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ABSTRACT

Alfvén waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total
reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these
difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting
fast magnetohydrodynamic waves, and that Alfvénic TR reflection is greatly reduced if the fast reflection point is
within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is
also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the
practical seismic probing of active regions.
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1. MOTIVATION

In recent years, Alfvén waves have been shown to be ubiqui-
tous in the solar corona (Tomczyk et al. 2007; McIntosh et al.
2011), though these may more properly be classified as mag-
netohydrodynamic (MHD) kink waves where coronal magnetic
structuring supports such tube waves (Edwin & Roberts 1983;
Van Doorsselaere et al. 2008). In either case, they are essen-
tially transverse and incompressive, and may be referred to as
“Alfvénic.” Alfvén waves have also been detected in situ in
the solar wind (Belcher & Davis Jr. 1971), of which they are
postulated to be crucial drivers (Hollweg 2006). Furthermore,
Alfvén waves are inferred in the upper chromosphere based on
Hinode Solar Optical Telescope observed transverse oscilla-
tions of spicules (De Pontieu et al. 2007). Although long-period
Alfvén waves (hours) dominate observations in the solar wind
(Belcher & Davis Jr. 1971; Hollweg 2006), coronal observations
reveal oscillations largely in the 100–500 s range, with a dis-
cernible peak at 3–4 mHz apparently associated with p-modes.
In this paper we shall be concerned only with these shorter pe-
riod waves, as our main purpose is to explore the extent to which
coronal Alfvén waves may be extensions of the Sun’s p-mode
wave field. The source of long-period waves must be sought
elsewhere.

Traditionally, it has been thought that direct generation at
the solar photosphere by granular buffeting is responsible for
the Alfvén waves observed further out in the solar atmosphere
and beyond (e.g., Cranmer & van Ballegooijen 2005). However,
this does not take account of the inefficiency of photospheric
MHD Alfvén generation (Parker 1991; Collins 1992) or of low-
ionization fraction effects (Vranjes et al. 2008; though see Tsap
et al. 2011 for a contrary view).1

Another impediment to Alfvén waves reaching the corona
is the strong reflection they suffer at the chromosphere–corona
transition region (TR; Uchida & Sakurai 1975). This effect can
even produce a trapped-wave resonance structure (Schwartz

1 Of course, Alfvén waves may be produced in isolated structures in the low
atmosphere. For example, Jess et al. (2009) identify torsional Alfvén waves in
a bright-point group of kilogauss strength, though the height of excitation is
not clear from this study, and ionization fraction may be enhanced compared
with quiet Sun.

et al. 1984), although, as pointed out by Cranmer & van
Ballegooijen (2005), it is somewhat detuned by non-isothermal
stratification. The resonances are also completely absent in the
case of an open lower boundary as adopted here. Cranmer &
van Ballegooijen quote typical Alfvén reflection coefficients of
around 95%, and we concur in general though perhaps we would
put that figure even higher at around 98% in the cases discussed
here. Nevertheless, Cranmer & van Ballegooijen conclude that
this may still be enough to supply chromospheric and coronal
energy losses and to power the solar wind, contrary to the view
of Rosner et al. (1986).

Photospheric Doppler and Zeeman observations at two
heights (Ulrich 1996) suggest that indeed there may be sufficient
Alfvén flux in the five-minute band to supply coronal losses in
the quiet Sun. Indirect arguments suggest that even the order-of-
magnitude-greater energy requirements of active regions may
be consistent with these observations, though this conclusion
relies on extrapolation. The velocity data are strongly indica-
tive of outgoing Alfvén waves, though the noisier magnetic data
may suggest the addition of a reflected (downgoing) component,
which might be expected given the high reflectivity of the TR.

Irrespective of this, the TR is undoubtedly a considerable
hurdle for Alfvén waves, and it remains to be seen whether
the observed coronal Alfvén amplitudes are consistent with
waves originating in the photosphere alone in both quiet and
active regions. Is there some way that the Alfvén transmission
coefficient can be increased?2

We postulate and explore a novel possibility that the Alfvén
waves have not propagated as transverse waves (Alfvén or kink)
from the photosphere, but that instead they have been generated
by local mode conversion from reflecting fast waves high in
the chromosphere (Melrose 1977; Melrose & Simpson 1977;
Cally & Goossens 2008; Cally & Hansen 2011; Khomenko &
Cally 2012), where low-ionization fraction is not an issue for
the 3–6 mHz frequency range of most interest here. It will be
shown that this greatly increases Alfvén penetration of the TR,
thereby opening up a potentially more fruitful source of coronal
Alfvén waves.

2 The situation in coronal loops may be different, with resonances allowing
greatly enhanced transmission (Hollweg 1991). We focus on open field only,
however.
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The progenitor fast waves bear the signature of this process
not only in their partial loss of energy to the Alfvén waves
but also in their phase as they return to the interior. Local
helioseismology uses phase to infer wave travel times (e.g.,
Duvall Jr. et al. 1993; Braun & Lindsey 2000; Gizon & Birch
2005), so it is of interest to gauge this anomalous effect. This is
discussed in Section 4.3.

2. FAST-TO-ALFVÉN CONVERSION:
REPRISE OF PAPER I

The solar interior is populated by p-modes, global modes of
oscillation excited by convection near the surface, and trapped
in a frequency-dependent cavity between an acoustic cutoff at
the top and the Lamb depth at the bottom. At frequencies above
about 5 mHz the acoustic cutoff barrier is breached and the
waves can escape into the solar atmosphere. Strong inclined
magnetic fields, as found in sunspots and other smaller magnetic
field concentrations, can reduce the effective cutoff to allow
even lower frequency acoustic waves to escape (Jefferies et al.
2006).

Now, in magnetic regions the Alfvén speed a increases
rapidly with height due to density stratification. So at some
point, inevitably, the Alfvén speed surpasses the sound
speed c. As the waves pass through the Alfvén-acoustic equipar-
tition layer where a and c coincide, mode conversion can
occur (Schunker & Cally 2006; Cally 2007), splitting the
waves into fast (i.e., predominantly magnetic) and slow parts.
As the slow wave propagates higher it becomes progres-
sively more field-aligned and more acoustic in nature. Con-
ventionally, the resultant slow waves are said to be caused by
transmission and the fast modes by conversion. The amount of
transmission/conversion here is dependent on the attack angle
α, the angle between the wavevector and magnetic field direc-
tion. A small attack angle allows greater transmission to the
slow wave and correspondingly a larger attack angle produces
greater conversion to the fast wave. In an exact isothermal model
conversion to the fast wave can be near total at large α (Hansen
& Cally 2009).

Here we assume that this process has taken place, and follow
the fast wave as it progresses to ever higher Alfvén speeds
a � c. In this regime we adopt the simplifications afforded by
the cold plasma approximation and set c = 0, or equivalently
β = 0 where the plasma-β represents the ratio of gas to magnetic
pressures.

In Paper I of this sequence (Cally & Hansen 2011), we
investigated fast-to-Alfvén mode conversion in a simple β = 0
plasma with uniform inclined magnetic field B0(cos θ, 0, sin θ )
and exponentially decreasing density ρ ∝ e−x/h in the direction
x of inhomogeneity, where h is the scale height. This may be
thought of as the vertical direction in a plane stratified model of
the solar atmosphere in which density decreases exponentially
with height. A fast magnetohydrodynamic wave is injected from
x → −∞, propagates to the right (positive x direction), and
reflects (classically) at ω2 = a2(k2

y + k2
z ), where a(x) ∝ ex/2h is

the Alfvén speed. An exp[i(kyy +kzz−ωt)] time and transverse
space dependence is assumed. The orientation of the wavevector
in y–z space is arbitrary.

If ky �= 0, the fast wave partially converts to Alfvén waves,
typically around and beyond the fast wave reflection point.
Introducing the dimensionless transverse wavenumber κ =
(κ2

y +κ2
z )1/2, where κy = kyh = κ sin φ and κz = kzh = κ cos φ, it

was found that very significant fast-to-Alfvén conversion occurs

in various regions of κ–θ–φ parameter space. Specifically, it was
found that

1. the thickness of the conversion region depends sensitively
on κ . For κ ∼ 1 it is several scale heights thick, for κ ∼ 0.2
it extends some 20 scale heights beyond the reflection point,
but for κ ∼ 5 it is less than one scale height wide. For most
solar atmospheric waves of interest in the chromosphere, we
might expect κ to be considerably less than 1, indicating
that the Alfvén conversion region can effectively fill the
chromosphere; and

2. for φ � 90◦, conversion is to outgoing (upward) Alfvén
waves, but for φ � 90◦ conversion predominantly produces
backward (downward) propagating Alfvén waves. This was
to be expected based on a consideration of whether the
fast wave aligns with the magnetic field before or after its
reflection, consistent with the finding of Melrose (1977) that
fast-to-Alfvén coupling is strongest at small attack angle.

These predictions were amply confirmed by numerical simula-
tions in a more realistic model sunspot by Khomenko & Cally
(2012).

This simple one-layer model crudely represents the solar
chromosphere, and takes no account of the TR or corona above.
Nevertheless, it allowed us to better understand the local con-
version mechanism that goes on there without complications
arising elsewhere. In this paper though, we extend the model
to consist of two exponential layers, representing the chromo-
sphere a2 ∝ ex/h and the corona a2 ∝ ex/hcor , with hcor � h and
a discontinuous jump between them representing the TR. This
will allow us to explore the consequences of Alfvén reflection
off the TR and truncation of the extended conversion region by
the TR.

3. MODEL, EQUATIONS, AND NUMERICAL APPROACH

In sunspot umbrae the Alfvén-acoustic equipartition level
a = c is typically situated a few hundred kilometers below
the photosphere and at about the photosphere in the penumbra
(Mathew et al. 2004; Borrero & Ichimoto 2011). Around active
regions and in more diffuse magnetic environments equipartition
is normally identified with the magnetic canopy of the low
chromosphere (Bogdan et al. 2003; Finsterle et al. 2004).3 As
explained in Section 2, seismic waves from the solar interior
split at a ≈ c into slow (acoustic) waves and fast (magnetic)
waves that may propagate into the atmosphere above. We are
not concerned with the slow wave here, but the fast wave’s fate
is very interesting as it can suffer a further mode conversion to
the Alfvén wave (Paper I).

Seismic waves below about 3–4 mHz (depending on field
strength) may not reach the a = c equipartition level before
reflecting. A precondition of the study here is that they have
passed through a = c, and therefore partially mode converted
to magnetically dominated fast waves in a � c.

With this in mind, we now move well above the a � c
region and adopt a uniform-magnetic-field two-isothermal-layer
Alfvén speed profile

a2 =
{
A2e(x−xT )/h x < xT

A2 (hcor/h)e(x−xT )/hcor x > xT ,
(1)

3 Usually such discussions are couched in terms of the plasma-β equals unity
layer, where β = pgas/pmag is the ratio of the gas to magnetic pressure.
However, β = 2c2/γ a2, where γ is the ratio of specific heats, so the
distinction between β = 1 and a = c is almost immaterial.
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crudely representing the low-β chromosphere (x < xT ) and
the corona (x > xT ) separated by a TR discontinuity. Here x
is the vertical coordinate, increasing with height in the solar
atmosphere, h = c2/γg and hcor = c2

cor/γg are the density
scale heights in the two regions, c and ccor are the respective
sound speeds, γ is the adiabatic index, and g is the gravitational
acceleration. The factor A is the Alfvén speed at the top of the
chromosphere. The exponential increase in a(x) results solely
from an exponentially decreasing density ρ(x). The density
jump across the TR is of course equal to the inverse of the
temperature jump, which explains the hcor/h factor in the second
line of Equation (1). Typically, hcor � h.

The crude uniform field model is more applicable to large-
scale strong magnetic field regions such as sunspots than to
network or other structures where discrete flux tubes at the
photosphere quickly expand with height in the atmosphere until
they abut and thereafter become more uniform. Especially in
this latter case, the exponential Alfvén speed increase supposed
here will be partially ameliorated by the geometric field spread.
Nevertheless, the model represents a useful testbed on which to
discern general principles.

To focus on the fast-to-Alfvén conversion process in the
upper solar atmosphere it is convenient to ignore acoustic
waves altogether by neglecting the sound speed c compared
to the Alfvén speed a in the wave equations, the so-called cold
plasma or zero-β approximation. The underlying equilibrium
stratification is unaffected. This device is used commonly
in the study of MHD waves in the upper solar atmosphere
(Nakariakov & Verwichte 2005). There are innumerable papers
in the literature that have studied MHD waves in the cold plasma
regime, representing the Sun’s outer atmosphere, and have
adopted nonuniform density distributions to create Alfvén speed
inhomogeneities, e.g., Davila (1987), Ruderman & Roberts
(2002), Pascoe et al. (2010), and Hollweg (1990) among
many others. This last reference is closest to our study, and
that of Cally & Andries (2010), in that it discusses a fast
MHD wave injected into a region of increasing Alfvén speed
in which it reflects but also transfers energy to an Alfvén
resonance. The density profile there is linear, though, instead
of our exponential. The close correspondence of the results
of Paper I, which uses the β = 0 approximation, and the
simulations of Khomenko & Cally (2012), which do not,
supports the utility and validity of the cold plasma model in this
instance.

We also assume we are not in the low-frequency regime of
atmospheric gravity waves (Straus et al. 2008). Gravity-wave-
to-Alfvén conversion for very low frequency waves (∼1 mHz,
comparable to the Brunt–Väisälä frequency N) has been ex-
tensively treated elsewhere (Newington & Cally 2010, 2011),
and is found to be viable only in very inclined magnetic fields.
We therefore assume ω2 � N2 and that buoyancy plays an
insignificant role.

With all this in place then, we adopt the linearized equation
governing the oscillations of a cold plasma (cf. Equation (1) of
Paper I), (

∂2
‖ +

ω2

a2

)
ξ = −∇pχ , (2)

where ξ (x) = ξx êx + ξy êy + ξzêz = ξ⊥ê⊥ + ξy êy is the
plasma displacement and χ = ∇· ξ is the dilatation. The
subscripts “‖” and “⊥” denote the parallel and perpendicular
(in the x–z plane) directions to the uniform magnetic field

B0 = B0(cos θ, 0, sin θ ), respectively. The “p” refers to the
full perpendicular component to B0, i.e., ∇p = ê⊥ ∂⊥ +
êy ∂y . Equation (2) neatly expresses the role of the fast wave
(represented by χ ) as a source of Alfvén waves (the term in
brackets on the left-hand side is the pure Alfvén operator).

Frobenius and WKB solutions to this equation with expo-
nential Alfvén speed were developed in Paper I for x → ∞
and x → −∞, respectively, and they are again used here. In-
deed, the Frobenius solution is utilized throughout the corona.
The imposed boundary conditions are that there are no incom-
ing Alfvén waves from x = ±∞, and that the exponentially
decaying fast wave solution is selected at x = +∞ with the
exponentially increasing solution deprecated. Numerical inte-
gration from the WKB region to a suitable matching point in
the chromosphere and from the TR also to this matching point
completes the solution. Continuity of ξ and ∂ξ/∂x is applied
across xT .

It is worth reiterating the results from the appendices of Cally
& Goossens (2008) and Paper I that the point x → ∞ is a
regular singular point of the wave equations for the coupled fast
and Alfvén waves. In the case ky = 0 where the two wave types
decouple, exact solutions in closed form are available. For the
Alfvén wave these are in terms of the Hankel functions H

(1)
0

and H
(2)
0 , representing, respectively, downgoing and upgoing

waves (see Equation (3) and the Appendix for full details).
In the general case addressed here (ky �= 0), no such closed
form solutions are available, but full Frobenius series solutions
were constructed in Appendix A.2 of Paper I. These allow us to
match our numerical solutions to the pure outgoing Alfvén wave
at x → +∞. We note that Cranmer & van Ballegooijen (2005)
find that reflection of short-period Alfvén waves is weak in the
corona proper, supporting our selection of a radiation boundary
condition.

Assuming the incoming fast wave from x = −∞ carries unit
wave energy flux F+ = 1, we calculate the outgoing fast flux
F− at x = −∞, the outgoing Alfvén flux A+ at x = +∞,
and the outgoing Alfvén flux A− at x = −∞. Of course,
A+ + A− + F− = F+ = 1, which provides a non-trivial test
on our numerics.

Determining the relative proportions of the three outgoing
modes is our prime goal. In the single-layer model of Paper
I, any Alfvén wave launched in the positive x-direction from
the conversion region continued outward to yield A+, whereas
an initially backward-propagating Alfvén wave excited by the
reflected fast wave gave A−. Here, though, the picture is
complicated by Alfvén reflection from the TR, leading us to
expect a greatly diminished A+. Whether A− increases or
decreases is not clear a priori: TR reflected A+ should enhance
A−, but truncation of the well-spread chromospheric conversion
region will diminish it. Numerical solution is required to assess
which of these two competing processes prevails.

The full parameter set describing our system is dimension-
less wavenumber κ , magnetic field inclination θ , wavevec-
tor polarization φ, TR position xT , and coronal scale height
hcor. The chromospheric scale height h is arbitrarily scaled
to unity. The frequency ω and Alfvén speed scaling A can
be absorbed into the position of fast wave reflection that oc-
curs at ωh/a = κ . The zero of x is fixed so that ω2h2/a2 =
exp[−x/h] in the chromosphere, so fast wave reflection occurs
at xR = −h ln κ2 (provided this is less than xT ). We investi-
gate how the various energy fluxes depend on each of the free
parameters.
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Figure 1. Left: pure Alfvén transmission coefficientT (see Equation (5)) against K sec θ for hcor = 20, 50, 100, 150, and 200 (full curves, top to bottom). In the limit
hcor → 1, the TR vanishes and transmission becomes total. The dashed curves represent the transmission coefficient for a uniform corona, as given by Equation (7).
Right: contour plot of transmission coefficientT against transition region position xT and magnetic field inclination θ for the case hcor = 100. The contour heights are
as labeled.
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Figure 2. Forward Alfvén conversion coefficient A+ (full curve), reverse Alfvén conversion coefficient A− (dashed curve), and reverse fast conversion coefficient
F− (dotted curve), as a function of hcor for κ = 0.2 (i.e., xR = − ln 0.22 = 3.219), θ = 30◦, xT = 8, φ = 70◦ (left panel), and φ = 110◦ (right panel). Both variables
are plotted on logarithmic scales. The heavy long-dashed curve represents T as given by Equation (5). The chained lines represent A+

0T, where A+
0 (κ, θ, φ) is the

forward Alfvén conversion coefficient without transition region (see Paper I, or equivalently as calculated here with hcor = 1).

4. RESULTS

4.1. Transmission of the Pure Alfvén Wave

Before embarking on a study of fast-to-Alfvén mode conver-
sion, it is useful to first calculate the transmission coefficient
0 � T � 1 of a pure Alfvén wave incident on the TR from the
chromosphere. Here T represents the fraction of wave energy
flux in the incident Alfvén wave that passes into and through
the corona. The remainder is reflected at the TR. The pure
wave, with ξy polarization only (φ = 0), is completely decou-
pled from and therefore not excited by the fast wave, but it
does give us a good measure of how strongly the TR reflects
Alfvén waves. The exact solutions of the Alfvén wave equation
∂2ξy/∂t2 = a2 ∂2ξy/∂s2 (where s is distance along a field line)
in an atmosphere with exponential Alfvén speed are available
in terms of Hankel functions:

ξy = Ξ1,2 e−i kz(x−xT ) tan θH
(1,2)
0

(
2ωh

a
sec θ

)
, (3)

with H
(2)
0 representing a wave propagating upward and H

(1)
0

corresponding to downward travel. Ξ1,2 are arbitrary amplitudes
with dimensions of length. As explained in the Appendix,
the Hankel functions represent unidirectional waves. This is

consistent with the total Poynting flux in the x-direction:

Fx = ωB2
0 cos θ

π h μ

(|Ξ2|2 − |Ξ1|2
)

. (4)

Matching to an H
(2)
0 solution (i.e., outgoing only) with the

coronal scale height and letting h = 1 in the chromosphere, the
transmission coefficient is

T = 1

−

∣∣∣∣∣∣∣∣
H

(2)
0

(
2K h

1/2
cor sec θ

)
H

(2)
1 (2K sec θ) − h

−1/2
cor H

(2)
0 (2K sec θ)H (2)

1

(
2K h

1/2
cor sec θ

)

h
−1/2
cor H

(1)
0 (2K sec θ)H (2)

1

(
2K h

1/2
cor sec θ

)
− H

(1)
1 (2K sec θ)H (2)

0

(
2K h

1/2
cor sec θ

)
∣∣∣∣∣∣∣∣

2

,

(5)

where K = ωh/a(x−
T ) = exp[−xT /2h] is the dimensionless

Alfvénic field-aligned wavenumber at the top of the chromo-
sphere. Note that, for fixed hcor, T depends only on K sec θ . T
increases monotonically from zero at K sec θ = 0 toward

Tmax = 4
√

hcor

(
√

hcor + 1)2
(6)

as K sec θ → ∞ (see Figure 1). For hcor = 100,Tmax = 0.3306.
Only for hcor = 1 (no TR) does Tmax reach 1.
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Figure 3. Distance Δ = (xT − xR)/h in units of chromospheric scale height
between the fast wave reflection height xR and the transition region height xT as
a function of spherical harmonic degree � (or dimensionless wavenumber κ on
the top axis) and magnetic field strength B: full curve 1 kG, dashed curve 100 G,
and dotted curve 10 G. The wave frequency is 5 mHz, the chromospheric scale
height is 150 km, and the density at the top of the chromosphere is 10−10 kg m−3.
Where Δ dips below zero, the fast wave no longer reflects before reaching
the TR.

For comparison, the pure Alfvén transmission coefficient for
the case of a uniform rather than exponential corona is

T = 1 −
∣∣∣∣∣
H

(2)
0 (2K sec θ ) + i h

1/2
cor H

(2)
1 (2K sec θ )

H
(1)
0 (2K sec θ ) + i h

1/2
cor H

(1)
1 (2K sec θ )

∣∣∣∣∣
2

, (7)

where now hcor represents only the jump in a2 across the TR and
not the coronal scale height (which is infinite). It results directly
from Equation (5) in the limit 2Kh

1/2
cor sec θ � 1 where the

relevant Hankel functions may be replaced by their exponential
asymptotic forms. The two formulae are compared in Figure 1,
indicating that the precise choice of coronal structure has little
practical significance for the total transmission. Equation (7)
reduces to Equation (44) of Leer et al. (1982; for reflection
coefficientR = 1−T) in the case hcor = 1 where a uniform layer
is continuously appended above an exponential atmosphere.

Interestingly, even with the hcor = 100 characteristic of
the real solar TR, substantial Alfvén transmittance (> 10%)
is possible if K sec θ � 0.1. High-frequency, low TR Alfvén
speed, and large field inclination are all favorable for Alfvén
wave penetration of the TR.

However, this is for an incident pure Alfvén wave. As shown
in Paper I, Alfvén waves may also be generated over an extended
region by conversion from reflecting fast waves, in fact from the
evanescent tail beyond the reflection point. In this interaction
region, they are not pure Alfvén waves, only becoming so
asymptotically as x → ∞. So how do these hybrid waves
fare on encountering the TR? And what if the fast waves reach
the TR before they can reflect, or early in their evanescent tail?
These issues are addressed next.

4.2. Alfvén Wave Fluxes from Fast Wave Conversion

The first task is to see how the TR “jump” hcor affects the
output fluxes (recall that a2 increases across the TR by the factor
hcor/h = hcor). Figure 2 shows how the Alfvén conversion
coefficient A+ (conversion to the upward propagating Alfvén
wave), reverse coefficient A− (conversion to the downward
Alfvén wave), reverse fast wave coefficient F−, pure Alfvén
transmission coefficient (with TR) T and A+

0T vary with the
coronal scale height 1 � hcor � 100. Here we define A+

0 as
the forward Alfvén conversion coefficient without the TR. We
fix κ = 0.2 (i.e., xR = 3.219), xT = 8, and magnetic field
inclination θ = 30◦ with wavevector polarizations φ = 70◦ and
110◦. At hcor = 100, K sec θ = 0.021 and T = 0.033, so a pure
Alfvén wave is 97% reflected.

The distance between the reflection point and the TR, mea-
sured in units of the chromospheric scale height h, is given by

Δ = xT − xR

h
= ln

a(x−
T )2κ2

ω2h2
, (8)

where a(x−
T ) is the Alfvén speed at the base of the TR. This

quantity will be seen to be crucial in determining the Alfvén
flux penetrating the TR. To place this dimensionless length in a
solar context, let us suppose the chromospheric scale height is
150 km, that the density at the base of the TR is 10−10 kg m−3,
and that we are dealing with 5 mHz waves. Then, Δ depends
on field strength B and dimensionless horizontal wavenumber
κ = √

�(� + 1) h/R�. It is plotted in Figure 3, showing that
the fast wave nearly reaches the TR at smaller field strength and
spherical degree. The latter is due to the wave being more nearly
vertical as � gets smaller, meaning that it can reach higher in the
chromosphere.

The case hcor = 1 corresponds to the model of Paper I
with no TR. Increasing hcor unsurprisingly produces a sharp
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Figure 4. Forward Alfvén conversion coefficient A+ (full curve), reverse Alfvén conversion coefficient A− (dashed curve), and reverse fast conversion coefficient
F− (dotted curve) as a function of xT for κ = 0.2, θ = 30◦, hcor = 100, φ = 70◦ (left panel), and φ = 110◦ (right panel). The fast wave reflection point is
xR = − ln 0.22 = 3.219 if this is less than xT . Otherwise, the fast wave will propagate throughout the chromosphere and immediately be evanescent on entering the
corona (provided ω2h2/a(x+

T )2 < κ2). The heavy long-dashed curve represents T as given by Equation (5). The chained lines representA+
0T, whereA+

0 (κ, θ, φ) is
the forward Alfvén conversion coefficient without transition region.
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Figure 5. Left column: the forward Alfvén conversion coefficient A+ as a function of φ and κ for θ = 10◦, 40◦, and 70◦ (top to bottom) as labeled with hcor = 100
throughout. Right column: the reverse Alfvén conversion coefficient A− for the same cases. In all cases, the transition region is at xT = 8. The respective maxima
in A+ are 0.028 for θ = 10◦, 0.019 for θ = 40◦, and 0.023 for θ = 70◦. The bottom two panels, displaying the results for θ = 70◦, are truncated near the top for
numerical reasons. This is of little consequence as physically we are mainly interested in κ � 0.2.

decrease, to around 1%–2%, in the amount of A+ propagating
through the corona. Interestingly, A− also decreases, though
only modestly. The beneficiary of these decreases is of course
F−, which increases to over 80% at hcor = 100, characteristic
of the solar TR, meaning most of the injected fast wave flux
returns whence it came as a reflected fast wave. Although at
φ = 110◦ the backward Alfvén flux A− is quite significant in
the absence of a TR (hcor = 1), once hcor reaches 100 there is
little difference between the two polarizations, consistent with
near-symmetry of forward and backward Alfvén production at
φ = 70◦ and 110◦, respectively, and the forward Alfvén flux
having been almost totally reflected.

Also striking in Figure 2 is how well A+ is mimicked
by A+

0T. This appears to suggest that the simple picture of
Alfvén generation according to coefficient A+

0 followed by
TR transmission T describes the situation remarkably well.
This was unanticipated, as the conversion region was not

expected to be confined to these few scale heights below
the TR.

Next, we fix the magnitude of the transition jump but adjust
its distance from the fast reflection point at xR. Figure 4
demonstrates the dependence of flux on the location of the
TR for fixed κ = 0.2, θ = 30◦, and hcor = 100 again for
wavevector polarizations of φ = 70◦ and φ = 110◦. As the TR
is raised further above the fast wave reflection point, there is a
decreasing amount of A+ with an increase in both downward
Alfvén and reflected fast wave coefficients. The decrease in A+

is somewhat surprising as we might have expected that a higher
xT allows a larger fast-to-Alfvén conversion region and therefore
potentially more outward Alfvén flux, at least for φ = 70◦
(recall that the conversion region is some 20 scale heights wide
at κ = 0.2). This is apparently because the TR simply becomes
more reflective to Alfvén waves as the distance between the
fast reflection height and the TR increases (see Figure 1).
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Figure 6. Same as Figure 5, but with xT = 2. The horizontal line κ = e−xT /2 = 0.368 in the left panels corresponds to the boundary between the parameter regions
where the fast wave reaches the TR before reflecting (below the line) and where it does not (above). Substantially larger values ofA+, exceeding 0.3, are found below
the line, for θ = 40◦.

Very substantial forward Alfvén fluxes A+ of around 20% are
seen at small xT � xR = 3.219. It appears that if the fast
wave tail penetrates into the low corona, it continues to generate
Alfvén waves there.

One again we see that A+
0T closely matches the numerical

calculation of A+. Of course as the TR falls below the fast
wave reflection point there are further complications and the
two formulae are less well aligned. It may be that the Alfvén
conversion is largely or partially in the corona in these cases,
thereby invalidating the simple interpretation of A+

0T in terms
of two sequential processes.

We now fix both xT = 8 and hcor = 100, and explore variation
with κ , θ , and φ. Figure 5 shows graphically how A+ and A−
vary with transverse wavenumber κ and wave polarization φ
for magnetic field inclination θ = 10◦, 40◦, and 70◦. Across
the board, A+ does not exceed about 2%–3%. The backward
Alfvén flux A− is approximately symmetrical about φ ∼ 90◦.
This is expected in light of the near-symmetry between A+ and
A− about φ = 90◦ found in Paper I for the single-layer model.
We surmise that converted forward-propagating Alfvén waves

are near-totally reflected off the TR when φ � 90◦ and when
φ � 90◦ the fast wave is partially converted to a backward-
propagating Alfvén wave only after fast wave reflection at xR.
Maximal backward Alfvén flux seems to occur around 50◦ and
140◦ in each case, but typically at unrealistically high κ values
(κ � 0.5).

Reducing xT to 2 (Figure 6) places the TR before (if
κ < e−xT /2 = 0.368) or low in the tail of the fast wave
reflection point, with the effect of substantially increasing A+.
This suggests that the fast wave evanescent tail, which easily
penetrates the TR, continues to produce Alfvén waves in the
low corona.

Finally, Figure 7 demonstrates how A+ and A− vary with κ
and φ for fixed θ = 40◦ with two different xT values. While A+

is reduced significantly by increasing xT , there is little change
to A−.

4.3. Phase Shifts

With a TR in place, we have seen that by far the bulk
of the injected fast wave flux is reflected, presumably to
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Figure 7. Left column: the forward Alfvén conversion coefficient A+ as a function of φ and κ for fixed θ = 40◦ with xT = 5 and xT = 10 (top to bottom) and
hcor = 100 throughout. Right column: the reverse Alfvén conversion coefficientA− for the same cases.

once again undergo magnetic-to-acoustic mode conversion at
the Alfvén-acoustic equipartition level and then re-enter the
Sun’s helioseismic wave field. Helioseismic techniques such
as time–distance helioseismology (Duvall Jr. et al. 1993) and
phase-sensitive holography (Braun & Lindsey 2000) use phase
to infer travel times and so are potentially compromised by
any anomalous phase shifts suffered by the fast wave in the
chromosphere. The cold plasma model affords a particularly
convenient test bed for this effect. In such atmospheres the fast
wave phase and group speeds are just a, independent of the
relative orientation of the wavevector and the magnetic field.
So, apart from the Alfvén conversion mechanism, reflected fast
wave phase should be independent of θ and φ. (Specifically,
this is apparent from Equation (3) of Paper I with ky set to
zero. Then the fast and Alfvén waves decouple and the fast
wave is governed simply by (∇2 + ω2/a2)ξ⊥ = 0, totally
independent of θ .) We confirm numerically that indeed the
phase of the returning fast wave relative to its injection phase is
independent of θ when ky = 0. In this section, we investigate
phase in both the single-layer model and the model with TR
by comparing the phase of the returning fast wave with that for
the φ = 0 case where the fast and Alfvén waves are entirely
decoupled.

The fast wave is most conveniently characterized by the
dilatation, χ = ∇ · ξ , and thus the forward and backward
fast wave dilatations χ+ and χ− carry information about their
respective phases. The phase change at any point x is δϕ =
− arg(χ+χ−). However, we require the difference between the
magnetic and non-magnetic cases Δϕ = δϕ − δϕ0 (Cally 2009),
where δϕ0 refers to the φ = 0◦ case, which has no Alfvén
interaction. This quantity is independent of depth provided it is
calculated well below the fast wave reflection point at x = xR .
We therefore choose the depth where the WKB solution is

applied as the point to evaluate the phase difference.4 Figure 8
shows the phase difference −180◦ < Δϕ � 180◦ as a function
of φ and κ for fixed hcor = 100, xT = 8, and θ = 10◦, 40◦,
and 70◦, displaying symmetry about φ = 90◦. The maximum
phase difference occurs for higher κ as θ increases. The phase
difference is generally maximal around φ = 90◦.

Finally, Figure 9 demonstrates that for the most part, as
expected, phase shift depends only weakly on field inclination
θ . However, this is not the case for φ ≈ 90◦.

Overall then, it is clear that the phase of the returning fast wave
has been very substantially altered by mode conversion. Without
this interaction with the Alfvén wave, Δϕ should be identically
zero for all φ and θ . It most certainly is not zero! Any phase-
sensitive seismology performed using the returning fast wave
is therefore severely compromised by this highly directional
effect.

5. DISCUSSION AND CONCLUSIONS

We are motivated by doubt about where the Alfvén waves
that are observed in the chromosphere, corona, and solar wind
are generated. There is reason to believe (Parker 1991; Vranjes
et al. 2008) that the creation of these waves in the photosphere
is problematic. Irrespective of that, it appears from Paper I and
Khomenko & Cally (2012) that it is easy to generate substantial

4 For completeness, we mention the result from Paper I (see also Ferraro &
Plumpton 1958) that the decoupled (ky = 0) fast wave has exact solution
ξ⊥ = a J2κ (2e−x/h), with arbitrary complex constant a. This splits into
forward and backward traveling wave components: ξ±

⊥ = (1/2)a H
(2,1)
2κ

(2e−x/h). Hence χ± = ∂⊥ξ⊥ = −(1/2)a[i κ ei θH
(2,1)
2κ (2e−x/h) +

e−x/2hH
(2,1)
2κ−1(2e−x/h)]. Consequently, δϕ0 → −2 arg a as x → −∞. This

cancels in Δϕ with an equivalent term in δϕ to leave only an effect related to
the Alfvénic mode conversion.
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Alfvénic flux in the chromosphere. The total outgoing Alfvén
conversion coefficientA+ is sensitive to the distance between the
fast wave reflection point and the TR. If xT is small, substantial
Alfvén flux can get through, up to about a third, for hcor of 100.
Increasing the distance results in stronger reflection of these
waves.

As we see in Figure 8, increasing the magnetic field incli-
nation reduces the impact of the TR on phase shifts. This may
be due to increasing Alfvén path length along the oblique field
lines. For the most part, the phase shifts calculated here and
displayed in Figures 8 and 9 are negative, corresponding to a
delay in the phase of the reflected fast wave. This could be mis-
interpreted as an increase in travel time. We interpret it instead
as an artifact of mode conversion.

How much energy is carried by the observed coronal Alfvén
waves? Tomczyk et al. (2007) calculate an insignificant Alfvén
flux of 0.01 W m−2, though they admit this may be gross
underestimate due to insufficient spatial resolution. Recently
this figure has been revised dramatically upward by McIntosh
et al. (2011) using the He ii 304 Å and Fe ix 171 Å channels of the
Atmospheric Imaging Assembly on board the Solar Dynamics
Observatory to achieve arcsecond resolution. They estimate
energy fluxes of ∼100 W m−2 in active region loops based
on typical amplitudes of around 20 km s−1.

In the most ideal case (large attack angle), almost all flux
through the a = c level converts to the fast wave. Of this, at
most 30% is carried through the TR by the Alfvén wave, but
only if the fast wave reaches or nearly reaches the TR before
reflecting. Based on the photospheric p-mode power distribution
of Thomas (1985) obtained using the Fe i 6303 line, which is
formed about 290 km above optical depth unity, and the VAL C
empirical model of Vernazza et al. (1981), we crudely estimate
〈v2〉 ∼ 4 × 103 m2 s−2 and a flux of the order of 800 W m−2

associated with p-modes in the 3–5 mHz band. This appears
to be sufficient to supply the coronal Alfvén flux estimated
by McIntosh et al. (2011), though the uncertainties in each
calculation are large. The link is plausible at least. Of course,
one should not rule out the possibility of multiple sources of
coronal Alfvén waves, including direct photospheric excitation
and chromospheric fast wave conversion.

APPENDIX

ON THE UNIDIRECTIONALITY OF PURE ALFVÉN
WAVES IN AN EXPONENTIAL ATMOSPHERE

Decoupled Alfvén waves in the case ky = 0 admit exact
solutions (3) in terms of Hankel functions H

(1)
0 and H

(2)
0 . This

is because the Alfvén wave equation ∂2ξy/∂t2 = a2 ∂2ξy/∂s2

(where s is distance along a field line) transforms into the
axisymmetric wave equation on a uniform membrane,

∂2ξy

∂t2
= ω2

r

∂

∂r

(
r
∂ξy

∂r

)
, (A1)

under the change of variables r = 2ωh/ax , where ax = a cos θ .
The Alfvén wave in the exponential atmosphere therefore is
isomorphic to the problem of axisymmetric two-dimensional
waves, with x = +∞ mapping to r = 0. As such, there is no
reflection, despite expectations that the exponential atmosphere
might be at least partially reflective to Alfvén waves. As
shown by Whitham (1974, Section 7.4), the two-dimensional
axisymmetric wave equation with an axial harmonic source
results in the H

(1)
0 (r) solution (see also Courant & Hilbert 1962,
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0.5

0.0

0.5

1.0

10 1 0 1 2 3 4 5

r

α
β ,

x h

Figure 10. Wavelike part α of H
(2)
0 (r) (real part as full curve, imaginary part

as dashed curve) and the “reverberation” part β (chained curve), all plotted as
functions of r = 2 exp[−x/2h].

p. 194). We are concerned with the time reverse, or equivalently
complex conjugate, where x = +∞ is a sink, selecting H

(2)
0 (r)

instead. See Equation (4) for the wave energy fluxes associated
with the two Hankel functions. As a further demonstration that
H

(2)
0 (r) corresponds entirely to wave propagation in the negative

r-direction (positive x), we manipulate Equation (9.1.25) of
Abramowitz & Stegun (1965) to show that

H
(2)
0 (r) = i

π

∫ ∞−iπ

−∞
er sinh τ dτ

= 2

π

∫ 1

0

e−i k r

√
1 − k2

dk +
2i

π

∫ ∞

0
e−r sinh τ dτ

= α(r) + i β(r) , (A2)

clearly demonstrating that there are only Fourier compo-
nents associated with negative r propagation. The first term
α(r) = J0(r) − i H0(r) is a complex Fourier integral contain-
ing only waves propagating toward r = 0. The second term
β(r) = H0(r) − Y0(r) is of course real, positive, and monotonic
decreasing in r, and so is not wavelike at all. In these expres-
sions, J0 and Y0 are the Bessel functions of the first and second
kind, and H0 is the Struve function. Transmission of Alfvén
waves in an infinite exponential atmosphere is therefore total,
T = 1, though discontinuities such as we use to model the TR
produce substantial reflection (see Equation (5)).

Hollweg & Isenberg (2007) examined the behavior of an
Alfvén pulse in a stratified atmosphere and inferred partial
reflection in a wake behind the propagating packet. However,
we interpret this a little differently. It is well known that waves
in spaces of even spatial dimension do not obey Huygens’
principle, meaning that any wavefront trails a wake that “persists
there indefinitely as a “reverberation ” in the words of Courant
& Hilbert (1962, p. 208–210). Hence, since the Alfvén problem
is isomorphic to the two-dimensional wave equation, that wake
structure is to be expected. We see it as represented by β. It need
not be interpreted as a reflection, though, of course, one could
express β as a Fourier integral, β = 2 π−1(

∫ π/2
0 sin(r cos θ ) dθ +∫ ∞

0 cos(r cosh τ ) dτ ) representing the reverberation as a sum
of standing waves, consisting of equal and opposite forward
and backward parts. This is consistent with the view taken by
Hollweg & Isenberg (2007). The important point, though, is that
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the reflection, if it is interpreted as such, is spatially confined to
the wake and does not include a finite reflection of energy back to
x = −∞. An alternate representation of the wake term β though
is the real integral displayed in Equation (A2), or equivalently
the Laplace integral β = 2 π−1

∫ ∞
0 e−rτ (1 + τ 2)−1/2 dτ . This

is an equally valid representation that suggests an in-place
oscillation, characteristic of solutions of the wave equation in
even-dimensional spaces.

If we turn on a harmonic driver at a particular time, we expect
the outermost wavefront to trail a wake which develops into the
β term. Once steady oscillations are set up, after the transient
has passed, all energy is propagated to infinity. The wavelike
and reverberation parts of H

(2)
0 (r) are plotted in Figure 10,

showing that the latter are most significant at small r (large x).
Asymptotically, β ∼ x/hπ as x → +∞, so the reverberation
takes the form of a straight “flapping” of magnetic field lines, as
seen in the animations accompanying Cally & Hansen (2011).
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