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ABSTRACT

In most star formation history (SFH) measurements, the reported uncertainties are those due to effects whose sizes
can be readily measured: Poisson noise, adopted distance and extinction, and binning choices in the solution itself.
However, the largest source of error, systematics in the adopted isochrones, is usually ignored and very rarely
explicitly incorporated into the uncertainties. I propose a process by which estimates of the uncertainties due to
evolutionary models can be incorporated into the SFH uncertainties. This process relies on application of shifts
in temperature and luminosity, the sizes of which must be calibrated for the data being analyzed. While there are
inherent limitations, the ability to estimate the effect of systematic errors and include them in the overall uncertainty
is significant. The effects of this are most notable in the case of shallow photometry, with which SFH measurements
rely on evolved stars.
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1. INTRODUCTION

Resolved stellar populations provide a wealth of information
from which a galaxy’s star formation history (SFH) can be
inferred. The various features visible in a color–magnitude
diagram (CMD) provide indicators of eras of star formation. For
example, the presence of upper main-sequence stars indicates
recent star formation, while horizontal branch stars indicate
much older periods of star formation. Since most epochs of star
formation can be tied to specific populations, consideration of
all age-sensitive populations permits a qualitative measurement
of a galaxy’s SFH, as summarized by Hodge (1989).

More recently, quantitative approaches to this problem have
been developed, in which the exact distribution of stars in a
CMD is analyzed in order to more precisely determine the SFH
(e.g., Gallart et al. 1996; Tolstoy & Saha 1996; Dolphin 1997;
Hernandez et al. 1999; Holtzman et al. 1999; Harris & Zaritsky
2001). These techniques rely on the use of synthetic CMDs
that are generated by making use of theoretical isochrones, a
stellar initial mass function, a model of observational effects,
and often other factors such as reddening, foreground stars, and
unresolved binaries. These synthetic CMDs can be generated
for an unlimited number of possible SFHs, and the history
producing the synthetic CMD most resembling the observed
data is reported as the measured SFH.

To make this comparison, the CMD is generally divided into
a number of bins. Within each bin, the number of observed stars
is compared with the synthetic model using a goodness of fit
statistic such as χ2, which can be written in the case of Poisson
statistics as

χ2 =
∑ (ni − mi)2

mi

, (1)

where mi is the number of model points in the bin and ni is the
number of observed points. A comparable statistic based on a
Poisson noise model (Dolphin 2002) is given by

−2 ln P = 2
∑

mi − ni + ni ln
ni

mi

. (2)

With either statistic, the resulting figure of merit from the
CMD comparison is related to the probability that the observed
data were drawn from the synthetic model. Assuming a uniform

prior on all potential SFHs (P (SFH) = 1), Bayes’ theorem can
be invoked, and this value can be interpreted as the probability
that the SFH used to generate that synthetic model is correct:

P (SFH|CMD) = P (CMD|SFH) P (SFH)

P (CMD)
. (3)

Uncertainties of the measured SFH are generally calculated
with some form of Monte Carlo analysis. This involves the
generation of a large number of simulated observed CMDs,
either from random realizations of the best-fitting model or
from random resamplings of the original photometry. The SFH
is measured for each of these simulated CMDs, and the variation
in these SFHs is interpreted as the uncertainty in the SFH of the
original data. Effects of uncertainties from distance, extinction,
or the solution method itself can be incorporated as well.

A factor excluded from SFH analysis as described above is
the effect of systematic uncertainties in the adopted isochrone
set. This raises several concerns about the method. First, the
possibility that observed data cannot be exactly modeled by any
combination of isochrones could potentially invalidate the use
of a probabilistic technique for CMD comparison. Second, if the
probabilistic technique is capable of finding a well-constrained
best match, the errors induced in that fit need to be understood
and quantified. The present study attempts to address these
issues.

2. EFFECTS OF SYSTEMATICS ON THE
SOLUTION SPACE

To examine the effect of systematic errors on the ability to
arrive at a solution, I have chosen the stressing case of extremely
deep photometry (below the main-sequence turnoff) of a simple
stellar population. (The term “simple” is used instead of “single”
because the adaptations of isochrones used in this analysis
contain spreads of 0.05 dex in age and 0.1 dex in metallicity.)
The depth of photometry requires that all parts of the CMD
are adequately fit in order to achieve a good solution, while the
simple stellar population assumption requires that all observed
stars are modeled using a single isochrone (rather than allowing
multiple isochrones to cover the entire observed data). The latter
requirement is particularly stressing on a probabilistic approach,
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Figure 1. Best-fit model CMD for a simple stellar population. The left panel shows the simulated observed data, generated using the Padua isochrones (Marigo et al.
2008; Girardi et al. 2010). The middle panel shows the best-fit model, also using the Padua isochrones. The right panel shows the residual from subtracting the best-fit
model from the simulated observations.

Figure 2. Same as Figure 1, but using the BaSTI isochrones (Pietrinferni et al. 2004) to fit the data.

since either formulation of the likelihood (Equations (1) and (2))
becomes infinite if a CMD bin contains observed data but no
model data.

The analysis was done by creating a synthetic population
of stars with ages from 10.0 to 11.2 Gyr (log(age) of 10.00
to 10.05), metallicities from −1.9 to −2.0 in [Fe/H], and the
Padua isochrones (Marigo et al. 2008) with updated asymptotic
giant branch (AGB) models (Girardi et al. 2010). Distance
modulus and extinction were set to zero, and the V, I filter
combination was used. The SFH was then measured using the
MATCH package (Dolphin 2002). Three different isochrone
sets were used for the solutions: the identical Padua models
used to create the data, solar-scaled BaSTI models (Pietrinferni
et al. 2004) with η = 0.4 and overshoot, and solar-scaled
Dartmouth models (Dotter et al. 2008). Some amount of
variability in red giant branch (RGB) mass loss has been
modeled in the BaSTI and Dartmouth synthetic CMDs, but not
in those computed from the Padua models. The solution was a
four-parameter fit for age, metallicity, distance, and extinction.
The age and metallicity parameters are the ones of primary
scientific interest; the variations and distance and extinction
allow for slight differences in the photometric calibrations
adopted when computing the isochrones.

The best solution obtained using the Padua isochrones
is shown in Figure 1. There are no statistically significant

differences between this solution and the synthetic population,
and the best-fitting synthetic CMD was from the same popu-
lation used to generate the data. This is naturally the best-case
scenario.

The best solution obtained from the BaSTI isochrones is
shown in Figure 2. As expected, the fit is not nearly as clean as
the previous solution. Quantitatively, the synthetic photometry
is 10150 times more likely to have been produced by the Padua
models than by the BaSTI models. Because no single BaSTI
isochrone exactly matches the Padua isochrone used to generate
the data, the algorithm must prioritize the CMD regions. The
choice is made to model the most strongly populated parts
of the CMD (the main sequence and subgiants) as well as
possible, while allowing the upper RGB to deviate very strongly.
The horizontal branch is also fit as well as possible given the
differences in the models. The best fit is obtained with a slightly
younger age (7.9–8.9 Gyr), higher metallicity (−1.3 to −1.4),
and slight errors in both distance and extinction.

Finally, the best solution obtained from the Dartmouth
isochrones is shown in Figure 3. As with the BaSTI solution,
there are significant errors in the fit, as again no single isochrone
exactly matched the Padua models used to generate the sim-
ulated observations. In this case, the synthetic photometry is
10106 times more likely to have been drawn from the Padua mod-
els than from the Dartmouth models—an improved fit relative
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Figure 3. Same as Figure 1, but using the Dartmouth isochrones (Dotter et al. 2008) to fit the data.

Table 1
Measured Parameters of a Simple Stellar Population

Data Set Age Metallicity Distance Extinction
(Gyr) ([Fe/H]) (m − M) (AV )

Input population 10.59 −1.95 0.000 0.000
Padua solution 10.73 ± 0.07 −1.948 ± 0.015 0.003 ± 0.004 −0.005 ± 0.003
BaSTI solution 8.90 ± 0.10 −1.318 ± 0.033 0.082 ± 0.003 −0.090 ± 0.002
Dartmouth solution 9.46 ± 0.09 −1.080 ± 0.013 0.011 ± 0.004 −0.161 ± 0.003

Note. The data were simulated using the Padua models; three different model sets were used to measure the SFHs.

to the BaSTI models but nevertheless not a good match. And, as
with the BaSTI solution, the model producing the best fit did not
match the input population; the stars were younger (8.9–10 Gyr)
and significantly higher metallicity (−1.0 to −1.1). The distance
was nearly identical, but the extinction was 0.16 magnitudes less
in AV .

In addition to using the best solution to estimate the values
of the four parameters, the dependencies of the goodness-of-
fit on the four solution parameters can be used to estimate how
well those parameters are constrained. As the fit parameter from
Equation (2) is derived from the Poisson probability distribution,
it can be converted directly into a four-dimensional probability
density map. Each parameter’s probability density function can
be obtained by marginalizing the other three. Applying this
procedure, the best fits and uncertainties from the three solutions
above are listed in Table 1.

While there are clear systematic errors in the results shown in
this table, it is encouraging that, even under stressing conditions,
a probabilistic routine is able to measure a most probable set
of parameters. More significantly, the minimum surrounding
the best solution is similarly well defined in the presence of
systematic errors as it is without them. As seen in Table 1, the
uncertainties in age and metallicity measured when using the
BaSTI models are about twice those measured using the Padua
models; the uncertainties in the Dartmouth-based solution are
comparable to the Padua-based solution.

It should be noted that the behavior of a CMD-fitting routine
in the face of such low probabilities likely depends strongly on
the robustness of the algorithm. However, at least in the case
of the SFH measurement package being used in this analysis,
the ability to find a solution is not significantly impeded by the
presence of significant systematic errors.

3. SIMPLE STELLAR POPULATIONS

With confidence that precise (though inaccurate) fits can be
obtained despite the presence of systematic errors, a logical
step is to quantify the size of the errors in measured stellar
populations induced by these errors in the models used to
measure them. To accomplish this, the experiment described in
the previous section was expanded. All three isochrone sets were
used to generate the synthetic photometry, and five populations
of different ages and metallicities were simulated.

Results from this experiment are shown in Table 2. Looking
at the summary lines, it is clear that the effects of systematic
differences between the three isochrone sets is not constant
between the populations. For example, there were no errors in
the youngest population’s age measurement, but the metallicity
was in error by 0.2 dex in both cases. On the other hand, the
∼2.5 Gyr population had a smaller error in metallicity but a
larger error in age.

Because of the non-uniformity of age and metallicity sys-
tematic uncertainties, it is tempting to draw the conclusion that
uncertainties should be estimated by measuring the SFH with as
many isochrone sets as is possible, and setting the uncertainty
equal to the standard deviation of the solutions. While this is
possible in some cases, there are two significant limitations.
First, not all isochrone sets will cover the necessary ranges in
age, metallicity, and evolutionary phases. For example, of the
models used in this analysis, only the Padua models provide
isochrones younger than 25 Myr. Thus, systematic errors could
not be measured for systems containing ongoing star formation.

Even in the case of older populations for which all isochrone
sets used here are available, the use of three SFH measurements
to estimate the uncertainty created by systematic errors is
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Table 2
Best-fitting Models for Various Simple Stellar Populations

Input Solution

Isochrones Log Age [Fe/H] Isochrones Log Age [Fe/H]

Padua 7.825 −0.75 BaSTI 7.825 −0.95
BaSTI 7.825 −0.75 Padua 7.825 −0.55
Standard Dev 0.00 0.25

Padua 8.425 −0.75 BaSTI 8.425 −0.55
BaSTI 8.425 −0.75 Padua 8.375 −0.85
Standard Dev 0.03 0.19

Padua 9.425 −0.85 BaSTI 9.375 −0.65
Padua 9.425 −0.85 Dartmouth 9.525 −0.65
BaSTI 9.425 −0.85 Padua 9.475 −1.05
BaSTI 9.425 −0.85 Dartmouth 9.475 −0.85
Dartmouth 9.425 −0.85 Padua 9.425 −1.15
Dartmouth 9.425 −0.85 BaSTI 9.375 −0.85
Standard Dev 0.06 0.15

Padua 9.725 −1.05 BaSTI 9.725 −1.05
Padua 9.725 −1.05 Dartmouth 9.725 −0.95
BaSTI 9.725 −1.05 Padua 9.725 −1.05
BaSTI 9.725 −1.05 Dartmouth 9.775 −1.15
Dartmouth 9.725 −1.05 Padua 9.675 −0.85
Dartmouth 9.725 −1.05 BaSTI 9.675 −0.85
Standard Dev 0.03 0.13

Padua 10.025 −1.35 BaSTI 9.975 −0.95
Padua 10.025 −1.35 Dartmouth 10.025 −0.85
BaSTI 10.025 −1.35 Padua 10.025 −1.65
BaSTI 10.025 −1.35 Dartmouth 10.075 −1.45
Dartmouth 10.025 −1.35 Padua 10.075 −1.65
Dartmouth 10.025 −1.35 BaSTI 9.975 −1.45
Standard Dev 0.04 0.36

Notes. The left columns indicate the isochrone set and stellar population used to
generate the CMD. The right columns indicate the isochrone set used to solve for
the best fit, as well as the mean age and mean metallicity of that best fit. Simple
stellar populations were used in both CMD generation and SFH measurement.
Note that standard deviations were estimated using the mean absolute value of
the differences, which is an unbiased estimator of standard deviation. For the
case of a Gaussian distribution, the standard deviation equals the mean error
multiplied by

√
π/2. Note also that Dartmouth isochrones were not used at ages

younger than 1 Gyr, as the younger isochrones are not implemented in MATCH.

analogous to using two Monte Carlo runs to estimate random
errors.

4. ESTIMATION OF SYSTEMATIC UNCERTAINTIES

In order to estimate systematic uncertainties, one must be
able to generate nearly unlimited representations of reasonable
systematic errors, each of which can be analyzed. This section
outlines one such method, although other viable alternatives
certainly exist. It should be emphasized that the primary mo-
tivation of this study is to understand and quantify effects of
model differences on the measured SFH, not to examine or cri-
tique the underlying modeling choices and methods that created
these differences.

The adopted approach is to model the isochrone differences
as shifts in Mbol and log Teff . The rationale behind the choice of
log Teff rather than color is that a simple color shift could result
in unphysical temperatures (e.g., V − I = −1). It also produces
a system that is more likely to be portable between different
filter sets with minimal modifications.

It should be emphasized that this is not to be confused with
shifts in distance modulus and extinction that are commonly

applied during the determination of the best-fit SFH (including
the solutions shown in Table 1). The distance modulus and
extinction shifts are used to compensate for uncertainties such
as those in the photometric zero points, photometric calibration
of the isochrone sets, and foreground extinction. The shifts
described in this section are used to intentionally introduce
systematic errors between the observed data (which are not
shifted) and the synthetic models (which are). It is important
to note that, for solutions in which these shifts are applied,
no solution in distance modulus or extinction is allowed, since
this would mitigate the inserted error. Specifically, any error
induced in the bolometric magnitudes could exactly be offset
by an identical shift in distance modulus, thereby resulting in
exactly the same SFH as would have been observed had no shifts
been applied to either variable.

For this to work successfully, it is necessary that a set of shifts
in the Mbol, log Teff space can adequately reproduce the errors
in age and metallicity for all five populations shown in Table 2.
In order to make this transformation, the change in recovered
age and metallicity can be measured as a function of the shifts
in luminosity and temperature. For the youngest population in
Table 2, this can be described with the following equation:

(
Δ log(age)

Δ[Fe/H]

)
=

(−0.25 −0.05
13.5 1.2

)(
Δ log Teff

ΔMbol

)
. (4)

This indicates that the accurate recovery of the age of the
population (even in the presence of systematic errors) is because
it would require a very large error in temperature or luminosity
to create a noticeable change in the measured age. However, a
relatively small difference in either temperature or luminosity
could create a significant error in the recovered metallicity
(a result of the relative insensitivity of upper main-sequence
color to metallicity).

One can invert the matrix in Equation (4) to solve for the
temperature and luminosity shifts that would result in the
observed errors in age and metallicity. In this example, there was
zero age error but −0.2 dex of metallicity error when generating
data with the Padua models and solving with the BaSTI models.
Put into the above equation, this translates to temperature and
luminosity shifts of

(
Δ log Teff

ΔMbol

)
=

(
3.2 0.13
−36 −0.67

)(
0.0

−0.25

)

=
(−0.033

0.17

)
. (5)

Indeed, when applying shifts of −0.027 in log Teff and 0.133
in Mbol while solving the SFH using the Padua models on data
generated with the Padua models, one induces the expected error
in metallicity, with zero age error. Expanding this result, many
solutions could be made with shifts comparable in size to these.
In doing so, a fuller sampling of the effects of systematics can
be obtained.

Recalling that it is necessary to find shifts that adequately
model all of the populations in Table 2, similar math is
performed on the other four. The most extreme case is the
oldest population, in which the matrix is nearly singular and
thus very large variations of σlog Teff = 0.142 and σMbol = 1.14
are obtained. However, the uncertainties on those values are also
very high. When combining the results of all five populations,
values of σlog Teff = 0.012 and σMbol = 0.18 are found.
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Figure 4. Best-fit model CMD for a multi-burst stellar population. The BaSTI models were used to generate the simulated observations, and the Padua models were
used to fit the data. Panels are the same as in Figure 1.

Table 3
Comparison between Measured and Estimated Errors due to Systematic Errors

Input Measured Calculated

Log Age [Fe/H] σlog age σ[Fe/H] σlog age σ[Fe/H]

7.825 −0.75 0.00 0.25 0.01 0.27
8.425 −0.75 0.03 0.19 0.00 0.25
9.425 −0.85 0.06 0.15 0.08 0.18
9.725 −1.05 0.03 0.13 0.04 0.18
10.025 −1.35 0.04 0.36 0.03 0.21

Notes. The first two columns show the age and metallicity of the population used
to generate the data. The third and fourth columns show the measured standard
deviation in age and metallicity errors and are repeated from Table 2. The final
two columns show the errors in age and metallicity obtained by applying random
shifts with standard deviations of σlog Teff = 0.012 and σMbol = 0.18.

Table 3 shows the resulting age and metallicity errors ob-
tained by applying shifts randomly selected from a Gaussian
distribution of mean zero and standard deviation as specified
above. While these errors do not exactly match those measured
from the simple populations, they are well within a factor of
two in all cases, and within 30% for all but one. To put into
context, MATCH’s maximum resolutions in age and metallicity
are 0.05 and 0.1 dex, respectively. More importantly, in cases
in which only two isochrones were used, the uncertainty of
the standard deviation is ∼75% of the measured standard de-
viation. Even in the cases for which three isochrone sets were
used, the uncertainty is about half the measured standard devi-
ation. Thus, in the presence of at minimum 50% uncertainties
in the measured error distributions, the results from Table 3 show
the temperature and luminosity shifts to adequately reproduce
the observed systematic errors in all five populations.

5. MULTIPLE STELLAR POPULATIONS

While the above section demonstrated that consistent shifts
in temperature and luminosity can induce appropriately sized
errors in recovered simple populations across a wide spectrum
of age, it needs to be seen whether or not the process would work
for more complex systems such as field populations of resolved
galaxies. In this section, this topic is addressed by analysis of the
two extreme cases: a population whose entire SFH is comprised
of a small number of short bursts, and a population with constant
star formation rate for its entire history.

For the first case, a four-burst stellar population was created
using the BaSTI isochrones. The four bursts were defined as
follows:

1. 50–56 Myr, mean [Fe/H] = −0.45;
2. 500–562 Myr, mean [Fe/H] = −0.75;
3. 2.5–2.8 Gyr, mean [Fe/H] = −1.15; and
4. 12.6–14.1 Gyr, mean [Fe/H] = −1.95.

The SFH of this population was then measured using the
Padua isochrones, with no shifts in temperature or luminosity.
In addition, 50 solutions were made with randomly chosen
shifts (using Gaussian distributions with σlog Teff = 0.012 and
σMbol = 0.18). The variation between these solutions was used
measure the systematic uncertainties. Finally, to understand
what the measurement would have been in the absence of
systematic errors, the history was measured using the BaSTI
isochrones.

The best fit using the Padua models is shown in Figure 4,
and is not nearly as bad as the fits shown in Section 2. The
reason for this is that MATCH is allowed to mix populations,
allowing more portions of the CMD to be fit. In this case, only
the horizontal branch was fit poorly.

The measured SFHs are shown in Figure 5. The solid line
and shaded region show the best fit using the Padua models and
the uncertainty estimated from the fits with the Padua models
and shifts in luminosity and temperature. The dashed line shows
the best fit obtained using the BaSTI models. The error-free
measurement generally sits near the upper error bars, though
at some times (for example, from 0.5 to 2.5 Gyr ago) falls
significantly outside the bounds. In this case, the ratio of
star formation in the middle two bursts was systematically
misestimated in all of the runs with the Padua models. Most
likely this is a result of the two isochrone sets having different
lifetimes of certain evolutionary phases, an error source not
accounted for in this analysis. On the other hand, the estimated
uncertainties on the measured burst ages were correct.

The second test was carried out in the other extreme, a
constant star formation rate from 14.1 Gyr ago to the present.
As before, the synthetic data were generated using the BaSTI
models and solved using the Padua models, including 50 runs
with temperature and luminosity shifts to estimate the systematic
uncertainties.

Results of this test are shown in Figures 6 and 7. The quality
of the fit was not nearly as good as in the multiple-burst test, as
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Figure 5. Measured SFH of a stellar population with four bursts of star formation, in the presence of systematic errors. The solid line represents the best fit to the
SFH, and the shaded region shows the 1σ uncertainties. Finally, the history as measured with no systematic errors is shown by the dashed line. The left panel shows
the entire history of the galaxy; the right panel zooms into the past Gyr.

Figure 6. Best-fit model CMD for a stellar population with continuous star formation. The BaSTI models were used to generate the simulated observations, and the
Padua models were used to fit the data. Panels are the same as in Figure 1.

the presence of all ages required all CMD features to be fit. The
estimation of the uncertainties appears to have been successful;
the measurement with no systematic errors fell generally within
the error bars and never outside them by much. The largest
deviation, seen at 8.9 Gyr, is equivalent to a 2σ error.

6. DISCUSSION

Ideally, there would be a nearly limitless number of suitable
isochrone sets covering the entire space of reasonable choices of
the modeling parameters. The reality is that one must make the
best possible use of a handful of models, not all of which may
cover the entire range of initial mass or evolutionary phases
that are needed in an analysis. Thus, the direct measurement
of systematic errors by analysis of multiple isochrone sets is
inaccurate at best, and impossible at worst.

The approach I have outlined for estimating the uncertainties
due to systematic errors has relied on finding some simple proxy
for the isochrone differences that can be varied in a large number
of Monte Carlo runs in order to observe its effects. This provides
the advantage that it can be applied in populations for which only
one isochrone set provides coverage (for the three isochrone sets
analyzed here, this would be for ages younger than 25 Myr), and
also that rather than relying on one or two independent pairs of
isochrone sets to sample the distribution of errors produced in the
SFH measurement, a nearly unlimited sample can be generated
by random draws.

The choice made was to use shifts in luminosity and effective
temperature, which can be applied relatively simply during the
CMD fitting process. This ignores systematic differences in
measured histories that could result from different lengths of
evolutionary phases. In cases in which the SFH is dominated by
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Figure 7. Measured SFH of a stellar population with continuous star formation, in the presence of systematic errors. Panels and lines are identical to those in Figure 5.

Table 4
Variation of Temperature and Luminosity Shifts as a Result of

Variations in Photometric Depth

MV Limit MI Limit σlog Teff σMbol

−2.0 −2.5 0.032 0.40
−1.0 −1.5 0.024 0.35
0.0 −0.5 0.026 0.35
1.0 0.5 0.019 0.18
2.0 1.5 0.018 0.18
3.0 2.5 0.020 0.31
4.0 3.5 0.013 0.19

Notes. The left two columns show the 50% completeness
limit; the right two columns show the shifts needed to
adequately model effects of systematic errors.

a small number of short bursts, this can cause the uncertainties
in the ratio of star formation in each burst to be underestimated.
For field populations with continuous star formation, this is less
of a problem.

The measurement of appropriate shift sizes is thus key to
the success. Because the systematic error model is not physics
based, the shifts should be measured for every data set. For
example, photometric depth will affect which CMD features
dominate the measurement of the SFH, causing the best overall
shift size to change somewhat based on how sensitive those
features are to modeling choices. Effects of this on the shift sizes
are shown in Table 4. Data shown in this table are computed
using the averages of five measurements of the shifts at each
photometric depth. While the naive expectation might have been
a reduction in shifts as the photometry is deeper, this is not true
in every case. What is true is that the resulting errors in age
and metallicity become progressively smaller as the photometry
becomes deeper.

In addition to photometric depth, the filter choice and stellar
population being examined can affect the ideal shifts to apply to
a data set. Table 5 shows the shifts applied to deep photometry
(beyond the ancient main-sequence turnoff) for three different

Table 5
Size of Temperature and Luminosity Shifts as a Function of Filter Combination

Blue Limit Red Limit σlog Teff σMbol

MB = 5.0 MV = 4.5 0.011 0.17
MV = 4.0 MI = 3.5 0.013 0.19
MJ = 3.0 MK = 2.5 0.016 0.26

Notes. In all three cases, the photometry reaches below the ancient main-
sequence turnoff. As with Table 4, the 50% completeness limits are given
in the left two columns, while the required shifts are given in the right columns.

Table 6
Variation of Temperature and Luminosity Shifts as a Result of Variations in

Photometric Depth for the B, V Filter Combination

MB Limit MV Limit σlog Teff σMbol

−1.0 −1.5 0.038 0.47
0.0 −0.5 0.023 0.39
1.0 0.5 0.027 0.38
2.0 1.5 0.015 0.24
3.0 2.5 0.015 0.34
4.0 3.5 0.009 0.25
5.0 4.5 0.011 0.17

Note. Columns are the same as in Table 4.

filter combinations. While the B,V filter combination behaves
similarly to V, I , much larger luminosity variations are needed
in J,K . Population effects can also be present. As seen in
Section 3, the same shifts are not obtained for every age or
metallicity. Thus, the appropriate shifts must be measured for
the specific conditions seen in the data being analyzed. For the
sake of completeness, shifts as a function of photometric depth
for the B,V filter combination is given in Table 6, and in Table 7
for the J,K combination.

The goal of this analysis is a reliable method for estimating
systematic uncertainties that can be incorporated into SFH re-
sults. In some cases, this significantly increases the uncertainties
and resolves issues in which SFH algorithms report error bars
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Figure 8. Best-fit model CMD for a stellar population with continuous star formation and shallow photometry. The BaSTI models were used to generate the simulated
observations, and the Padua models were used to fit the data. Panels are the same as in Figure 1.

Figure 9. Measured SFH of a stellar population with continuous star formation, in the presence of systematic errors. Panels and lines are identical to those in Figure 5,
except that uncertainties due to random errors (shown as the error bars) have been added.

Table 7
Variation of Temperature and Luminosity Shifts as a Result of Variations in

Photometric Depth for the J,K Filter Combination

MJ Limit MK Limit σlog Teff σMbol

−3.0 −3.5 0.021 0.41
−2.0 −2.5 0.020 0.51
−1.0 −1.5 0.019 0.19
0.0 −0.5 0.019 0.15
1.0 0.5 0.018 0.13
2.0 1.5 0.018 0.23
3.0 2.5 0.016 0.26

Note. Columns are the same as in Table 4.

that appear unrealistically small. For example, the CMD shown
in Figure 8 contains very little information for older popula-
tions: the bright red giants and AGB stars, for which not only
are significant age/metallicity degeneracies present, but also

the evolutionary modeling is less certain. The measured SFHs
from this field are shown in Figure 9. The systematic error
estimate (gray region) shows the expected large uncertainty,
while random errors only (error bars) are extremely small, and
incorrectly show that approximately 70% of the star formation
to have occurred in a sharp burst 5 Gyr ago. When incorporating
systematic errors, the lack of age resolution is apparent and no
statistically significant burst is measured. The solution with no
systematic errors is thus in error at more than a 10σ level if using
random errors only, while it is within the estimated systematic
uncertainties at most ages.

7. SUMMARY

Systematic uncertainties, in the form of uncertainties in the
adopted isochrones, are a significant (and frequently dominant)
source of uncertainty in the measurement of SFHs. Despite this,
SFH measurements are generally reported with minimal (if any)
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analysis indicating the potential effects of systematic errors on
the results.

I have outlined a process for estimating the effects of
systematic errors on the measured SFH. This process is based
on shifts in luminosity and temperature that can be applied.
The shifts can be varied within some probability distribution,
allowing the estimation of a large number of SFHs with
reasonably sized systematic errors.

Being an entirely empirical technique, there are limitations.
First, the sizes of the shifts to apply are dependent on the stellar
population being observed, the filter set in use, and the depth of
the photometry. The implication is that the shifts will be data
set dependent, and thus should be recalculated for each data set.
Second, while the method was calibrated to measure errors in
inferred age and metallicity to reasonable accuracy, effects due
to lifetimes of certain evolved populations are not an explicit
part of the calibration. For field populations, this is not seen to
cause significant issues. However, uncertainties in the histories
of populations formed by a small number of short bursts can be
underestimated.

Limitations notwithstanding, the analysis presented here
indicates a significant improvement in the estimation of un-
certainties in SFHs. The ability to obtain extremely small
random errors in shallow, wide fields has long been known (e.g.,

Dolphin 2002), simply due to the effects of sample size on
random errors. Inclusion of systematic errors in the uncertainty
analysis prevents this, and results in error bars that more accu-
rately represent the degree of confidence in the measured SFH.
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sities for Research in Astronomy, Incorporated, under NASA
contract NAS5-26555.
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