >9 × 106–2 × 109M of T > 300 K molecular gas, which may be heated by the PKS 1138−26 radio jet, acting to quench nuclear star formation. There is >8 times more warm H2 at these temperatures in the Spiderweb than what has been seen in low-redshift (z < 0.2) radio galaxies, indicating that the Spiderweb may have a larger reservoir of molecular gas than more evolved radio galaxies. This is the highest redshift galaxy yet in which warm molecular hydrogen has been directly detected.

14

, , , , , , and

Carbon-enhanced metal-poor (CEMP) stars are believed to show the chemical imprints of more massive stars (M ≳ 0.8 M) that are now extinct. In particular, it is expected that the observed abundance of Li should deviate in these stars from the standard Spite lithium plateau. We study here a sample of 11 metal-poor stars and a double-lined spectroscopic binary with −1.8 < [Fe/H] < −3.3 observed with the Very Large Telescope/UVES spectrograph. Among these 12 metal-poor stars, there are 8 CEMP stars for which we measure or constrain the Li abundance. In contrast to previous arguments, we demonstrate that an appropriate regime of dilution permits the existence of "Li-Spite plateau and C-rich" stars, whereas some of the "Li-depleted and C-rich" stars call for an unidentified additional depletion mechanism that cannot be explained by dilution alone. We find evidence that rotation is related to the Li depletion in some CEMP stars. Additionally, we report on a newly recognized double-lined spectroscopic binary star in our sample. For this star, we develop a new technique from which estimates of stellar parameters and luminosity ratios can be derived based on a high-resolution spectrum alone, without the need for input from evolutionary models.

15

, , and

All the neutron star (NS) atmosphere models published so far have been calculated in the "cold plasma approximation," which neglects the relativistic effects in the radiative processes, such as cyclotron emission/absorption at harmonics of cyclotron frequency. Here, we present new NS atmosphere models which include such effects. We calculate a set of models for effective temperatures Teff = 1–3 MK and magnetic fields B ∼ 1010–1011 G, typical for the so-called central compact objects (CCOs) in supernova remnants, for which the electron cyclotron energy Ec, e and its first harmonics are in the observable soft X-ray range. Although the relativistic parameters, such as kTeff/mec2 and Ec, e/mec2, are very small for CCOs, the relativistic effects substantially change the emergent spectra at the cyclotron resonances, EsEc, e (s = 1, 2, ...). Although the cyclotron absorption features can form in a cold plasma due to the quantum oscillations of the free–free opacity, the shape and depth of these features change substantially if the relativistic effects are included. In particular, the features acquire deep Doppler cores, in which the angular distribution of the emergent intensity is quite different from that in the cold plasma approximation. The relative contributions of the Doppler cores to the equivalent widths of the features grow with increasing quantization parameter beffEc, e/kTeff and harmonic number s. The total equivalent widths of the features can reach ∼150–250 eV; they increase with growing beff and are smaller for higher harmonics.

16

, , , and

Galaxies observed today are likely to have evolved from density perturbations in the early universe. Perturbations that exceeded some critical threshold are conjectured to have undergone gravitational collapse to form primordial black holes (PBHs) at a range of masses. Such PBHs serve as candidates for cold dark matter, and their detection would shed light on conditions in the early universe. Here, we propose a mechanism to search for transits of PBHs through/nearby Earth by studying the associated seismic waves. Using a spectral-element method, we simulate and visualize this seismic wave field in Earth's interior. We predict the emergence of two unique signatures, namely, a wave that would arrive almost simultaneously everywhere on Earth's free surface and the excitation of unusual spheroidal modes with a characteristic frequency spacing in free oscillation spectra. These qualitative characteristics are unaffected by the speed or proximity of the PBH trajectory. The seismic energy deposited by a proximal MPBH = 1015 g PBH is comparable to a magnitude Mw = 4 earthquake. The non-seismic collateral damage due to the actual impact of such small PBHs with Earth would be negligible. Unfortunately, the expected collision rate is very low even if PBHs constituted all of dark matter, at ∼10−7 yr−1, and since the rate scales as 1/MPBH, fortunately encounters with larger, Earth-threatening PBHs are exceedingly unlikely. However, the rate at which non-colliding close encounters of PBHs could be detected by seismic activity alone is roughly two orders of magnitude larger—that is once every hundred thousand years—than the direct collision rate.

17

and

Hierarchical structure formation theory is based on the notion that mergers drive galaxy evolution, so a considerable framework of semi-analytic models and N-body simulations has been constructed to calculate how mergers transform a growing galaxy. However, galaxy mergers are only one type of major dynamical interaction between halos—another class of encounter, a close flyby, has been largely ignored. We use cosmological N-body simulations to reconstruct the entire dynamical interaction history of dark matter halos. We present a careful method of identifying and tracking a dark matter halo which resolves the typical classes of anomalies that occur in N-body data. This technique allows us to robustly follow halos and several hierarchical levels of subhalos as they grow, dissolve, merge, and flyby one another—thereby constructing both a census of the dynamical interactions in a volume and an archive of the dynamical evolution of an individual halo. In addition to a census of mergers, our tool characterizes the frequency of close flyby interactions in the universe. We find that the number of close flyby interactions is comparable to, or even surpasses, the number of mergers for halo masses ≳ 1011Mh−1 at z ≲ 2. Halo flybys occur so frequently to high-mass halos that they are continually perturbed, unable to reach a dynamical equilibrium. In particular, we find that Milky Way type halos undergo a similar number of flybys as mergers irrespective of mass ratio for z ≲ 2. We also find tentative evidence that at high redshift, z ≳ 14, flybys are as frequent as mergers. Our results suggest that close halo flybys can play an important role in the evolution of the earliest dark matter halos and their galaxies, and can still influence galaxy evolution at the present epoch. Our companion paper quantifies the effect of close flyby interactions on galaxies and their dark matter hosts.

18

, , , , , and

The propagation properties of coronal mass ejections (CMEs) are crucial to predict its geomagnetic effect. A newly developed three-dimensional (3D) mask fitting reconstruction method using coronagraph images from three viewpoints has been described and applied to the CME ejected on 2010 August 7. The CME's 3D localization, real shape, and morphological evolution are presented. Due to its interaction with the ambient solar wind, the morphology of this CME changed significantly in the early phase of evolution. Two hours after its initiation, it was expanding almost self-similarly. The CME's 3D localization is quite helpful to link remote sensing observations to in situ measurements. The investigated CME was propagating to Venus with its flank just touching STEREO B. Its corresponding interplanetary CME in the interplanetary space shows a possible signature of a magnetic cloud with a preceding shock in Venus Express (VEX) observations, while from STEREO B only a shock is observed. We have calculated three principal axes for the reconstructed 3D CME cloud. The orientation of the major axis is, in general, consistent with the orientation of a filament (polarity inversion line) observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the Minimal Variance Analysis from VEX indicates a radial-directed axis orientation. It might be that locally only the leg of the flux rope passed through VEX. The height and speed profiles from the Sun to Venus are obtained. We find that the CME speed possibly had been adjusted to the speed of the ambient solar wind flow after leaving the COR2 field of view and before arriving at Venus. A southward deflection of the CME from the source region is found from the trajectory of the CME geometric center. We attribute it to the influence of the coronal hole where the fast solar wind emanated from.

19

, , , , and

In this paper, we adopt the use of the wavelet transform as a new tool to investigate the time behavior at different scales of reduced magnetic helicity, cross-helicity, and residual energy in space plasmas. The main goal is a better characterization of the fluctuations in which interplanetary flux ropes are embedded. This kind of information is still missing in the present literature, and our tool can represent the basis for a new treatment of in situ measurements of this kind of event. There is a debate about the origins of small-scale flux ropes. It has been suggested that they are formed through magnetic reconnection in the solar wind, such as across the heliospheric current sheet. On the other hand, it has also been suggested that they are formed in the corona, similar to magnetic clouds. Thus, it looks like that there are two populations, one originating in the solar wind via magnetic reconnection across the current sheet in the inner heliosphere and the other originating in the corona. Small-scale flux ropes might be the remnants of the streamer belt blobs formed from disconnection; however, a one-to-one observation of a blob and a small-scale flux rope in the solar wind has yet to be found. Within this panorama of possibilities, this new technique appears to be very promising in investigating the origins of these objects advected by the solar wind.

20

, , , and

We present the first analysis of the complete charge state distributions of heavy ions in interplanetary coronal mass ejections (CMEs), from singly charged to fully ionized. We develop a novel analysis technique that requires the combination and cross-calibration of two different data sets from the Solar Wind Ion Composition Spectrometer on the Advanced Composition Explorer. The first contains ions of higher charge states, and includes an identification of their mass, mass-per-charge, and energy-per-charge. The second data set contains singly and low-charge ions, and identifies only their mass-per-charge and energy-per-charge. Focusing on C, O, and Fe, we find ionic charge states representative of temperatures from ⩽60,000 K to over 5,000,000 K contained within interplanetary CMEs observed near 1 AU. We interpret these data in the context of near-Sun observations of filament material associated with CMEs. We find that singly charged ions are embedded within selected interplanetary CMEs, and we examine their densities and durations. These data thus provide the most unambiguous in situ diagnostic of solar prominence plasma in the heliosphere.

21

, , , and

In the present work we study the evolution of an active region after the eruption of a coronal mass ejection (CME) using observations from the EIS and XRT instruments on board Hinode. The field of view includes a post-eruption arcade, a current sheet, and a coronal dimming. The goal of this paper is to provide a comprehensive set of measurements for all these aspects of the CME phenomenon made on the same CME event. The main physical properties of the plasma along the line of sight—electron density, thermal structure, plasma composition, size, and, when possible, mass—are measured and monitored with time for the first three hours following the CME event of 2008 April 9. We find that the loop arcade observed by EIS and XRT may not be related to the post-eruption arcade. Post-CME plasma is hotter than the surrounding corona, but its temperature never exceeds 3 MK. Both the electron density and thermal structure do not show significant evolution with time, while we found that the size of the loop arcade in the Hinode plane of the sky decreased with time. The plasma composition is the same in the current sheet, in the loop arcade, and in the ambient plasma, so all these plasmas are likely of coronal origin. No significant plasma flows were detected.

22

, , , and

We present a general method for identifying the pre-main-sequence population of any star-forming region, unbiased with respect to the presence or absence of disks, in contrast to samples selected primarily via their mid-infrared emission from Spitzer surveys. We have applied this technique to a new, deep, wide-field, near-infrared imaging survey of the ρ Ophiuchi cloud core to search for candidate low-mass members. In conjunction with published Spitzer IRAC photometry and least-squares fits of model spectra (COND, DUSTY, NextGen, and blackbody) to the observed spectral energy distributions, we have identified 948 candidate cloud members within our 90% completeness limits of J = 20.0, H = 20.0, and Ks = 18.50. This population represents a factor of ∼3 increase in the number of known young stellar objects in the ρ Ophiuchi cloud. A large fraction of the candidate cluster members (81% ± 3%) exhibit infrared excess emission consistent with the presence of disks, thus strengthening the possibility of their being bona fide cloud members. Spectroscopic follow-up will confirm the nature of individual objects, better constrain their parameters, and allow an initial mass function to be derived.

23

and

We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform long-term numerical integrations of 107 years to investigate the stability of 4000–8000 test particles injected into the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which is related to quantities such as the dynamical spacing Δ, the separation between two planets in units of their mutual Hill radii. Our results suggest that planets with separation Δ < 10 are unlikely to host extensive stability regions, and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions. We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904, KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer detected planets. These predicted planets may be detected by future observations.

24

, , , and

We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B ⩽ 1013 G. For realistic values of the saturation amplitude αsat, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark–hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

25

, , , , , and

Ground-based optical spectra and Hubble Space Telescope images of 10 core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. New observations of SN 1957D, 1970G, 1980K, and 1993J are included as part of the study. Blueshifted line emissions in oxygen and/or hydrogen with conspicuous line substructure are a common and long-lasting phenomenon in the late-time spectra. Followed through multiple epochs, changes in the relative strengths and velocity widths of the emission lines are consistent with expectations for emissions produced by interaction between SN ejecta and the progenitor star's circumstellar material. The most distinct trend is an increase in the strength of [O iii]/([O i]+[O ii]) with age, and a decline in Hα/([O i]+[O ii]) which is broadly consistent with the view that the reverse shock has passed through the H envelope of the ejecta in many of these objects. We also present a spatially integrated spectrum of the young Galactic supernova remnant Cassiopeia A (Cas A). Similarities observed between the emission line profiles of the ≈330 yr old Cas A remnant and decades old CCSNe suggest that observed emission line asymmetry in evolved CCSN spectra may be associated with dust in the ejecta, and that minor peak substructure typically interpreted as "clumps" or "blobs" of ejecta may instead be linked with large-scale rings of SN debris.

26

, , , , , , , and

We extend our investigation of magnetic field evolution in three-dimensional flows driven by the stationary accretion shock instability (SASI) with a suite of higher-resolution idealized models of the post-bounce core-collapse supernova environment. Our magnetohydrodynamic simulations vary in initial magnetic field strength, rotation rate, and grid resolution. Vigorous SASI-driven turbulence inside the shock amplifies magnetic fields exponentially; but while the amplified fields reduce the kinetic energy of small-scale flows, they do not seem to affect the global shock dynamics. The growth rate and final magnitude of the magnetic energy are very sensitive to grid resolution, and both are underestimated by the simulations. Nevertheless, our simulations suggest that neutron star magnetic fields exceeding 1014 G can result from dynamics driven by the SASI, even for non-rotating progenitors.

27

and

A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney–Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting procedure and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman & Wood method to reduce the calculation time, and the Fleck & Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 μm silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.

28

, , , , , , , , , et al

The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 μm and one IRAS band at 100 μm. The proxy is the near-infrared color excess, E(JKs), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity σe(1200) at 1200 GHz or 250 μm can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (NH > 1022 cm−2) and small enough to ensure a uniform dust temperature. We find σe(1200) is typically (2–4) × 10−25 cm2 H−1 and thus about 2–4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing σe(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted.

29

, , , , , and

We present the results of the observations of the Lyα line profiles of 91 emission-line galaxies at z = 3.1 with a spectral resolution of λ/δλ(FWHM) ≈1700 or 180 km s−1. A significant fraction of ∼50% of the observed objects show the characteristic double peaks in their Lyα profile. The red peak is much stronger than the blue one for most of the cases. The red peaks themselves also show weak but significant asymmetry and their widths are correlated with the velocity separation of the red and the blue peaks. This implies that the peaks are not isolated multiple components with different velocities but parts of a single line that are modified by the absorption and/or scattering by the associated neutral hydrogen gas. The characteristic profile can be naturally explained by scattering in the expanding shell of the neutral hydrogen surrounding the Lyα emitting region while the attenuation by the intergalactic medium should also be considered. Our results suggest that the star formation in these Lyα emitters are dominated by young burst-like events that produce the intrinsic Lyα emission as well as the gas outflow.

30

, , , and

We estimated the dynamical surface mass density Σ at the solar position between Z = 1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars. The formulation is exact within the limit of validity of a few basic assumptions. The resulting trend of Σ(Z) matches the expectations of visible mass alone, and no dark component is required to account for the observations. We extrapolate a dark matter (DM) density in the solar neighborhood of 0  ±  1 mM pc−3, and all the current models of a spherical DM halo are excluded at a confidence level higher than 4σ. A detailed analysis reveals that a small amount of DM is allowed in the volume under study by the change of some input parameter or hypothesis, but not enough to match the expectations of the models, except under an exotic combination of non-standard assumptions. Identical results are obtained when repeating the calculation with kinematical measurements available in the literature. We demonstrate that a DM halo would be detected by our method, and therefore the results have no straightforward interpretation. Only the presence of a highly prolate (flattening q  >  2) DM halo can be reconciled with the observations, but this is highly unlikely in ΛCDM models. The results challenge the current understanding of the spatial distribution and nature of the Galactic DM. In particular, our results may indicate that any direct DM detection experiment is doomed to fail if the local density of the target particles is negligible.

31

and

Alfvén waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvénic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.

32

and

Numerical simulations of the stochastic end stage of planet formation typically begin with a population of embryos and planetesimals that grow into planets by merging. We analyzed the impact parameters of collisions leading to the growth of terrestrial planets from recent N-body simulations that assumed perfect merging and calculated more realistic outcomes using a new analytic collision physics model. We find that collision outcomes are diverse and span all possible regimes: hit-and-run, merging, partial accretion, partial erosion, and catastrophic disruption. The primary outcomes of giant impacts between planetary embryos are approximately evenly split between partial accretion, graze-and-merge, and hit-and-run events. To explore the cumulative effects of more realistic collision outcomes, we modeled the growth of individual planets with a Monte Carlo technique using the distribution of impact parameters from N-body simulations. We find that fewer planets reached masses >0.7 MEarth using the collision physics model compared to simulations that assumed every collision results in perfect merging. For final planets with masses >0.7 MEarth, 60% are enriched in their core-to-mantle mass fraction by >10% compared to the initial embryo composition. Fragmentation during planet formation produces significant debris (∼15% of the final mass) and occurs primarily by erosion of the smaller body in partial accretion and hit-and-run events. In partial accretion events, the target body grows by preferentially accreting the iron core of the projectile and the escaping fragments are derived primarily from the silicate mantles of both bodies. Thus, the bulk composition of a planet can evolve via stochastic giant impacts.

33

, , and

GRB 980923 was one of the brightest bursts observed by the Burst and Transient Source Experiment. Previous studies have detected two distinct components in addition to the main prompt episode, which is well described by a Band function. The first of these is a tail with a duration of ≃ 400 s, while the second is a high-energy component lasting ≃ 2 s. We summarize the observations and argue for a unified model in which the tail can be understood as the early γ-ray afterglow from forward shock synchrotron emission, while the high-energy component arises from synchrotron self-Compton from the reverse shock. Consistency between the main assumption of thick shell emission and agreement between the observed and computed values for fluxes, break energies, starting times, and spectral indices leads to a requirement that the ejecta must be highly magnetized.

34

, , , , and

We report on a Suzaku observation of the newly discovered X-ray binary MAXI J1836–194. The source is found to be in the hard/intermediate spectral state and displays a clear and strong relativistically broadened iron emission line. We fit the spectra with a variety of phenomenological, as well as physically motivated disk reflection models, and find that the breadth and strength of the iron line are always characteristic of emission within a few gravitational radii around a black hole. This result is independent of the continuum used and strongly points toward the central object in MAXI J1836–194 being a stellar mass black hole rotating with a spin of a = 0.88  ±  0.03 (90% confidence). We discuss this result in the context of spectral state definitions, physical changes (or lack thereof) in the accretion disk, and on the potential importance of the accretion disk corona in state transitions.

35

, , , , , , , , , and

We present analysis of 4U 1626−67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of ∼88 ks. The source was detected at an average 10–60 keV flux of ∼4 × 10−10 erg cm−2 s−1. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at ∼37 keV by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand, the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model, we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 × 10−3 and 1.53 × 10−5, taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

36

We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

37

, , , and

Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet–binary degeneracy). Hence, it is important to resolve the planet–binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this investigation, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.

38

, , and

Using Chandra X-ray observations of young, post-merger elliptical galaxies, we present X-ray characteristics of age-related observational results by comparing them with typical old elliptical galaxies in terms of metal abundances in the hot interstellar matter (ISM). While the absolute element abundances may be uncertain because of unknown systematic errors and partly because of the smaller amount of hot gas in young ellipticals, the relative abundance ratios (e.g., the α-element to Fe ratio, and most importantly the Si/Fe ratio) can be relatively well constrained. In two young elliptical galaxies (NGC 720 and NGC 3923) we find that the Si to Fe abundance ratio is super-solar (at a 99% significance level), in contrast to typical old elliptical galaxies where the Si to Fe abundance ratio is close to solar. Also, the O/Mg ratio is close to solar in the two young elliptical galaxies, as opposed to the sub-solar O/Mg ratio reported in old elliptical galaxies. Both features appear to be less significant outside the effective radius (roughly 30'' for the galaxies under study), consistent with the observations that confine to the centermost regions the signatures of recent star formation in elliptical galaxies. Observed differences between young and old elliptical galaxies can be explained by the additional contribution from SNe II ejecta in the former. In young elliptical galaxies, the later star formation associated with recent mergers would have a dual effect, resulting both in galaxy scale winds—and therefore smaller observed amounts of hot ISM—because of the additional SN II heating, and in different metal abundances, because of the additional SN II yields.

39

, , and

We present the results of X-ray variability and spectral analysis of a sample of 15 new candidates for active galactic nuclei with relatively low-mass black holes (BHs). They are selected from the Second XMM-Newton Serendipitous Source Catalogue based on strong variability quantified by normalized excess variances. Their BH masses are estimated to be (1.1–6.6) × 106M by using a correlation between excess variance and BH mass. Seven sources have estimated BH masses smaller than 2 × 106M, which are in the range for intermediate-mass black holes. Eddington ratios of sources with known redshifts range from 0.07 to 0.46 and the mean Eddington ratio is 0.24. These results imply that some of our sources are growing supermassive black holes, which are expected to have relatively low masses with high Eddington ratios. X-ray photon indices of the 15 sources are in the range of ≈0.57–2.57 and 5 among them have steep (>2) photon indices, which are the range for narrow-line Seyfert 1s. Soft X-ray excess is seen in 12 sources and is expressed by a blackbody model with kT ≈ 83–294 eV. We derive a correlation between X-ray photon indices and Eddington ratios, and find that the X-ray photon indices of about a half of our sources are flatter than the positive correlation suggested previously.

40

We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity that appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.

41

, , , , , , , , , et al

We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ∼ 0.08 mas combined with the short timescale of tE ∼ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ∼0.84 M is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

42

, , , , , and

We report the results of a high spatial (parsec) resolution HCO+ (J = 1 → 0) and HCN (J = 1 → 0) emission survey toward the giant molecular clouds of the star formation regions N 105, N 113, N 159, and N 44 in the Large Magellanic Cloud (LMC). The HCO+ and HCN observations at 89.2 and 88.6 GHz, respectively, were conducted in the compact configuration of the Australia Telescope Compact Array. The emission is imaged into individual clumps with masses between 102 and 104M and radii of <1 pc to ∼2 pc. Many of the clumps are coincident with indicators of current massive star formation, indicating that many of the clumps are associated with deeply embedded forming stars and star clusters. We find that massive young stellar object (YSO) bearing clumps tend to be larger (≳1 pc), more massive (M ≳ 103M), and have higher surface densities (∼1 g cm−2), while clumps without signs of star formation are smaller (≲1 pc), less massive (M ≲ 103M), and have lower surface densities (∼0.1 g cm−2). The dearth of massive (M > 103M) clumps not bearing massive YSOs suggests that the onset of star formation occurs rapidly once the clump has attained physical properties favorable to massive star formation. Using a large sample of LMC massive YSO mid-IR spectra, we estimate that ∼2/3 of the massive YSOs for which there are Spitzer mid-IR spectra are no longer located in molecular clumps; we estimate that these young stars/clusters have destroyed their natal clumps on a timescale of at least ∼3 × 105 yr.

43

and

The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most important characteristics in cosmology that can shed light on the properties of the universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy ProbeW and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.

44

The origin of spiral patterns in galaxies is still not fully understood. Similar features also develop readily in N-body simulations of isolated cool, collisionless disks, yet even here the mechanism has yet to be explained. In this series of papers, I present a detailed study of the origin of spiral activity in simulations in the hope that the mechanism that causes the patterns is also responsible for some of these features galaxies. In this first paper, I use a suite of highly idealized simulations of a linearly stable disk that employ increasing numbers of particles. While the amplitudes of initial non-axisymmetric features scale as the inverse square root of the number of particles employed, the final amplitude of the patterns is independent of the particle number. I find that the amplitudes of non-axisymmetric disturbances grow in two distinct phases: slow growth occurs when the relative overdensity is below ∼2%, but above this level the amplitude rises more rapidly. I show that all features, even of very low amplitude, scatter particles at the inner Lindblad resonance, changing the distribution of particles in the disk in such a way as to foster continued growth. Stronger scattering by larger amplitude waves provokes a vigorous instability that is a true linear mode of the modified disk.

45

, , and

Using Gemini North telescope ultra-deep and high-resolution (sub-kiloparsec) K-band adaptive optics imaging of a sample of four nearby (z ∼ 0.15) massive (∼1011M) compact (R < 1.5 kpc) galaxies, we have explored the structural properties of these rare objects with unprecedented detail. Our surface brightness profiles expand over 12 mag in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities ∼106M kpc−2 at radial distances of ∼15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, visually resembling S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around (2–3) × 1010M stellar mass from their inner (R < 1.7 kpc) region toward their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size, and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.

46

, , and

VV124 (UGC 4879) is an isolated, dwarf irregular/dwarf spheroidal (dIrr/dSph) transition-type galaxy at a distance of 1.36 Mpc. Previous low-resolution spectroscopy yielded inconsistent radial velocities for different components of the galaxy, and photometry hinted at the presence of a stellar disk. In order to quantify the stellar dynamics, we observed individual red giants in VV124 with the Keck/Deep Extragalactic Imaging Multi-Object Spectrograph (DEIMOS). We validated members based on their positions in the color–magnitude diagram, radial velocities, and spectral features. Our sample contains 67 members. The average radial velocity is 〈vr〉 = −29.1 ± 1.3 km s−1 in agreement with the previous radio measurements of H i gas. The velocity distribution is Gaussian, indicating that VV124 is supported primarily by velocity dispersion inside a radius of 1.5 kpc. Outside that radius, our measurements provide only an upper limit of 8.6 km s−1 on any rotation in the photometric disk-like feature. The velocity dispersion is σv = 9.4 ± 1.0 km s−1, from which we inferred a mass of M1/2 = (2.1 ± 0.2) × 107M and a mass-to-light ratio of (M/LV)1/2 = 5.2 ± 1.1 M/L, both measured within the half-light radius. Thus, VV124 contains dark matter. We also measured the metallicity distribution from neutral iron lines. The average metallicity, 〈[Fe/H]〉 = −1.14 ± 0.06, is consistent with the mass–metallicity relation defined by dSph galaxies. The dynamics and metallicity distribution of VV124 appear similar to dSphs of similar stellar mass.

47

, , , , , , , and

We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by −A · B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are, respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.

48

and

Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity

49

, , , , , , , and

The bulk Lorentz factor of the gamma-ray burst (GRB) ejecta (Γ0) is a key parameter to understanding GRB physics. Liang et al. have discovered a correlation between Γ0 and isotropic γ-ray energy: Γ0E0.25γ, iso, 52. By including more GRBs with updated data and more methods to derive Γ0, we confirm this correlation and obtain Γ0 ≃ 91E0.29γ, iso, 52. Evaluating the mean isotropic γ-ray luminosities Lγ, iso of the GRBs in the same sample, we discover an even tighter correlation Γ0 ≃ 249L0.30γ, iso, 52. We propose an interpretation to this later correlation. Invoking a neutrino-cooled hyperaccretion disk around a stellar mass black hole as the central engine of GRBs, we derive jet luminosity powered by neutrino annihilation and baryon loading from a neutrino-driven wind. Applying beaming correction, we finally derive Γ0L0.22γ, iso, which is consistent with the data. This suggests that the central engine of long GRBs is likely a stellar mass black hole surrounded by a hyper-accreting disk.

50

, , , , , , , , , et al

We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi–Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ∼300 km s−1 to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

51

, , and

We present and discuss the mean rest-frame ultraviolet spectrum for a sample of 81 Lyman break galaxies (LBGs) selected to be B-band dropouts at z ≃ 4. The sample is mostly drawn from our ongoing Keck/DEIMOS survey in the GOODS fields and augmented with archival Very Large Telescope data. In general, we find similar spectroscopic trends to those found in earlier surveys of LBGs at z = 3. Specifically, low-ionization absorption lines which trace neutral outflowing gas are weaker in galaxies with stronger Lyα emission, bluer UV spectral slopes, lower stellar masses, lower UV luminosities, and smaller half-light radii. This is consistent with a physical picture whereby star formation drives outflows of neutral gas which scatter Lyα and produce strong low-ionization absorption lines, while increasing galaxy stellar mass, size, metallicity, and dust content. Typical galaxies are thus expected to have stronger Lyα emission and weaker low-ionization absorption at earlier times, and we indeed find somewhat weaker low-ionization absorption at higher redshifts. In conjunction with earlier results from our survey, we argue that the reduced low-ionization absorption is likely caused by lower covering fraction and/or velocity range of outflowing neutral gas at earlier epochs. Although low-ionization absorption decreases at higher redshift, fine-structure emission lines are stronger, suggesting a greater concentration of neutral gas at small galactocentric radius (≲ 5 kpc). Our continuing survey will enable us to extend these diagnostics more reliably to higher redshift and determine the implications for the escape fraction of ionizing photons which governs the role of early galaxies in cosmic reionization.

52

and

We have developed the ''SIX'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with SIX < 0 have a ≳95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with SIX < 0. Only 2209 of these sources are currently in the Veron–Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J ≲ 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg2, permitting construction of AGN samples in any sufficiently large region of sky.

53

, , , , , , , , , et al

We present multi-wavelength observations of the radio magnetar PSR J1622–4950 and its environment. Observations of PSR J1622–4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622–4950 has decreased by a factor of ∼50 over 3.7 years, decaying exponentially with a characteristic time of τ = 360 ± 11 days. This behavior identifies PSR J1622–4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622–4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622–4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant (SNR). If G333.9+0.0 is an SNR then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622–4950, suggest that these two objects could be physically associated.

54

, , and

In this work, we present the results of a novel approach devoted to disentangling the role of the environmental processes affecting galaxies in clusters. This is based on the analysis of the near-UV (NUV) − r' distributions of a large sample of star-forming galaxies in clusters spanning more than four absolute magnitudes. The galaxies inhabit three distinct environmental regions: virial regions, cluster infall regions, and field environment. We have applied rigorous statistical tests to analyze both the complete NUV − r' distributions and their averages for three different bins of the r'-band galaxy luminosity down to $M_{r^{\prime }} \sim -18$, throughout the three environmental regions considered. We have identified the environmental processes that significantly affect the star-forming galaxies in a given luminosity bin by using criteria based on the characteristics of these processes: their typical timescales, the regions where they operate, and the galaxy luminosity range for which their effects are more intense. We have found that the high-luminosity ($M_{r^{\prime }} \le -20$) star-forming galaxies do not show significant signs in their star formation activity of being affected by: (1) the environment in the last ∼108 yr, or (2) a sudden quenching in the last 1.5 Gyr. The intermediate-luminosity ($-20< M_{r^{\prime }} \le -19$) star-forming galaxies appear to be affected by starvation in the virial regions and by the harassment in the virial and infall regions. Low-luminosity ($-19<M_{r^{\prime }} \le -18.2$) star-forming galaxies seem to be affected by the same environmental processes as intermediate-luminosity star-forming galaxies in a stronger way, which would be expected for their lower luminosities.

55

, , and

We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10–100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1–2 Mpc.

56

, , , , , , , , and

We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

57

, , , and

The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρextrk for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ0 = 0.2 whose radial profile is taken from the self-similar Blandford–McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ−10. For larger k values, however, the lateral expansion is faster at early times (when Γ > θ−10) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θobs ⩽ θ0) than by the slope of the external density profile (for 0 ⩽ k ⩽ 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet decelerates more gradually, causing only a mild flattening in the radio light curve that might be hard to discern when k = 2. Late-time radio calorimetry, which makes use of a spherical flow approximation near the non-relativistic transition, is likely to consistently overestimate the true energy by up to a factor of a few for k = 2, but likely to either overpredict or underpredict it by a smaller factor for k = 0, 1.

58

, , and

We have used the continuous-time random-walk Monte Carlo technique to study the formation of H2 from two hydrogen atoms on the surface of interstellar dust grains with both physisorption and chemisorption sites on olivine and carbonaceous material. In our standard approach, atoms must first enter the physisorption site before chemisorption can occur. We have considered hydrogen atom mobility due to both thermal hopping and quantum mechanical tunneling. The temperature range between 5 K and 825 K has been explored for different incoming H fluxes representative of interstellar environments with atomic hydrogen number density ranging between 0.1 cm−3 and 100 cm−3 and dust grain sizes ranging from 100 sites to 106 sites, the latter corresponding roughly to olivine grains of radius 0.2 μm. In addition, we have also considered rough surfaces with multiple binding sites. Tunneling is found to dominate the surface chemistry at low temperature, but as the temperature increases, the scenario changes. The inclusion of chemisorption sites can provide a meaningful efficiency for H2 production up to temperatures as high as 700 K depending upon the depth of the chemisorption well. We found that over virtually the entire temperature range studied, the use of rate equations overestimates the H2 formation rate to some extent. This overestimate is large at high temperatures, due to very low surface residence times. We have also considered models in which chemisorption sites are entered directly and diffusion proceeds only to other chemisorption sites.

59

, , and

Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux that governs their radiative and dynamical properties. We compute a suite of three-dimensional circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures, both with and without temperature inversions. We find that, for irradiation temperatures Tirr ≲ 2000 K, heat redistribution is very efficient, producing comparable dayside and nightside fluxes. For Tirr ≈ 2200–2400 K, the redistribution starts to break down, resulting in a high day–night flux contrast. Our simulations indicate that the efficiency of redistribution is primarily governed by the ratio of advective to radiative timescales. Models with temperature inversions display a higher day–night contrast due to the deposition of starlight at higher altitudes, but we find this opacity-driven effect to be secondary compared to the effects of irradiation. The hotspot offset from the substellar point is large when insolation is weak and redistribution is efficient, and decreases as redistribution breaks down. The atmospheric flow can be potentially subjected to the Kelvin–Helmholtz instability (as indicated by the Richardson number) only in the uppermost layers, with a depth that penetrates down to pressures of a few millibars at most. Shocks penetrate deeper, down to several bars in the hottest model. Ohmic dissipation generally occurs down to deeper levels than shock dissipation (to tens of bars), but the penetration depth varies with the atmospheric opacity. The total dissipated Ohmic power increases steeply with the strength of the irradiating flux and the dissipation depth recedes into the atmosphere, favoring radius inflation in the most irradiated objects. A survey of the existing data, as well as the inferences made from them, reveals that our results are broadly consistent with the observational trends.

60

In most star formation history (SFH) measurements, the reported uncertainties are those due to effects whose sizes can be readily measured: Poisson noise, adopted distance and extinction, and binning choices in the solution itself. However, the largest source of error, systematics in the adopted isochrones, is usually ignored and very rarely explicitly incorporated into the uncertainties. I propose a process by which estimates of the uncertainties due to evolutionary models can be incorporated into the SFH uncertainties. This process relies on application of shifts in temperature and luminosity, the sizes of which must be calibrated for the data being analyzed. While there are inherent limitations, the ability to estimate the effect of systematic errors and include them in the overall uncertainty is significant. The effects of this are most notable in the case of shallow photometry, with which SFH measurements rely on evolved stars.

61

, , , , , , and

We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties such as bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available, we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened toward a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, Large Magellanic Cloud, and possibly Carina. In addition, 6 out of 11 dwarfs that we studied show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.

62

, , , , and

We observed the globular cluster NGC 6652 with Chandra for 47.5 ks, detecting six known X-ray sources, as well as five previously undetected X-ray sources. Source A (XB 1832-330) is a well-known bright low-mass X-ray binary (LXMB). The second brightest source, B, has a spectrum that fits well to either a power-law model (Γ ∼ 1.3) or an absorbed hot gas emission model (kT ∼ 34 keV). Its unabsorbed 0.5–10 keV luminosity (LX = 1.6+0.1−0.1 × 1034 erg s−1) is suggestive of a neutron star primary; however, Source B exhibits unusual variability for an LMXB, varying by over an order of magnitude on timescales of ∼100 s. Source C's spectrum contains a strong low-energy component below ∼1 keV. Its spectrum is well fit to a simplified magnetic cataclysmic variable (CV) model, thus the soft component may be explained by a hot polar cap of a magnetic CV. Source D has an average LX (0.5–10 keV) ∼9 × 1032 erg s−1 and its spectrum is well fit to a neutron star atmosphere model. This is indicative of a quiescent neutron star LXMB, suggesting Source D may be the third known LMXB in NGC 6652. Source E has LX (0.5–10 keV) ∼3 × 1032 erg s−1, while Source F has LX (0.5–10 keV) ∼1 × 1032 erg s−1. Their relatively hard X-ray spectra are well-fit by power-law or plasma emission models. Five newly detected fainter sources have luminosities between 1 and 5 × 1031 erg s−1. NGC 6652 has an unusually flat X-ray luminosity function compared to other globular clusters, which may be connected to its extremely high central density.

63

and

We study the radio continuum and thermal hydrogen radio recombination line (RRL) emission from photoevaporated disk wind models around massive young stars. We applied the models of Lugo and coworkers to the source MWC 349A. The resolved synthetic radio continuum maps reproduce the observed hourglass morphology at low frequency but are more flattened than the observations at high frequency because the density in the model decreases too fast. These photoevaporated wind models naturally produce RRLs with FWHM Δv ∼ 60 km s−1. Nevertheless, recent H66α line observations of MWC 349A by Loinard & Rodríguez have an FWHM Δv ∼ 89 km s−1. We propose that such wide lines could be produced by an extra magnetocentrifugal acceleration of the flow due to a poloidal magnetic field anchored in the disk. Such fields could also prevent the flow divergence and the fast density drop of the photoevaporated disk wind model. To mimic this effect we include in this model a large non-thermal velocity dispersion σnt ∼ 70 km s−1. The width of the RRLs of this modified model increases with quantum number. This is in contrast with the observed H76α and H92α lines which are narrower than the H66α line. We argue that the low-frequency observations could have suffered from insufficient bandwidth and that new measurements of these lines would be very valuable to constrain the models. Finally, the resolved H66α and H53α line emission maps show the velocity asymmetry expected from flow rotation.

64

, , , , , , , , and

This paper focuses on the analysis and significance of the spectral curvature of energetic neutral atoms (ENAs) detected by the Interstellar Boundary Explorer. The flux versus energy spectrum is analytically expressed in terms of the source proton distributions, namely: (1) the solar wind kappa distribution of protons and (2) the coexisting filled spherical shell distribution of pick-up ions (PUIs). The influence of PUIs on the spectral index and curvature is modeled and investigated in detail. It is analytically shown that (1) the PUI speed upper limit is restricted by the Earthward PUI velocity vector, (2) the PUI distribution causes a positive spectral curvature, and (3) the exact expressions of the spectral index and curvature can be used to extract information about the governing parameters of the parent proton distributions. The sky maps of the spectral curvature reveal a possible band-like configuration of positive spectral curvature that is missing in the original flux sky maps. This band can be roughly separated into the north/south polar regions and two ecliptic meridional "columns" located around the ecliptic longitudes ∼5° and ∼150°. The geometric locus between the two cones with noseward axis, and apertures ∼60° and ∼120°, configures the band-like region of (1) the positive curvature and (2) the maximum values of PUI distribution. Indeed, the observed curvature band is highly correlated with PUI distributions, and is possibly caused by the influence of PUIs on bending the spectrum from linear (log–log scale) to concave upward, thus increasing its spectral curvature.

65

and

A simple formalism to describe nonthermal electron acceleration, evolution, and radiation in supernova remnants (SNRs) is presented. The electron continuity equation is analytically solved assuming that the nonthermal electron injection power is proportional to the rate at which the kinetic energy of matter is swept up in an adiabatically expanding SNR shell. We apply this model to Fermi and HESS data from the SNR RX J1713.7−3946 and find that a one-zone leptonic model with Compton-scattered cosmic microwave background and interstellar infrared photons has difficulty providing a good fit to its spectral energy distribution, provided the source is at a distance ∼1 kpc from the Earth. However, the inclusion of multiple zones, as hinted at by recent Chandra observations, does provide a good fit, but requires a second zone of compact knots with magnetic fields B ∼ 16 μG, comparable to shock-compressed fields found in the bulk of the remnant.

66

, , , , , , and

We have carried out an analysis of the Hubble Space Telescope (HST)/STIS archival spectra of the magnetic white dwarf (WD) in the Hyades eclipsing-spectroscopic, post-common-envelope binary V471 Tauri, time resolved on the orbit and on the X-ray rotational phase of the magnetic WD. An HST/STIS spectrum obtained during primary eclipse reveals a host of transition region/chromospheric emission features including N v (1238, 1242), Si iv (1393, 1402), C iv (1548, 1550), and He ii (1640). The spectroscopic characteristics and emission line fluxes of the transition region/chromosphere of the very active, rapidly rotating, K2V component of V471 Tauri are compared with the emission characteristics of fast rotating K dwarfs in young open clusters. We have detected a number of absorption features associated with metals accreted onto the photosphere of the magnetic WD from which we derive radial velocities. All of the absorption features are modulated on the 555 s rotation period of the WD with maximum line strength at rotational phase 0.0 when the primary magnetic accretion region is facing the observer. The photospheric absorption features show no clear evidence of Zeeman splitting and no evidence of a correlation between their variations in strength and orbital phase. We report clear evidence of a secondary accretion pole. We derive C and Si abundances from the Si iv and C iii features. All other absorption lines are either interstellar or associated with a region above the WD and/or with coronal mass ejection events illuminated as they pass in front of the WD.

67

, , , , and

We present a sample of synthetic massive stellar populations created using the Starburst99 evolutionary synthesis code and new sets of stellar evolutionary tracks, including one set that adopts a detailed treatment of rotation. Using the outputs of the Starburst99 code, we compare the populations' integrated properties, including ionizing radiation fields, bolometric luminosities, and colors. With these comparisons we are able to probe the specific effects of rotation on the properties of a stellar population. We find that a population of rotating stars produces a much harder ionizing radiation field and a higher bolometric luminosity, changes that are primarily attributable to the effects of rotational mixing on the lifetimes, luminosities, effective temperatures, and mass-loss rates of massive stars. We consider the implications of the profound effects that rotation can have on a stellar population, and discuss the importance of refining stellar evolutionary models for future work in the study of extragalactic, and particularly high-redshift, stellar populations.

68

, , , and

The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H i emission. The molecular ring consists of well-separated cores, which have a volume density of 103 cm−3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core "A," which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the "collect and collapse" process functions in this region. The star-forming activities in core "A" seem to be affected by the "radiation-driven implosion" process.

69

, , and

We report multi-wavelength observations of the far-infrared source IRAS 20324+4057, including high-resolution optical imaging with the Hubble Space Telescope, and ground-based near-infrared, millimeter-wave and radio observations. These data show an extended, limb-brightened, tadpole-shaped nebula with a bright, compact, cometary nebula located inside the tadpole head. Our molecular line observations indicate that the Tadpole is predominantly molecular with a total gas mass exceeding 3.7 M. Our radio continuum imaging and archival Spitzer IRAC images show the presence of additional tadpole-shaped objects in the vicinity of IRAS 20324+4057 that share a common east–west head–tail orientation: we propose that these structures are small, dense molecular cores that originated in the Cygnus cloud and are now being (1) photoevaporated by the ultraviolet radiation field of the Cyg OB2 No. 8 cluster located to the northwest; and (2) shaped by ram pressure of a distant wind source or sources located to the west, blowing ablated and photoevaporated material from their heads eastward. The ripples in the tail of the Tadpole are interpreted in terms of instabilities at the interface between the ambient wind and the dense medium of the former.

70

, , , , , , , , , et al

We use the spatially resolved, multi-band photometry in the GOODS South field acquired by the CANDELS project to constrain the nature of candidate Lyman continuum (LyC) emitters at redshift z ∼ 3.7 identified using ultradeep imaging below the Lyman limit (1σ limit of ≈30 AB in a 2'' diameter aperture). In 19 candidates out of a sample of 20 with flux detected at >3σ level, the light centroid of the candidate LyC emission is offset from that of the Lyman break galaxy (LBG) by up to 1farcs5. We fit the spectral energy distribution of the LyC candidates to spectral population synthesis models to measure photometric redshifts and the stellar population parameters. We also discuss the differences in the UV colors between the LBG and the LyC candidates, and how to estimate the escape fraction of ionizing radiation (fesc) in cases, like in most of our galaxies, where the LyC emission is spatially offset from the host galaxy. In all but one case we conclude that the candidate LyC emission is most likely due to lower redshift interlopers. Based on these findings, we argue that the majority of similar measurements reported in the literature need further investigation before it can be firmly concluded that LyC emission is detected. Our only surviving LyC candidate is an LBG at z = 3.795, which shows the bluest (BV) color among LBGs at similar redshift, a stellar mass of M ∼ 2 × 109M, weak interstellar absorption lines, and a flat UV spectral slope with no Lyα in emission. We estimate its fesc to be in the range 25%–100%, depending on the dust and intergalactic attenuation.

71

and

The full Klein–Nishina cross section for the inverse Compton scattering interactions of electrons implies a significant reduction of the electron energy loss rate compared to the Thomson limit when the electron energy exceeds the critical Klein–Nishina energy EK = 0.27m2ec4/(kBT), where T denotes the temperature of the photon graybody distribution. We investigate the influence of the Klein–Nishina reduction on the solution of the steady-state spatial diffusion transport equation for relativistic electrons. The modified electron spectrum at energies below 104 GeV, where only the Klein–Nishina modifications from interstellar optical target photons are relevant, are derived in terms of the Green's function solution for one-, two-, and three-dimensional spatial diffusion. The modifications to the solutions of the one- and three-dimensional diffusion equations are calculated for a single point source of monoenergetic electrons. It is shown that significant enhancements in the local electron intensity occur at electron energies greater than the critical Klein–Nishina energy EK, and that the cosmic-ray electron anisotropy at the solar system resulting from a single steady point source exhibits a sharp drop near EK. These Klein–Nishina enhancements are potentially interesting for determining the contribution of point sources such as dark matter sources and/or electromagnetic particle accelerators (pulsars and micro-quasars) to the local electron intensity and the local positron fraction.

72

and

Due to the co-evolution of supermassive black holes and their host galaxies, understanding the mechanisms that trigger active galactic nuclei (AGNs) is imperative to understanding galaxy evolution and the formation of massive galaxies. It is observationally difficult to determine the trigger of a given AGN due to the difference between the AGN lifetime and triggering timescales. Here, we utilize AGN population synthesis modeling to determine the importance of different AGN triggering mechanisms. An AGN population model is computed by combining an observationally motivated AGN triggering rate and a theoretical AGN light curve. The free parameters of the AGN light curve are constrained by minimizing a χ2 test with respect to the observed AGN hard X-ray luminosity function. The observed black hole space density, AGN number counts, and X-ray background spectrum are also considered as observational constraints. It is found that major mergers are not able to account for the entire AGN population. Therefore, non-merger processes, such as secular mechanisms, must also trigger AGNs. Indeed, non-merger processes are the dominant AGN triggering mechanism at z ≲ 1–1.5. Furthermore, the shape and evolution of the black hole mass function of AGNs triggered by major mergers are intrinsically different from the shape and evolution of the black hole mass function of AGNs triggered by secular processes.

73

, , , , , , and

Stellar wind-emission features in the spectrum of eta Carinae have decreased by factors of 1.5–3 relative to the continuum within the last 10 years. We investigate a large data set from several instruments (STIS, GMOS, UVES) obtained between 1998 and 2011 and analyze the progression of spectral changes in direct view of the star, in the reflected polar-on spectra at FOS4, and at the Weigelt knots. We find that the spectral changes occurred gradually on a timescale of about 10 years and that they are dependent on the viewing angle. The line strengths declined most in our direct view of the star. About a decade ago, broad stellar wind-emission features were much stronger in our line-of-sight view of the star than at FOS4. After the 2009 event, the wind-emission line strengths are now very similar at both locations. High-excitation He i and N ii absorption lines in direct view of the star strengthened gradually. The terminal velocity of Balmer P Cyg absorption lines now appears to be less latitude dependent, and the absorption strength may have weakened at FOS4. Latitude-dependent alterations in the mass-loss rate and the ionization structure of eta Carinae's wind are likely explanations for the observed spectral changes.

74

, , , , , , , and

We examine the star-forming history of the M31 disk during the past few hundred Myr. The luminosity functions (LFs) of main-sequence stars at distances RGC > 21 kpc (i.e., >4 disk scale lengths) are matched by models that assume a constant star formation rate (SFR). However, at smaller RGC the LFs suggest that during the past ∼10 Myr the SFR was 2–3 times higher than during the preceding ∼100 Myr. The rings of cool gas that harbor a significant fraction of the current star-forming activity are traced by stars with ages ∼100 Myr, indicating that (1) these structures have ages of at least 100 Myr and (2) stars in these structures do not follow the same relation between age and random velocity as their counterparts throughout the disks of other spiral galaxies, probably due to the inherently narrow orbital angular momentum distribution of the giant molecular clouds in these structures. The distribution of evolved red stars is not azimuthally symmetric, in the sense that the projected density along the northeast segment of the major axis is roughly twice that on the opposite side of the galaxy. The northeast arm of the major axis thus appears to be a fossil star-forming area that dates to intermediate epochs. Such a structure may be the consequence of interactions with a companion galaxy.

75

and

An MHD model of a hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a 50 km height range. A subset of these solutions contains current sheets and has properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths ∼25–150 G. The radiative flux FR emitted by individual sheets is ∼4.9 × 105–4.5 × 106 erg cm−2 s−1, to be compared with the observed chromospheric emission rate of ∼107 erg cm−2 s−1. Essentially all emission is from regions with thicknesses ∼0.5–13 km containing the neutral sheet. About half of FR comes from sub-regions with thicknesses 10 times smaller. A resolution ≲ 5–130 m is needed to resolve the properties of the sheets. The sheets have total H densities ∼1013–1015 cm−3. The ionization fraction in the sheets is ∼2–20 times larger, and the temperature is ∼2000–3000 K higher than in the surrounding plasma. The Joule heating flux FJ exceeds FR by ∼4%–34%, the difference being balanced in the energy equation mainly by a negative compressive heating flux. Proton Pedersen current dissipation generates ∼62%–77% of the positive contribution to FJ. The remainder of this contribution is due to electron current dissipation near the neutral sheet where the plasma is weakly magnetized.

76

, , , , , , and

We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane–nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with two methane phases—one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% ± 0.5%, 7.1% ± 0.4%, and 8.2% ± 0.3% for sub-Earth longitudes of 10°, 125°, and 257°. Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% ± 0.1% and 5.3% ± 0.4% for sub-Earth longitudes of 138° and 314°. Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% ± 2%. Pluto, Triton, and Eris do not exhibit a trend in methane–nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth.

77

, , and

We present an idealized, semi-empirical model for the evolution of gravitationally contracting molecular clouds (MCs) and their star formation rate (SFR) and efficiency (SFE). The model assumes that the instantaneous SFR is given by the mass above a certain density threshold divided by its free-fall time. The instantaneous number of massive stars is computed assuming a Kroupa initial mass function. These stars feed back on the cloud through ionizing radiation, eroding it. The main controlling parameter of the evolution turns out to be the maximum cloud mass, Mmax. This allows us to compare various properties of the model clouds against their observational counterparts. A giant molecular cloud (GMC) model (Mmax ∼ 105M) adheres very well to the evolutionary scenario recently inferred by Kawamura et al. for GMCs in the Large Magellanic Cloud. A model cloud with Mmax ≈ 2000 M evolves in the Kennicutt–Schmidt diagram, first passing through the locus of typical low-to-intermediate-mass star-forming clouds, and then moving toward the locus of high-mass star-forming ones over the course of ∼10 Myr. Also, the stellar age histograms for this cloud a few Myr before its destruction agree very well with those observed in the ρ-Oph stellar association, whose parent cloud has a similar mass, and imply that the SFR of the clouds increases with time. Our model thus agrees well with various observed properties of star-forming MCs, suggesting that the scenario of gravitationally collapsing MCs, with their SFR regulated by stellar feedback, is entirely feasible and in agreement with key observed properties of MCs.

78

, , , and

We present the 12CO(2–1) line and 1.4 mm continuum archival observations, made with the Submillimeter Array, of the outflow HH 797 located in the IC 348 cluster in Perseus. The continuum emission is associated with a circumstellar disk surrounding the class 0 object IC 348-MMS/SMM2, a very young solar analog. The line emission, on the other hand, delineates a collimated outflow and reveals velocity asymmetries about the flow axis over the entire length of the flow. The amplitude of velocity differences is of the order of 2 km s−1 over distances of about 1000 AU, and we interpret them as evidence for jet rotation—although we also discuss alternative possibilities. A comparison with theoretical models suggests that the magnetic field lines threading the protostellar jet might be anchored to the disk of a radius of about 20 AU.