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ABSTRACT

The angular power spectrum of the cosmic microwave background temperature anisotropies is one of the most
important characteristics in cosmology that can shed light on the properties of the universe such as its geometry
and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from
an ensemble of the least foreground-contaminated square patches from the Wilkinson Microwave Anisotropy Probe
W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking
orthogonality in spherical harmonic analysis because we are able to mask out the bright Galactic plane region,
thereby rendering a direct measurement of the angular power spectrum. We test and confirm the Gaussian statistical
characteristic of the selected patches, from which the first and second acoustic peaks of the power spectrum are
reproduced, and the third peak is clearly visible, albeit with some noise residual at the tail.
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1. INTRODUCTION

The angular power spectrum of the cosmic microwave back-
ground (CMB) temperature anisotropies contains a wealth of
information about the properties of our universe. The physics be-
hind the shape of the power spectrum at different angular scales
is well understood (e.g., see Hu et al.), therefore allowing us to
distinguish different cosmological models. The power spectrum
possesses specific features, known as acoustic peaks, character-
izing compression and rarefaction of the photon-baryon fluid
around the decoupling epoch. The NASA Wilkinson Microwave
Anisotropy Probe (WMAP; Bennett et al. 2003a; Spergel et al.
2007; Hinshaw et al. 2009; Jarosik et al. 2011) has produced
results that have ushered in the era of “Precision Cosmology,”
including the angular power spectrum (Hinshaw et al. 2003,
2007; Norta et al. 2009; Larson et al. 2011), from which cos-
mological parameters are estimated to a high precision (Spergel
et al. 2003, 2007; Komatsu et al. 2009, 2011).

However, to retrieve the angular power spectrum, one must
separate the foreground contamination from our own galaxy
and extragalactic point sources in the observed data (Bennett
et al. 2003b; Hinshaw et al. 2007; Gold et al. 2009, 2011). The
standard treatment of eliminating galactic diffuse foreground
is through multifrequency cleaning, minimum variance opti-
mization for extracting the angular power spectrum, or known
foreground templates. Another issue arising from the fore-
ground contamination is the strong emission of the galactic
plane for which various masks are adopted by the WMAP sci-
ence team. The masking procedure and incomplete sky coverage
thus breaks the orthogonality in the spherical harmonic analysis,
which requires additional attention when obtaining the spherical
harmonic coefficients (Hivon et al. 2002; Oh et al. 1999; Ansari
& Magneville 2010).

Apart from the WMAP science team, only a few papers are
devoted to the extraction of the CMB power spectrum from
raw data (Saha et al. 2006, 2008; Samal et al. 2010; Basak &
Delabrouille 2012). They all adopt the methodology of internal
linear combination and implement quadratic minimization,

which not only minimizes the foreground contamination, but
also subtracts the power that is related to the chance correlation
between the CMB and foregrounds (Chiang et al. 2009).

In this paper, we present a simple method of direct measure-
ment of the CMB angular power spectrum from WMAP raw data,
the frequency band maps. By “direct” we mean circumventing
any foreground subtraction techniques and avoiding the issue of
incomplete sky coverage. We also use WMAP frequency band
maps, which are made possible for power spectrum extraction
after the Chiang & Chen (2011) estimate of the corresponding
window functions.

This paper is arranged as follows. In Section 2, we review
the flat sky approximation and then we discuss the issue
of foregrounds, instrument noise, and window function in
Section 3. We test the Gaussianity of the patches taken from
WMAP data in Section 4. We then employ the method in
Section 5, and we discuss the results in Section 6.

2. FLAT SKY APPROXIMATION

Standard treatment for whole-sky CMB spectral analysis
involves writing the temperature anisotropies as a sum of
spherical harmonics Y�m: T (θ, ϕ) = ∑

�

∑
m a�mY�m(θ, ϕ),

where θ and ϕ are the polar and azimuthal angles, respectively,
a�m ≡ |a�m| exp(iφ�m) is the spherical harmonic coefficient, and
φ�m is the phase. The strict definition of an isotropic Gaussian
random field (GRF) requires that the real and imaginary parts
of the a�m are mutually independent and both are Gaussian;
however, a more convenient definition is that the phases are
uniformly random on the interval [0, 2π ]. The power spectrum
can be estimated as C� = (2� + 1)−1 ∑

m |a�m|2.
However, to estimate the power spectrum from small square

patches, one can use the fast Fourier transform (FFT):

T (r) =
∑

k

ak exp

[
2πi(r · k)

N

]
, (1)

where r ≡ (θ, ϕ) and k ≡ (kθ , kϕ) if the patches are chosen on
the equator with the sides aligned with the spherical coordinates.
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The power spectrum from the patch is Ck ≡ 〈|ak|2〉, where the
angle brackets denote the average for integer k over all |ak|2 for
k − 1/2 � |k| < k + 1/2. The scaling relation between Fourier
wavenumber k and multipole number � is � = 2πk/L, where L
is the patch size. The angular power spectrum C� at multipole
number � is scaled from Ck at Fourier wavenumber k via

C�=2πk/L = L2Ck. (2)

If the signal is white noise, the scaling relation can be easily
understood as follows. For spherical harmonic analysis, C� =
4πσ 2

sky/Nsky, whereas, for FFT on a patch taken from the
sky, σ 2

patch = CkNpatch, where Nsky is the total pixel number
of the sphere and Npatch is the pixel number of the patch.
Since white noise is homogeneous, σ 2

patch = σ 2
sky, then C� =

4πCkNpatch/Nsky = CkL
2. Note that the scaling relation can be

applied with minimum error for patches centered at θ = π/2 if
one uses a nonequal area pixelization scheme.

According to the scaling relation, the largest scale (smallest
�) at which one can obtain the power is �min = 2π/L,3 then
the multiple numbers are sampled with the interval Δ� = 2π/L
down to the smallest scale, which is decided by the size of the
pixel p: �max = π/p. So, the disadvantage of estimating the
power spectrum from patches is that the sampling interval Δ� is
much larger than one, which can be viewed as intrinsic binning.

In Figure 1 we test the scaling relation of Equation (2). We
simulate a full-sky CMB map with WMAP best-fit ΛCDM model
and take 100 patches, each 24◦×24◦ with a pixel size of 3 arcmin.
One can see that the mean power spectrum from the 100 patches
fits nicely with the input power spectrum, and the error from
the discontinuous boundary condition usually present in data
analysis of square patches is negligible at the interested scales.
In the bottom panel we show the difference between the mean
and input spectrums. Although the error varies due to different
realizations for low multipoles, the trend is such that the error
from the flat sky approximation mainly appears at peaks and
troughs where the peaks are not high enough and the troughs
are not low enough, which is around 100 μK2.

3. DIRECTLY RETRIEVING THE CMB
POWER SPECTRUM

The signal Tν in the sky at frequency ν is a combination
of the CMB signal Tc and diffuse foregrounds (synchrotron,
free–free, and dust emission) plus extragalactic point sources,
altogether denoted as total foreground Fν . They are measured
with an antenna beam Bν :

Tν = (Tc + Fν) ⊗ Bν + Nν, (3)

where ⊗ denotes convolution and Nν is the instrument noise.
To reach the CMB power spectrum, we discuss below the three
parts of Equation (3): foreground contamination, noise, and the
window function.

3.1. Foreground Contamination and Dispersion Threshold

The NASA Cosmic Background Explorer has measured the
CMB temperature fluctuation at a level 10−5 with 10◦ FWHM

3 Usually, one associates multipole number � with a characteristic angular
scale 	 on the sphere via � = π/	 because a characteristic angular scale
(e.g., a scale between a cold and a hot spot) is one-half of one full wavelength,
i.e., 	 = L/2.

Figure 1. Test of the scaling relation of Equation (2) in the flat sky approxi-
mation. We simulate a full-sky CMB map with WMAP best-fit ΛCDM model
and take 50 patches of a 24◦ × 24◦ square with a pixel size of 3 arcmin. The
power spectra of the patches are scaled with a factor (2π/15)2 and the sampling
interval of the multipole numbers Δ� = 15. The scaling relation is shown in the
top panel. The dots are from 100 patches and the mean is denoted by big blue
dots. The mean power spectrum, after scaling according to Equation (2), fits
nicely with the input one. In the bottom panel, we show the difference between
the mean and the input spectrum, and one can see the error mainly comes from
peaks and troughs.

(A color version of this figure is available in the online journal.)

(Smoot et al. 1992). From Equation (3), the variance of the
measured Tν includes the foreground component:

σ 2
ν = σ 2

c + σ 2
Fν

+ σ 2
n + Cov

[
T sm

c , F sm
ν

]
+ Cov

[
T sm

c , Nν

]
+ Cov

[
F sm

ν , Nν

]
, (4)

where σ 2
c , σ 2

Fν
, and σ 2

n are the variance of the beam-convolved
CMB, beam-convolved foreground, and noise at frequency ν,
respectively, and the last three terms denote their covariances.
For an ensemble of small patches, the average

〈
σ 2

ν

〉 = 〈
σ 2

c

〉
+

〈
σ 2

n

〉
+

〈
σ 2

Fν

〉
�

〈
σ 2

c

〉
+

〈
σ 2

n

〉
. (5)

The CMB fluctuations (and noise) always persist in each patch,
but those from the foreground do not. Thus, we can choose
patches with lower variances because they contain less fore-
ground contamination, thereby providing a better estimation of
the CMB power spectrum. Therefore, one can use the dispersion
threshold σ th for controlling the foreground contamination level
among the patches.

The power spectrum is a spread of the variance into different
scales, so, from Equation (5), 〈Cν

k 〉 = (〈Cc
k〉 + 〈f ν

k 〉)Wν
k + 〈nν

k〉,
where Cc

k is the power spectrum of the CMB, Wν
k is the window

function, and Cν
k , f ν

k , and nν
k are the power spectrum of the band

signal, total foreground, and instrument noise of frequency ν at
wavenumber k = �L/2π , respectively. For the WMAP V and
W band where the CMB dominates over the foreground outside
the galactic plane, patches with variances below a threshold
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Figure 2. Histogram of the CMB fluctuation from 1000 24◦ ×24◦ patches taken
from simulated full-sky maps with a FWHM beam of 19 arcmin. The mean is
at 88.34 μK.

σ 2
ν < σ 2

th shall give

〈
Cν

k

〉 � 〈
Cc

k

〉
Wν

k +
〈
nν

k

〉
. (6)

We simulate WMAP V band (i.e., with a FWHM beam of
21 arcmin) full-sky CMB maps and take, in total, 1000 patches
of a 24◦ × 24◦ square and plot the histogram of the dispersion
σ in Figure 2. The mean lies at 88.34 μK, which provides an
indication of our choice of the dispersion threshold.

There is a concern that, by using variance as the criterion, we
select patches not only with less foreground contamination, but
also with covariances that are negative to reduce the variance,
thus creating bias. Of all the patches, the distributions of
the variances of the first three terms in Equation (4) have a
positive mean and spread, whereas those of the covariance
terms are distributed around zero due to the Gaussianity of
both the CMB and the noise. To see this, we take WMAP-
derived V-band foreground (smoothed to 1◦from the maximum
entropy method (MEM), WMAP simulated noise in the V band,4

and simulate ΛCDM CMB; also smoothed to 1◦). In the top
panels of Figure 3, we plot the histograms of the patches for
the six terms in Equation (4). We then add them together to
simulate the observed signal and plot the histograms of the six
components of the patches with threshold σ < 0.12. One can
see that patches with a larger-variance foreground component
are excluded in the process. More importantly, the negative tail
of the covariance term between the CMB and foreground is also
eliminated. The reason for this is that for a single patch the
variance of the foreground component is not independent of the
covariance foreground and CMB or of the covariance between
the foreground and noise, and both tails in the histogram of
the covariance between the CMB and foreground (orange) are
from highly non-Gaussian foreground components, which will
manifest themselves in high variances. Thus, when we exclude
patches with the higher-variance foreground, we simultaneously
eliminate negative covariances. The same argument applies to
tails of the covariance between the foreground and noise.

Another concern is that by choosing low-variance patches we
are choosing a CMB quiet area that might result in a lower power
spectrum. In Figure 4, we demonstrate that unless a significantly

4 Both are taken from http://lambda.gsfc.nasa.gov/product/map/current/.

low threshold is chosen (which would result in few patches),
using a low variance as a criterion still provides a fair sample
for estimating the power spectrum.

3.2. Cross-power Spectrum to Eliminate Noise

To eliminate the noise after choosing patches with low
variance, we can employ the cross-power spectrum (XPS) on
the same patch of sky at different frequency bands. XPS is a
quadratic estimator between two maps (or patches) a and b,
whose Fourier modes are ak and bk:

xab
k = 1

2

〈(
a∗

kbk + b∗
kak

)〉
, (7)

where ∗ denotes a complex conjugate and the angle brackets
have the same notation as in Equation (2). The advantage of
XPS as an unbiased quadratic estimator for the power spectrum
estimation lies in the fact that XPS returns with its usual power
spectrum 〈|ak|2〉 if a and b are of the same signal. If a and b are
uncorrelated, then XPS reduces the signal by (Chiang & Chen
2011) √〈(

Xk
ab

)2〉
√

AkBk

� 1√
2πk

, (8)

where Ak and Bk are the power spectrum of signals a and
b, respectively. The decreasing of the uncorrelated signal is
inversely proportional to the square root of the number of the
random walk, and it can be further decreased by 1/

√
LN with

binning L ≡ Δ� multipole numbers and averaging from N sets of
XPS. Therefore, XPS is useful in reducing uncorrelated signals
while preserving the correlated one, which is employed by
WMAP to extract the CMB spectrum by crossing the foreground-
cleaned maps from differencing assemblies (DA; Hinshaw et al.
2003, 2007; Norta et al. 2009; Larson et al. 2011).

For patches on the V and W band map with low variances,
hence a satisfied Equation (6), we can write aV

k = ac
kb

v
k + nv

k
and aW

k = ac
kb

w
k + nw

k , where ac
k is the Fourier mode of CMB,

bv
k and bw

k are that of the V and W band beam, and nv
k and

nw
k are that of the V and W band noise, respectively. In XPS,

the correlated signal 〈|ac
k|2bv

kb
w
k 〉 is what we look for, whereas

those uncorrelated terms between CMB and noises Xk
cw, Xk

cv

and between noises Xk
vw will be decreased according to

Equation (8).

3.3. Window Functions of the Frequency Band Maps

The window functions of the WMAP DA maps are directly
measured from Jupiter (Page et al. 2003; Hill et al. 2009) and
are available at the official Web site.5 The frequency band maps,
however, are combined from the DA maps, so the corresponding
window functions do not exist. Note that the window functions
of the DA maps have different profiles even at the same
frequency band, particularly for the W frequency band. It is
then demonstrated in Chiang & Chen (2011) that the window
functions of the frequency band maps can be estimated from
bright point sources, and they show that the window function of
the W band map takes the form of W1 DA, whereas the V band
takes the form of V1 or V2 DA.

5 http://lambda.gsfc.nasa.gov/product/map/current/
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Figure 3. Demonstration of foreground elimination by choosing low-variance patches. We simulate the measured signal with the best-fit ΛCDM CMB, MEM-extracted
foreground, and simulated noise in the V band. The histograms of the six terms from Equation (4) are plotted in the top panels: variance of the CMB (red), foreground
(blue), noise (green), covariance between the CMB and foreground (orange), between the CMB and noise (light blue), and between the foreground and noise (black),
where (b) and (c) are blown-up graphs of (a). After setting criterion σ = 0.12, we plot the histograms of the 49 selected patches in the bottom panels, where (e) and
(f) are blown-up graphs of (d). In selecting the low-variance patches, we exclude the high-variance, non-Gaussian foreground (comparing the blue curve in (a) and
(d)) and the two tails of the covariance between the foreground and CMB (comparing the orange curve in (b) and (e), and in (c) and (f)).

(A color version of this figure is available in the online journal.)

Figure 4. Demonstration of CMB quiet areas from a low variance. From a simulated V band CMB map (high � are smoothed by a FWHM beam of 21 arcmin), we set
a different threshold σ th to see if choosing CMB quiet areas affects the estimation of the power spectrum. In the left panel, we choose a threshold σ th = 82 μK with
only three patches in the plot. The mean power spectrum (big blue dot) is indeed lower than the input one (solid line), particularly for low �. In the middle panel, we
plot the nine patches that have σ lower than 84 μK. On the right panel with σ th = 88 μK (the mean from Figure 2), one can see that the mean power spectrum from
34 patches fits well with the input one.

(A color version of this figure is available in the online journal.)

4. GAUSSIANITY OF THE PATCHES

The simplest inflation theory predicts the CMB anisotropies,
amplified from quantum fluctuations, and constitute a GRF
(Bardeen et al. 1986; Bond & Efstathiou 1987). If the CMB
is indeed statistically isotropic Gaussian, the angular power
spectrum furnishes a complete statistical description. One way
to test Gaussianity is through phases. The central limit theorem
guarantees that a superposition of a large number of harmonic
modes will be close to Gaussian as long as the phases from
harmonic analysis are uniformly random in [0, 2π ]. Based on the

random phase hypothesis, we can test Gaussianity of the selected
patches by employing the Shannon entropy of Fourier phases
S = −∑

pi ln piδφ, where piδφ is the distribution probability
at the ith interval in [0, 2π ] and

∑
piδφ = 1. It can be

used to test for uniformity: p ≡ p(φk) and independence
(nonassociation): p ≡ p(D) where D(Δk) = φk+Δk − φk

(Chiang & Coles 2000; Coles & Chiang 2000). If the phases are
uniformly random, then pi = (2π )−1 and the entropy reaches
a maximum Smax = ln 2π . In Figure 5, we plot the histogram
of the Shannon entropy for phase difference Δk = 1 and 2. We
also plot 1000 Gaussian patches to test significance. If we set
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Figure 5. Normalized histogram of the Shannon entropy for Fourier phase association from the 47 selected patches. The phases of the Fourier modes that are equivalent
to multipole number � � 1050 are taken for calculation. The Shannon entropy S of the phase association between Δk = 1 is shown on the left panel and Δk = 2
is shown on the right. The normalized histogram for the 47 patches is shown in solid curves. For comparison, we plot in the dashed curve the histogram from 1000
24◦ × 24◦ patches taken from full-sky Gaussian maps. With a significance level at 0.001, none of the 47 patches are rejected by the Gaussian hypothesis via the
Shannon entropy.

the significance level at 0.001, then none of the 47 patches are
rejected by the Gaussian hypothesis.

5. ANGULAR POWER SPECTRUM OF THE CMB FROM
THE WMAP FREQUENCY BAND MAPS

In this section, we apply our method on WMAP frequency V
and W band maps to extract the CMB angular power spectrum
via Fourier analysis on the 24◦ ×24◦ patches. Although one can
take patches with a smaller size and render more patches from
the entire sky, this would increase the noise power spectrum level
and, consequently, the XPS residual shown in Equation (6).

We first take the WMAP V band and choose 47 patches with
σ < 98μK (after deleting the bright point sources exceeding 5σ
of the patch). Note that in Figure 2 the mean of the 1000 patches
is σ = 88.34 μK, but those taken in real maps with pixel noise
have higher values. Before extracting the power spectrum, we
test the Gaussianity of the 47 patches by employing the Shannon
entropy of Fourier phases for their association. In Figure 5, we
show the normalized histogram of the Shannon entropy for the
associated phases for Δk = 1 on the left and 2 on the right. We
also plot the histogram from 1000 24◦ × 24◦ Gaussian patches.

We then calculate the XPS from the same patches of the V
and W band to eliminate the noise. They are then deconvolved
by (

√
WV WW )−1, where WV and WW are the window function

of the V and W frequency band map, respectively. The retrieved
angular power spectrum is shown in Figure 6. One can see that
our simple method yields the CMB power spectrum with a clear
first and second Doppler peak, which matches the result from
the WMAP science team. The third peak is also visible, albeit
with a higher amplitude at the tail than theirs, which is due to the
residual from XPS. In the bottom panel, we plot the difference of
our mean power spectrum and the binned one from the WMAP
science team. In addition, we the result from our method with
the WMAP power spectrum, and we correct the difference with
the systematic error from the flat sky approximation shown
in the bottom panel of Figure 1. One can see that the difference
at multipole range � ∼ 150–500 is reduced.

6. DISCUSSION

Since the release of the WMAP data, full-sky analysis has
become the standard method for estimating the power spectrum

Figure 6. Direct measurement of the CMB angular power spectrum. From
WMAP V band map, we choose patches with σ < 98 μK (after eliminating
bright point sources), and we take the cross-power spectra of the patches between
WMAP V and W band. Top panel: after deconvolution of the window functions,
the power spectra of the 47 patches are shown in the black dot and the mean
power spectrum in the big blue dot. For comparison, we plot the power spectrum
binned (Δ� = 15) (big orange dot) from that of the WMAP science team. The
best-fit ΛCDM model is in the solid line. Bottom panel: we show the difference
of our the mean power spectrum and the binned one from the WMAP science
team (green dot). To compare the result from our method with the WMAP power
spectrum, we correct the difference with the systematic error from the flat sky
approximation shown in the bottom panel of Figure 1 (black dot).

(A color version of this figure is available in the online journal.)

because it has offered for the first time a detailed measurement
at super-horizon scales. The method we present in this paper
utilizes small patches, so it has an intrinsic limitation on
the largest scale we can measure. Nevertheless, it adopts a
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completely different methodology and provides a more intuitive
way to obtain the power spectrum on all but the very largest of
scales.
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