Table of contents

Volume 206

2017

Previous issue Next issue

29th Symposium of Malaysian Chemical Engineers (SOMChE) 2016 1–3 December 2016, Miri, Sarawak, Malaysia

Accepted papers received: 26 May 2017
Published online: 21 June 2017

Preface

011001
The following article is Open access

EDITORIAL NOTE

29th Symposium of Malaysian Chemical Engineers (SOMChE) 2016 was held in Miri Marriott Resort & Spa, Miri, Sarawak, Malaysia from 1st to 3rd December 2016. This symposium was jointly co-organised by Department of Chemical Engineering, Curtin University Malaysia and Institution of Chemical Engineers (IChemE), Malaysia. The theme of SOMChE 2016 is "Engineering Solutions for Sustainable Development". Population growth and industrial development place increasing pressures on the available resources contributing to challenging provision of food, water and energy supplies, environmental issues and climate change. These grand challenges for humanity require immediate solutions in sustainable ways without harming the environment. Therefore, SOMChE 2016 brought together a community of chemical and process engineers and other related engineers from Malaysia and South East Asia region and beyond to discuss the latest advances and best practices of engineering solutions in industry and academic for sustainable food, water, energy and environment. More than 150 delegates, including international participants from Indonesia, Vietnam, Philippines, Brunei, Singapore, India, Iran, Australia and Japan, attended and presented their papers at the symposium. This proceeding is compilation of the selected, accepted papers and covers 9 subject areas: Carbon Dioxide Capture Technology (CA), Engineering Education and Other Relevant Topics (ED), Energy (EN), Food Process Engineering (FD), Material Science and Engineering (MA), Process System Engineering (PS), Reaction Engineering (RE), Separation Processes (SE) and Waste and Water Treatment & Management (WT). Each paper had undergone double peer review to ensure its quality. We believe that the proceedings will serve as a book of knowledge and an essential literature, which will lead to not only scientific and engineering progress but also other novel processes and new products. SOMChE 2016 might not be successful without the supports from various parties. Therefore, we would like to thank the participants, organising committee, sponsors, and all those who have contributed directly and indirectly in making this symposium a big success.

Editors: Dr. Agus Saptoro; Dr. Wee Siaw Khur; Dr. Lau Shiew Wei; Dr. Wendy Pei Qin Ng; Dr. Mahmood Anwar; Ms. Christine Yeo; Dr. Khor Ee Huey Curtin University Malaysia

List of Figures, Activities can be found in this pdf

011002
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Carbon dioxide capture technology

012001
The following article is Open access

, , and

In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

012002
The following article is Open access

, , , , and

CO2 storage in suitable geologic media has been recognized as a major strategy taken to have a carbon free environment. This practice can be done in depleted reservoirs as well as brine aquifers where sufficient storage capacity is available to hold carbon dioxide for thousands of years. Storage in an aquifer is often achieved through four trapping mechanisms, among which capillary trapping is a rapid and effective phenomenon. Although, there have been studies pointing out the relationships of different storage related factors with capillary trapping, more studies are still required to recognize other parameters linked to this effective trapping mechanism. The aim of this paper is to evaluate the effect of temperature and mineral precipitation on trapping mechanisms of heterogeneous aquifer. A dynamic numerical simulation was run by the commercial reservoir simulator Eclipse300 to simulate 30 years of CO2 injection. A synthetic but realistic model of a geologic formation was considered to evaluate the efficiency of trapping mechanisms under different temperature and mineral precipitation conditions. The results obtained indicated that trapping mechanisms are affected by both temperature and mineral precipitation in a short and long terms - temperature is indirectly affecting the trapping ability regardless of the precipitation effect. However, precipitation have a severe impact on injectivity as well as trapping mechanisms in the long term. Although some practical conclusions were drawn, the results obtained and presented in this study may need experimental verification before taking into serious consideration.

012003
The following article is Open access

, , and

In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 – 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 – 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

012004
The following article is Open access

, , and

Due to carbon dioxide role in global warming, low CO2 emission limits have been established in recent years. This has led to a variety of studies on CO2 removal approaches. In this study, a VSA cycle consisting of two packed beds is considered for CO2 removal from flue gas. An atmospheric stream containing 20 CO2 and 80 N2 is fed to the beds at 50°C. Two adsorbents, namely Zeolite 13X and activated carbon were selected to compare their performance. Due to the monolayer adsorption of CO2 and N2 on these adsorbents, the Toth isotherm was used for equilibrium adsorption estimation. A quasi-second order model was considered for the mass transfer rate prediction due to low CO2 concentration. The modeling results showed that the average absolute deviation for equilibrium adsorption capacity prediction was 2, and the CO2 breakthrough time curve was predicted with less than 2.5 deviation. Based on the results, the VSA cycle time for zeolite 13X bed will be 3.5 times of the activated carbon bed. Another advantage of Zeolite 13X is that in each process cycle, 80 of adsorbent will be used, while only 74 of activated carbon in beds is used. The advantage of activated carbon bed is its better regeneration capability, since the activated carbon will be regenerated 5 more than zeolite 13X at a vacuum pressure of 0.02bar.

012005
The following article is Open access

, and

Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

Engineering education and other relevant topics

012006
The following article is Open access

, and

Process intensification (PI) is a commonly used term in the chemical processing industry. When the concept of PI was first introduced in the late 1970s within the Imperial Chemical Industries (ICI) company, the main impetus was to reduce the processing cost without impairing the production rate. Neoteric media present as alternatives in chemical processing include gas-expanded liquids, ionic liquids, subcritical water, and combination of gas-expanded liquids and ionic liquids. The applications of neoteric media include particle engineering for improved bioavailability, controlled release of therapeutic implants, pharmaceutical formulations, extraction of natural products, nano-carriers for drug delivery, sterilisation of implants, and chemical reactions. This paper provides an overview of the use of these neoteric media.

012007
The following article is Open access

, and

Depletion of natural oil reserves has forced oil industries to focus on tertiary recovery methods to extract residual oil after exhausting the primary and secondary methods. Among the Enhance Oil Recovery (EOR) technologies, Chemical EOR (CEOR) is gaining popularity. Despite research efforts to increase the recovery using CEOR, increasing complexity in extraction methods are encountered. With changes in reservoir conditions (high temperature, pressure and salinity) and crude oil properties, existing chemicals used in CEOR, such as alkali, polymers and surfactants do not function desirably. These conditions have detrimental effects on the performance of EOR chemicals, like precipitation, degradation, etc. Development and utilization of effective EOR hybrids such as surfactant-polymer, polymer-nanomaterial, surfactant-nanomaterial and polymer-surfactant-nanomaterial had prevailed the effects of harsh reservoir conditions, and their applications in oil fields in recent years have increased the success of EOR. The synergistic effects between the hybrid components play major roles in improving the properties that could withstand the effect of extreme reservoir conditions and changes in crude oil properties. Therefore, this paper is aimed at reviewing recent advances in CEOR hybrid technologies, and discusses the basic concept, applications, advancement and limitations of different hybrid materials used in CEOR processes.

012008
The following article is Open access

, , , and

Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme loading, temperature and reaction time on the production of glucose from fibre pressed oil palm frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline pretreatment at 4.42 (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. Characterization of raw FPOPF comprised of 4.5 extractives, 40.7 glucan, 26.1 xylan, 26.2 lignin and 1.8 ash, whereas for pretreated FPOPF gave 0.3 extractives, 61.4 glucan, 20.4 xylan, 13.3 lignin and 1.3 ash. From this study, it was found that the best enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 (w/w) of glucan loading, temperature at 55 □ and 72 hours of reaction time. The model obtained was significant with p-value <0.0001 as verified by the analysis of variance (ANOVA). The coefficient of determination (R2) from ANOVA study was 0.9959. Overall, it can be concluded that addition of Sacchariseb C6 during enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it potential for industrial application. This glucose can be further used to produce high-value products.

012009
The following article is Open access

, and

Three principal elements in the production field of chemical/petrochemical industry are (i) Production Units, (ii) Production Plant Personnel and (iii) Production Support System (computer system introduced for improving productivity). Each principal element has production process resilience, i.e. a capability to restrain disruptive signals occurred in and out of the production field. In each principal element, risk assessment is indispensable for the production field. In a production facility, the occupational safety and health management system (Hereafter, referred to as OSHMS) has been introduced to reduce a risk of accidents and troubles that may occur during production. In OSHMS, a risk assessment is specified to reduce a potential risk in the production facility such as a factory, and PDCA activities are required for a continual improvement of safety production environments. However, there is no clear statement to adopt the OSHMS standard into the production field. This study introduces a metric to estimate the resilience of the production field by using the resilience generated by the production plant personnel and the result of the risk assessment in the production field. A method for evaluating how OSHMS functions are systematically installed in the production field is also discussed based on the resilience of the three principal elements.

012010
The following article is Open access

, and

With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

Energy

012011
The following article is Open access

, , and

Manipulation of the surface tension is useful in improving heat and mass transfer performances of nanofluids in thermal systems. In our previous study, the effect of microwave irradiation on the reduction of surface tension of nanofluids (Fe2O3) was found even after it was turned off. In this study, a synergistic effect of microwave irradiation and surfactant addition (SDS) was investigated to obtain further surface tension reduction of nanofluid. Experimental results indicate that surfactant addition is effective for wider particle number density in reducing surface tension, and the reduction level strongly depends on the surfactant concentration. On the other hand, effect of the number density on the surface tension reduction is less significant for the same concentration of surfactant. From the obtained data, a combination of microwave irradiation and surfactant addition shows potential to be used as a promising method to manipulate surface tension of nanofluids.

012012
The following article is Open access

, and

Pyrolysis of wood is the possible path for converting biomass to higher valuable products such as bio-oil, bio-char and bio-gas. Bio-oil or liquid biofuels have higher heating values so it can store and transport more conveniently. The by-products bio-char and bio-gas, which can be used to provide heat required in the process. This work focused on the formation, analysis and characterization of bio-oil which was obtained from the mixed wood pyrolysis. A GC-MS technique was used for the determination of families of lighter chemicals form pyrolyzed oil. Karl fisher titration and other analytical methods were used for the characterization of pyrolyzed oil. In all there were sixty-six compounds found in the GC-MS analysis of bio-oil and the major compound was acetic acid (19.06 wt ), formic acid (4.90 wt ) 1,2-benzenediol (4.43 wt ) and furfural (3.46 wt ). Along with this analysis, pyrolyzed oil was characterized by calculating its viscosity, density, calorific value, acid value, fire point, flash point, carbon, hydrogen, nitrogen, ash and water content in it. Most of the above mention properties of bio-oil matches with the properties of crude oil except it show more water content in it.

012013
The following article is Open access

and

The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 − 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.

012014
The following article is Open access

, and

Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed pyrolysis reactor. The reactor is made of stainless steel with dimensions of 76 mm in diameter and 90 cm in length. Rice husk is collected locally from Brunei–Muara district of Brunei Darussalam which is processed for pyrolysis. The particles are selected in the millimeter range. It is oven-dried at 105°C for 6 hours after being air-dried prior to pyrolysis. The reactor bed is heated by means of saw-dust in a biomass source heater. A temperature range of 390-410°C is maintained with an apperent vapor residence time of 30 min. Nitrogen gas is passed through the reactor system to make the atmosphere inert. A water-cooled condenser is used to derive bio-oil from the condensable vapors. The system is subjected to pyrolysis for a running time of 60 min. The products obtained are solid bio-char, liquid bio-oil and pyrolytic bio-gases. The solid char yield is found to be 45 by weight of solid biomass feedstock and the liquid product yield is found to be 29 by weight of solid biomass feedstock. The rest is gas flared into the atmosphere. The bio-char is retained in the reactor and collected at the end of the experimental run. The bio-char is found to be black in color retaining its original shape. The bio-char product is subjected to energy analysis for its higher heating value (HHV) by means of an oxygen bomb calorimeter. It is found to be 20.3 MJ/kg. The density of the bio-char is found to be 238.5 kg/m3 with an energy density of 4.85 GJ/m3.

012015
The following article is Open access

, , , and

Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

012016
The following article is Open access

, , and

Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound – guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.

012017
The following article is Open access

, , , , and

This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat-1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

012018
The following article is Open access

, and

The depletion of energy resources has triggered worldwide concern for alternative sources, especially renewable energy. Microalgae biomass offers the most promising feedstock for renewable energy because of their impressive efficient growing characteristics and valuable composition. Simple cell structure of the microalgae would simplify the pretreatment technology thus increase the cost-effectiveness of biofuel production. Scenedesmus dimorphus is a carbohydrate-rich microalgae that has potential as biomass for bioethanol. The cultivation of Scenedesmus dimorphus under aeration of carbon dioxide enriched air resulted 1.47 g/L of dry biomass with composition of 12 w/w total lipid, 53.7 w/w carbohydrate and 17.4 protein. Prior to ethanolic fermentation with Saccharomyces cerevisiae, various pre-treatment methods were investigated to release and degrade the complex carbohydrate in cell biomass thus obtaining the maximal amount of digestible sugar for ethanolic yeast. In this study, sulfuric acid was used as hydrolysis agent while amyloglucosidase as enzymatic agent. Dried biomass via hydrothermal acidic hydrolysis yielded sugar which is about 89 of total carbohydrate at reaction temperature of 125 °C and acid concentration of 4 v/v. While combination of organosolv treatment (mixture of methanol and chloroform) with enzymatic hydrolysis yielded comparable amount of sugar with 0.568 g glucose/g treated-biomass. In this study, the significant information in pre-treatment process ensures the sustainability of the biofuel produced.

012019
The following article is Open access

and

This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

012020
The following article is Open access

, and

The production of biofuels using conventional fermentation feedstocks, such as sugar-and starch-based agricultural crops will in the long-term lead to a serious competition with human-animal food consumption. To avoid this competition, it is important to explore various alternative feedstocks especially those from inedible waste materials. Potentially, fruit wastes such as damaged fruits, peels and seeds represent alternative cheap feedstocks for biofuel production. In this work, an experimental study was conducted on ethanol production using mixed cassava and durian seeds through fermentation by Saccharomyces cerevisiae yeast. The effects of pH, temperature and ratio of hydrolyzed cassava to durian seeds on the ethanol yield, substrate consumption and product formation rates were analyzed in the study. In flask-scale fermentation using the mixed cassava-durian seeds, it was found that the highest ethanol yield of 45.9 and a final ethanol concentration of 24.92 g/L were achieved at pH 5.0, temperature 35°C and 50:50 volume ratio of hydrolyzed cassava to durian seeds for a batch period of 48 hours. Additionally, the ethanol, glucose and biomass concentration profiles in a lab-scale bioreactor were examined for the fermentation using the proposed materials under the flask-scale optimum conditions. The ethanol yield of 35.7 and a final ethanol concentration of 14.61 g/L were obtained over a period of 46 hours where the glucose was almost fully consumed. It is worth noting that both pH and temperature have significant impacts on the fermentation process using the mixed cassava-durian seeds.

012021
The following article is Open access

, , , and

A full factorial design (FFD) approach was conducted to assess the effect of four factors, namely flow rate, duty cycle, amplitude, and treatment time of ultrasonic regimens towards Escherichia coli harbouring lipase. The 22 experiments were performed as the following values with six replicates of centre point: flow rate (0.1, 0.2, and 0.3 L/min), duty cycle (0, 20, and 40 ), amplitude (2, 6, and 10), and treatment time (10, 35, and 60 min). The FFD was employed as preliminary screening in shake flask cultivation to choose the significant factors (P< 0.05) for further optimisation process. In this study, zero duty cycle signified non-sonication of amplitude and no treatment time effect to the E. coli culture. Also, the designated flow rate and amplitude accordingly showed no effect towards the amount of dry cells weight (DCW). DCW1 was found significantly degraded after the exposure of high duty cycle and treatment time as other factors remained constant. Whereas for the lipase activity, no significant difference was observed in any main factors or interactions. Paired samples t-test confirms the result at a p-value of 0.625. This experimental study suggests the direct and continuous approach of sonication caused an adverse effect on the cells culture density.

012022
The following article is Open access

, , and

This paper features the use of nature's element as a tool to combat current global issues on environment. Through research works by TNB Research Sdn. Bhd. (TNBR), marine phototrophic microalgae is used in reducing CO2 emissions from its fossil-fuel based power plants using. The research program commenced in 2011 with the aim to develop capacity, capability and facilities in biological CO2 fixation. The research program focuses on improving and enhancing the CO2 fixation through four core measures; namely species selection, nutrient optimization, flue gas admission and photobioreactor (PBR) design and engineering. The measures lead to the migration and evolution of culture facilities from laboratory conditions to outdoor, from shake flasks to 6 x 250 liter pilot PBR facility at a live coal-fired power plant, from mono species to consortium of species. Increment of CO2 fixation rates is summarized with discussion on comparisons of other achievements reported elsewhere. A considerable amount of work on analysing the bioactive compound present in the algae – protein, amino acids, carbohydrate, lipid, fatty acids - and its encouraging results, as an impetus towards sustainable development, will also be shared. Premises and observations from various microalgae research works are collated and presented in a manner sufficient to highlight the eminent roles of this tiny creature to become our mentor in providing some solutions to our worldly problems.

012023
The following article is Open access

, , and

Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

012024
The following article is Open access

, , and

The solid oxide fuel cell is one of the promising technologies for future energy demand. Solid oxide fuel cell operated in the single-chamber mode exhibits several advantages over conventional single oxide fuel cell due to the simplified, compact, sealing-free cell structure. There are some studies on simulating the behavior of this type of fuel cell but they mainly focus on the 2D model. In the present study, a three-dimensional numerical model of a single chamber solid oxide fuel cell (SOFC) is reported and solved using COMSOL Multiphysics software. Experiments of a planar button solid oxide fuel cell were used to verify the simulation results. The system is fed by methane and oxygen and operated at 700°C. The cathode is LSCF6482, the anode is GDC-Ni, the electrolyte is LDM and the operating pressure is 1 atm. There was a good agreement between the cell temperature and current voltage estimated from the model and measured from the experiment. The results indicate that the model is applicable for the single chamber solid oxide fuel cell and it can provide a basic for the design, scale up of single chamber solid oxide fuel cell system.

012025
The following article is Open access

, , , and

Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper

012026
The following article is Open access

, , , and

The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

012027
The following article is Open access

, , and

This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .

012028
The following article is Open access

, , , and

Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 – stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

012029
The following article is Open access

, and

The onset of transient convection in non-Newtonian liquid immersing porous media was simulated using a Computational Fluid Dynamics (CFD) package for the thermal boundary condition of Fixed Surface Temperature (FST). Most of the simulated values of stability criteria were found to be in good agreement with the predicted and theoretical values of transient critical Rayleigh number for non-Newtonian liquid defined by Tan and Thorpe (1992) for power-law fluids. The critical transient Rayleigh numbers for convection in porous media were found to be in good agreement with theoretical values by using apparent viscosity µapp at zero shear. The critical time and critical depth for transient heat conduction were then determined accurately that

012030
The following article is Open access

, , and

This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

012031
The following article is Open access

, and

A dual-chamber microbial fuel cell (MFC) was constructed with Pseudomonas aeruginosa as biocatalyst to facilitate substrate conversion and, consequently, low-level energy generation. To simulate a wastewater situation with BOD and heavy metals contamination, glucose and Fe3+ and Cr6+ were used as substrate and heavy-metal spikes, respectively. The effects of varying substrate concentrations (150 ppm, 300 ppm, 600 ppm) and heavy metal loads (10 ppm, 50 ppm, 100 ppm) on overall power generation were evaluated. The presence of Cr6+ in the anode compartment decreased the potential from 565 to 201 mV (i.e., lowest value achieved at highest Cr6+ concentration of 300 ppm). On the other hand, replacing Cr6+ with Fe3+ as electron acceptor resulted in substantial increase in measured potential (i.e., from 565 to 703 mV). Increasing glucose concentrations resulted in longer time to reach constant open circuit voltage. A maximum potential of 606 mV was achieved at 1200 ppm glucose. Incorporating Pseudomonas aeruginosa increased the potential from 256 to 592 mV. On the basis of these results, a microbial fuel cell feeding on wastewater can be an important potential technology for generating low-level energy

012032
The following article is Open access

, and

Lipase immobilization for biodiesel production is gaining importance day by day. In this study, lipase from Burkholderia cepacia was immobilized on activated support materials namely rice husk and egg shell membrane. Both rice husk and eggshell membrane are natural wastes that holds a lot of potential as immobilization matrix. Rice husk and eggshell membrane were activated with glutaraldehyde. Lipase was immobilized on the glutaraldehyde-activated support material through adsorption. Immobilization efficiency together with enzyme activity was observed to choose the highest enzyme loading for further stability studies. Immobilization efficiency of lipase on rice husk was 81 as compared to an immobilization efficiency of 87 on eggshell membrane. Immobilized lipase on eggshell membrane exhibited higher enzyme activity as compared to immobilized lipase on rice husk. Eggshell membrane also reported higher stability than rice husk as immobilization matrix. Both types of immobilized lipase retatined its activity after ten cycles of reuse. In short, eggshell membrane showed to be a better immobilization platform for lipase as compared to rice husk. However, with further improvement in technique of immobilization, the stability of both types of immobilized lipase can be improved to a greater extent.

012033
The following article is Open access

, , , and

This paper investigates the flow dynamics behind a flexible finite cylinder in a single-phase flow using a water tunnel. The cylinder was individually submerged in water at ReD = 4000, 6000 and 8000. The cylinder investigated has a AR = 10 and 16 and is made of EVA in order to achieve the lower stiffness for flexibility. A same AR of its aluminium rigid cylinder was investigated to serve as a benchmark to the flow dynamics behind a flexible cylinder. The results the downwash that hinders the transportation of vortices to the downstream was diminished. As a direct consequence of this phenomenon, the turbulence production has seen significant improvement for flexible finite cylinder.

012034
The following article is Open access

, , , , and

Fresh oil palm fruit bunches (FFB) arriving at a palm oil mill are graded manually and randomly for ripeness classification by counting the number of empty fruit sockets (EFS) found in each bunch before processing. FFBs with at least ten EFS are classified as ripe bunch, FFBs with less than ten EFS are classified as under-ripe, while bunches without any EFS are classified as unripe. The aim of the present study is to determine the composition of sugars in the abscission of these three groups of FFBs by monitoring their sugars composition. The bunches were grouped according to the number of empty fruit sockets: (i) nil; (ii) 1-9; (iii) ≥10 as unripe, under-ripe and ripe bunches, respectively. Non-structural, structural and water-soluble sugars extracted from the abscission zone were analyzed. The principal component analysis (PCA) based on various sugars compositions revealed some natural clustering among the samples. Bunches with more than one empty fruit sockets were distinguished from the others using glucose, sucrose and oligomers. In conclusion, analysis of sugars composition of the abscission zone could potentially be used as a chemical marker to differentiate those bunches at different stages of ripeness.

Food Process Engineering

012035
The following article is Open access

, , , and

Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

012036
The following article is Open access

, , and

The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

012037
The following article is Open access

, , , and

The ability of spray dryer in producing full cream milk at different inlet temperatures and the effectiveness of empirical model used in order to interpret the drying process data is evaluated in this study. In this study, a lab-scale spray dryer was used to dry full cream milk into powder with inlet temperature from 100 to 160°C with a constant pump speed 4rpm. Peleg empirical model was chosen in order to manipulate the drying data into the mathematical equation. This research was carry out specifically to determine the equilibrium moisture content of full cream milk powder at various inlet temperature and to evaluate the effectiveness of Peleg empirical model equation in order to describe the moisture sorption curves for full cream milk. There were two conditions set for this experiments; in the first condition (C1), further drying process of milk powder in the oven at 98°C to 100°C while the second condition (C2) is mixing the milk powder with different salt solutions like Magnesium Chloride (MgCl), Potassium Nitrite (KNO2), Sodium Nitrite (NaNO2) and Ammonium Sulfate ((NH4)2SO4). For C1, the optimum temperature were 160°C with equilibrium moisture content at 3.16 weight dry basis and slowest sorption rates (dM/dt) at 0.0743 weight dry basis/hr. For C2, the best temperature for the mixture of dry samples with MgCl is at 115°C with equilibrium moisture content and sorption rates is -78.079 weight dry basis and 0.01 weight dry basis/hr. The best temperature for the mixture of milk powder with KNO2 is also at 115°C with equilibrium moisture content and sorption rates at -83.9645 weight dry basis and 0.0008 weight dry basis/hr respectively. For mixture of dry samples with NaNO2, the best temperature is 160°C with equilibrium moisture content and sorption rates at 84.1306 weight dry basis and 0.0013 weight dry basis/hr respectively. Lastly, the mixture of dry samples with ((NH4)2SO4 where the best temperature is at 115°C with equilibrium moisture content -83.8778 weight dry basis and sorption rates at 0.0021 weight dry basis/hr. The best temperature selected best on the lowest moisture content formed and also the slowest sorption rates.

012038
The following article is Open access

, and

This study was performed to analyze the friability, hardness and fiber content of fiber enriched milk tablet derived from five different local fiber sources such as carrot, spinach, dragon fruit, mango and watermelon. Cow milk was mixed to complement with the tablet as a protein source. The powder were spray dried at 100°C, 120°C and 140°C and freeze dried at -60°C. The mixture of fruits and milk were made into equal ratio with the addition of 15 maltodextrin as a carrier. Tablets formed were used for friability and hardness test while dried powder were used for fiber content analysis. Dragon fruit tablet dried at 140°C have the highest friability with 11. 42 of weight loss. The second highest friability was spinach tablet dried at 100°C and 120°C drying temp erature with 9.30 and 9.28 respectively. The lowest friability was exhibited by carrot, mango and watermelon tablet at 100°C and dragon fruit at 120°C while carrot and spinach at 140°C. In contras t, none of the freeze dried tablets showed any weight loss hence they are not friable. For hardness test, all of the freeze dried showed to have higher tensile strength than spray dried, where carrot showed to be the highest at 2.27 Newton and the lowest were spray dried mango at 0.16 Newton. In fiber content analysis, freeze dried mango have the highest fiber content followed by freeze dried carrot and 140°C s pray dried carrot. It can be concluded that the higher the spray dry temperature, the more friable is the tablet. While, high friability leads to lower hardness of tablets. In terms of fiber content, the higher the spray dry temperature, the lower the fiber content found.

012039
The following article is Open access

, , , , , , , , , et al

Recently, the importance of sago starch has increased, as it has become one of the main economically important agricultural crops to the most Southeast Asia countries. In the present work, an analysis on drying process of sago starch (Metroxylon sagu Rottb.) underwent various temperature has been made by using four empirical equations. The main goal of this analysis is to suggest the most accurate equation, in order to model and simulate the mechanical drying of sago starch. The experimental investigations were carried out in a gravity convection lab oven; and ±50g of sago starch (sample heights of 1 cm) was dried through four different temperatures, which were 50, 60, 70 and 80ºC. The effect of drying temperature on the drying kinetics, as well as various qualities attributes of sago starch, such as microstructure, colour and functional properties were investigated. The results suggested that drying temperature has significant effect on sago starch drying kinetic; therefore, drying temperature would be the basis to select drying condition. Meanwhile, it was found that the various drying temperature ranging from 50 to 80ºC affected the product quality especially in term of colour.

012040
The following article is Open access

, , and

Food industry in Malaysia which used fruits as one of the raw material such as the production of fruit juices, concentrates, jams and dried fruits, the main wastes of the production are the peel and the seed of the fruit. Nowadays, people have shown the interests to study the antioxidant content in the fruit wastes. All kind of fruits are believed to contain high amount of natural antioxidant properties such as vitamins, phenol, flavonoid and carotenoid. Thus, this paper presented the work done by researcher on antioxidant activity in the peel especially on local fruit such as mango peel, watermelon rind, banana peel and mangosteen pericarp. The review shows that the peel of the fruit is a good source of antioxidant and other bioactive compounds which have many benefits especially towards human health.

012041
The following article is Open access

, , and

In this study, two processes (fermentation and drying) were conducted on Clicanthus Nutans Lindau, which is well-known for its antioxidant activities. The aim of this research is to investigate the effects of these processes towards the Total Phenolic Content (TPC), antioxidant activity and the crude yield of the leaves. For the fermentation process, the fermentation time is varied for 6, 12, 24, 48 and 72 hours. For drying, oven drying (40, 45 and 50°C, freeze-drying and shade drying are investigated. Blanching was also conducted for oven dried samples (90°C for 1 minute). It was found that 12 hours fermentation produced the highest yield corresponding to Total Phenolic Content at 0.33 while 6 hours fermentation produced the highest Antioxidant Activity and yield at 2.218 x 10-10 mg/mL and 0.64 . On the other hand, 48 hours fermentation produced the highest overall extract yield at 0.64 . Analysis for antioxidant activity was carried out using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteau method for Total Phenolic Content. Thermal inactivation kinetics (blanching) has been investigated for oven drying samples. Results showed that 40°C oven drying and 50°C oven drying with blanching has better retention of bioactive constituents. Blanching has no significant effect on phenolic content but has increased the crude extract for higher temperature oven drying. It has no positive effect on antioxidant activity. Drying is also a better processing method compared to fermentation as drying has slightly favorable results in all three aspects. Through comparison with extraction time of 60 minutes for 40°C oven drying and 6 hour fermented samples, yield of total phenolic content and overall yield of oven dried sample is higher than fermented sample by 4.14 and 0.39 respectively as well as showing better antioxidant activity.

Material Science and Engineering

012042
The following article is Open access

, , , , and

An experimental investigation has been carried out to investigate the rheological properties of graphene / carbon nanotube hydrogenated oil based biodegradable drilling fluid at different nanoparticle loadings. The rheological behaviours of interest in this investigation are the viscosity and shear stresses of two different nanofluids respectively. The limiting parameters in this study are 25 ppm, 50 ppm and 100 ppm weight concentration at operating temperature ranging from 30°C to 50°C. Both nanofluids are subjected to shear rate ranging from 0 – 140 s-1 for comparison of rheological behaviours. Both samples' viscosity reduces to base fluid's viscosity value at higher shear rate with carbon nanotube-hydrogenated oil yielding higher viscosity compared to graphene-hydrogenated oil for all nanoparticle loadings at lower shear rate. Shear stress analysis also shows similar results with carbon nanotube based samples showing higher stress between the two at all particle loadings. Both samples show Newtonian behaviour that is similar to base fluid even at higher particle loadings. Analysis revealed both nanofluids yields close to zero yield stress even with the presence of graphene or carbon nanotube particles. The significance of this study shows that addition of low nanomaterials for enhancement of drilling fluids can improve its thermophysical properties without compromising the quality of drilling fluids such as viscosity and shear stress properties.

012043
The following article is Open access

, , , , , and

Carbon-based nanoparticles have gained much interest as lubricant additive due to their remarkable properties in mechanical, chemical and electrical field. In this research, graphene nanosheets (GN), carbon nanotubes (CNT), and graphene oxide (GO) were used as lubricant additives to investigate their effect on tribological properties. Friction coefficient and wear scar diameter were studied as parameters to determine the effectiveness of lubricant. In this study, vegetable oil (VO) was used as base fluid lubricant. GN, CNT and GO were added at 50ppm and 100ppm respectively to VO to study their optimum concentration when compared to pure VO. All nanoparticles were well dispersed by using a homogenizer. Results showed that addition of 50ppm GN has the most positive effect in improving the tribological properties of vegetable oil.

012044
The following article is Open access

, and

The recycling of surfactant template is investigated through the reuse of the surfactant template in the mesoporous MCM-41 synthesis process. In the synthesis of MCM-41, tetraethylorthosilicate (TEOS) solution in water was utilized as the silica source while hexadecyltrimethylammonium bromide (CTAB) solution in ethyl alcohol was used as a surfactant template. The synthesized gel is formed thoroughly by mixing the two solutions under acid conditions with a pH value of 0.5 for 1 hour and kept for crystallization for 48 hours. The as-synthesized MCM-41 powder is recovered by filtration while the filtrate (mother liquor) was then reused for the second synthesis cycle. The synthesis procedure was repeated till no further solid product was formed. The synthesized gel was not produced in the unifying solution in the fifth cycle of MCM-41 synthesis. The quality of the calcined MCM-41 powder produced in each synthesis cycle was evaluated by calculating the amount of MCM-41 produced and the surface area of the powder product. The result showed that 1.28, 0.37, 1.64, 1.90 and 0.037 g were obtained in the 1st, 2nd, 3rd, 4th and 5th synthesis cycle, respectively. The surface area of the powder produced was found to be 1170, 916, 728, and 508 m2/g for 1st, 2nd, 3rd and 4th respectively. The concentration of the surfactant template has reached value lower than the critical micelle concentration (CMC) and remained constant after the 4th cycle. There was no further formation of gel due to low availability in the interaction between silicate anions and surfactant cations when the amount of TEOS was fixed for every synthesis cycle.

012045
The following article is Open access

, , , and

Natural fibers have proven to be an excellent reinforcement material for various polymers. In this study, OPEFB fiber with unidirectional alignment was incorporated in epoxy and an investigation on tensile and flexural characteristics of the composite has been carried out. A fiber surface modification utilizing alkaline treatment with 1 sodium hydroxide solution was used in order to increase the fiber matrix bond in the composite. The investigation was carried out for 0°, 45° and 90° fiber orientation. Result showed that the higher the angle of the fiber orientation, the higher the tensile strength and flexural strength the composite will yield.

012046
The following article is Open access

, , and

Epoxide compound is made by reacting Kapok Oil with acetic acid and hydrogen peroxide with in situ method. The epoxidation reaction was varied at temperatures of 60 °C, 70 °C and 80 °C, while the time of reaction time was varied at 15 minutes, 30 minutes, 60 minutes and 90 minutes. The reaction rate coefficient for the epoxide was obtained as ${\boldsymbol{k}}{\boldsymbol{=}}{\bf{124}}{\boldsymbol{,}}{\bf{82}}\,{\bf{\exp }}\,{\boldsymbol{\bigg(}}\frac{{\boldsymbol{-}}{\bf{24}}{\boldsymbol{,}}{\bf{14}}}{{\boldsymbol{R}}{\boldsymbol{T}}}{\boldsymbol{\bigg)}}$. The addition of the epoxide compound 0.5 w/w in the formulation of SLS was able to reduce the IFT value up to 9.95 x 10-2mN/m. The addition of co-surfactant (1-octanol) was varied between 0.1 and 0.4 of the total mass of the main formulation (SLS + epoxide + water formation). The smallest interfacial tension value is obtained on the addition of co-surfactants as much as 0.2 w/w, with the IFT value is 2.43 x 10-3mN/m. The effectiveness of the chemicals was tested through micro displacement using artificial porous medium. The experimental results show that some chemicals developed in the laboratory can be used as EOR chemicals. The oil displacement experiments show that as much as 20 to 80 of remaining oil can be recovered by flooding it with the chemicals. The results also show that the oil recovery depends on type of chemicals and chemical concentration.

012047
The following article is Open access

and

The emission of harmful gases such as carbon dioxide (CO2) via gas processing plant and daily human activities gave negative impacts to the environment and global inhabitant. Flat sheet asymmetric membranes were produced from homogenous solution of Poly(vinylideneflouride) (PVDF) via phase inversion method using N-methyl-2-pyrrolidone (NMP) as the solvent. While the poly ether b-amide (PEBAX) was dissolve by using of (70 ethanol and 30 water) as a solvent and and lithium chloride as a additives. The morphology and cross section of the produced membranes were observed by Scanning Electron Microscope (SEM). Then, the membranes were tested for chemical analysis to define the presence of PEBAX in the membrane by using Fourier Transform Infrared (FTIR) spectroscopy. The permeation performances of the membranes were evaluated in terms of permeability and selectivity of the membranes by using gas permeation test. Increasing the PEBAX content significantly increased the selectivity of the PVDF membrane to separate the CO2/N2 gases but decreased the amount of the gases that passed through the membrane.

012048
The following article is Open access

, , , and

Conductive polymer had opened a new era of engineering for microelectronics and semiconductor applications. However, it is still a challenge for high voltage applications due to lower electrical conductivity compare to metals. This results tremendous energy losses during transmission and restricts its usage. In order to address such problem a novel method was investigated using nano silver particle doped iodothiophene since silver is the highest electrical conductive material. The experiments were carried out to study the organometallic diffusion behaviour of nanosilver doped iodothiophene with different concentration of iodothiophene. Five different mixing ratio between nanosilver and the solution of iodothiophene dissolved in diethyl ether were used which are 1:1.25, 1:1.5, 1:2.5, 1:3 and l:5. It was revealed that there is an effective threshold concentration of which the nano silver evenly distributed and there was no coagulation observed. These parameters laid the foundation of better doping process between the nano silver and the polymer significantly which would contribute developing conductive polymer towards high voltage application for industries that are vulnerable to corrosive environment.

012049
The following article is Open access

, , and

Thousands of different copolyimide combinations render it technically impossible to have a single universal synthesis method to produce aromatic polyimide film. This study aimed to outline the selection of synthesis protocol, either through the casting of chemically imidized polyimide solution or thermal imidization of polyamic acid (PAA), to produce the polyimide film. The rheological behaviour, molecular weight, and solubility of five structurally different PAA were analysed and correlated to both imidization methods. In this work, a tough polyimide film was successfully synthesized by casting the chemically imidized polyimide derived from high viscosity (> 81 cP) and high molecular weight (≥ 1.35 x 106 g/mol) PAA. On the contrary, both low viscosity (< 13 cP) and high viscosity (> 81 cP) PAA demonstrated the possibility to produce polyimide film via thermal imidization route. The longer molecular chain of ODPA-6FpDA:DABA (3:2) polyimide produced from thermal imidization had restricted the passage of CO2 across the polyimide film when it was applied in the gas separation application. The outcome from this work serves as a guideline for the selection of suitable polyimide film synthesis protocol, which will minimize the time and chemical consumption in future exploration of new polyimide structure.

012050
The following article is Open access

, , and

Coconut shell liquid smoke is produced from the pyrolysis and condensation of smoke from the burning process of coconut shell. It is known to have considerably high content of polyphenol. Beside acting as antioxidant, polyphenol is also a good antimicrobial. This research was conducted in order to study the antimicrobial activity of coconut shell liquid smoke. Coconut shell liquid smoke used in this study was produced from three different processing stages, which obtained three different grades of liquid smoke (grade 1, 2 and 3). Each sample of coconut shell liquid smoke was extracted using ethyl alcohol and petroleum ether. The extract was then analyzed for its antimicrobial activity against S. aereus, E. coli and C. albicans using well diffusion method. Total phenol and microbial microscopic structure of the liquid smoke were also examined. The results showed that there was influence of coconut shell liquid smoke on the inhibition of S. aureus, E. coli and C. albican growth. This fact was marked by the forming of clear area surrounding the well on the dish agar media. The highest percentage of inhibition showed by the extract of grade 3 coconut shell liquid smoke. This may be explained by the highest total phenol content in grade 3 liquid smoke. Microscopic examination showed that there was a breakage of microbial cell walls caused by the antimicrobial property of the liquid smoke. It was concluded that coconut shell liquid smoke was beneficial as antimicrobial agent, and while all grades of liquid smoke contains polyphenol, the content was influenced by the processing stage and thus influenced its level of microbial growth inhibition.

012051
The following article is Open access

, , and

Forsterite was found to the next potential candidate for bone implant application due to its superior mechanical properties as compared to the commonly used hydroxyapatite (HA). Various methods including two-step sintering and improvise synthesis method were introduced in hope to further improve the mechanical properties of forsterite. In this work, sintering additives, particularly zinc oxide (ZnO), was introduced into forsterite to provide enhancement on the densification of forsterite at lower sintering temperature. Forsterite powder was synthesized via solid-state reaction method with heat treatment at 1000°C for 2 hours with 10°C/min ramping rate. Addition of ZnO was conducted using milling process with composition of 0.5 wt% and 1.0 wt% ZnO. Green bulk samples were prepared prior to sintering process at 1200°C to 1500°C for 2 hours with 10°C/min ramping rate. Characterization was conducted in terms of phase stability and densification of forsterite with morphology examination to observe the grain surface of all samples. It was revealed that the addition of ZnO showed a more superior densification as compared to the undoped samples at all sintering regime studied with a maximum relative density obtained at 97.7% by 0.5 wt% ZnO doped sample sintered at 1500°C.

012052
The following article is Open access

, , and

The Membranes Polymer Gel Electrolyte (MPGEs) based poly (vinylidene fluoride) (PVDF) was prepared by a phase inversion method using polyvinyl pyrrolidone (PVP) as a pore-forming agent and N, N-dimethyl acetamide (DMAc) as a solvent and water as non solvet. The membranes were then soaked in 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC) / dimethyl carbonate (DMC) / Diethyl carbonate (DEC) (4:2:4 %vol) solution in order to prepare polymer electrolyte membranes. The MPEGs PVDF/PVP/Nanoclay was applied using central composite design (CCD) experimental design to obtain a quantitative relationship between selected membranes prepared parameters namely (PVDF, PVP as pore forming agent and nanoclay filler concentration) and Ionic conductivity MPEGs. The model was used to find the optimum ionic conductivity from polymer electrolyte membranes. The polymer electrolyte membranes show good ionic conductivity on the order of 6.3 - 8.7 x 10-3 S cm-1 at the ambient temperatures. The ionic conductivity tended to increase with PVP and nanoclay concentration and decrease with PVDF composition. The model predicted the maximum ionic conductivity of 8.47 x 10-3 S cm-1 when the PVDF, PVP and nanoclay concentration were set at 8.01 %, 8.04 % and 10.12%, respectively. The first section in your paper.

012053
The following article is Open access

, , , , and

Aerogels are one class of solid adsorbents that are gaining considerable attention because of their very high porosity, high specific surface area, and extremely low density. However, most aerogels being studied and used recently are synthetic in nature, which are usually mesoporous silica and metal-organic frameworks (MOFs). As research focus is geared towards sustainable engineering, it is desired to utilize biomass to synthesize aerogels. This study thus aims to produce alginic acid-graphene oxide hybrid composite aerogels and compare them with its existing synthetic counterparts. Alginic acid (AA) is an abundant marine biopolymer that easily forms gels, while graphene oxide (GO) is a nanomaterial consisting of many functional groups. Aerogels made up of AA and GO were successfully synthesized using a sol-gel method. The hydrogel was converted into an aerogel by drying with supercritical carbon dioxide. The percentage of graphene oxide was varied from 0 to 20%. The aerogels were characterized by scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and nitrogen adsorption–desorption measurements. The addition of GO increased the specific surface area of the aerogel up to a certain point, after which it decreased. The 10% GO-AA aerogel showed the most favourable porosity characteristics with a specific surface area of 177.26 m2/g and average pore diameter of 53.2 nm. There had been no observable difference in the thermal behaviour of the aerogels with a change in the concentration of graphene oxide.

012054
The following article is Open access

, , , and

Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

012055
The following article is Open access

, , and

Microwave has been widely used for nano-particle synthesis because rapid growth and mono-dispersed particle size can be obtained. In our previous work, it was found that bubble formation during the irradiation is greatly affected by particle size and suspension density. Nevertheless, the underlying mechanism has not been clearly understood, especially pertinent to superheat behavior caused by the higher power when colloidal particle of ferric hydroxide was produced by heating ferric chloride solution under the irradiation. In this study, to prevent superheat behavior, two-stage irradiation was proposed in nano-particle formation process. Based on in-situ measurement data, such as the profiles of bubble size, final particle size and brightness of scattering light of suspension, it is evident that nucleation of nano-particle is promoted by higher power of the first irradiation. As a result, particle number density became higher, and then microwave absorbance energy was evenly distributed to each particle. Due to suppression of heat generation in a particle, bubble size became smaller. Two-stage irradiation became more advantageous in obtaining smaller particle than continuous irradiation because lower power of the second irradiation prevents superheat behavior.

012056
The following article is Open access

, , and

The effects of process parameters on the surface morphology and physicochemical characteristics of ordered mesoporous silica SBA-15 synthesized at low temperature have been investigated in this study. SBA-15 particles were synthesized through sol-gel method using non-ionic surfactant Pluronic P123 and TEOS as a silica source with aqueous hydrochloric acid (HCl) as a catalyst under the following conditions: HCl concentration (1.0-2.5 M), ageing temperature (40-70ºC) and ageing time (12-48 hours). A series of physicochemical characterizations and material analyses were performed on SBA-15 particles including Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), BET surface area analysis, Fourier transform infrared (FTIR) analysis and X-ray Diffraction (XRD) analysis. From the experimental observation, the conditions of HCl concentration, ageing temperature and ageing time were able to influence the surface morphology of SBA-15 particles. The presence of the ordered structures in SBA-15 particles was observed through the formation of 1-D cylindrical channels and 2-D hexagonal pores, inspected by using TEM. The detected XRD peak at (100) reflection signified the presence of ordered meso structures within the SBA-15 particles. Therefore, synthesis of SBA-15 particles through sol-gel method at low temperature is feasible and more sustainable if compared to the energy intensive hydrothermal method.

012057
The following article is Open access

, and

Graphene is the material for the twenty first century applications. In this paper, the elastic properties of monolayer and double layer Graphene sheets, typically less than 10nm in size are investigated through linear finite element simulations. The effect of aspect ratio, sizes and chirality of the Graphene sheet on the Young's modulus, Shear modulus and Poisson's ratio are studied. By using structural mechanics approach combining atomistic and equivalent continuum techniques, the Young's modulus, shear modulus and the Poisson ratio were found and they slightly increase with the aspect ratio but decrease with the size of the Graphene sheet. These simulated properties compliment the mechanical properties of Graphene found in literature.

Process System Engineering

012058
The following article is Open access

, , and

PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller's setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control's objective for the stability performance of overall physical model.

012059
The following article is Open access

, , , , and

The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.

012060
The following article is Open access

, and

The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.

012061
The following article is Open access

, and

Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N], [HeMIM] [CF3SO3] and [HMIM] [CF3SO3]) were identified and selected.

012062
The following article is Open access

, and

In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.

Reaction Engineering

012063
The following article is Open access

, , , , and

Waste of biomass can be utilized as an energy alternative such as a charcoal briquette. In the waste of biomass, there is carbon element bonded in the cellulose which can be utilized as an energy source of solid fuel. Charcoal briquette from waste of biomass can be developed via pyrolysis process. Terminalia Catappa L. and Myristica fragrans (nutmeg seeds shells) shells were used as raw material for the manufacture of charcoal briquettes. Pyrolysis process took place under isothermal conditions at a temperature of 350°C, 400°C, 450°C, 500°C, and 550°C with variation of times were 30 minutes, 60 minutes and 90 minutes. During the pyrolysis process, there were three main components observed, namely liquid (bio oil), gases and solids (char). Data obtained for measuring the kinetics of liquids and gases were taken in interval of 5 minutes. The results showed that the rise in temperature will increase the rate of pyrolysis process and increase the yield of gases and liquids as well as lowering the yield for solid. The best fitted kinetic model is the representation of biomass pyrolysis process involving secondary decomposition of the liquid. The results of briquette development showed that these two biomasses can be used as raw material of energy alternative.

012064
The following article is Open access

and

The global demand of 2-ethylhexyl acrylate (2EHA) market has witnessed a significant growth in the past few years and this growth is anticipated to increase in the coming years. 2EHA is one of the basic organic building blocks that mainly used in the production of coatings, adhesives, superabsorbents, thickeners and plastic additives. Homogenous acid-catalysed esterification of acrylic acid (AA) with 2-ethylhexanol (2EH) is commonly used for the production of 2EHA. The homogeneous catalysts such as sulfuric and para-toluene sulfonic acid have resulted the costly and complicated downstream process that generates acidic, corrosive and non-environmental friendly waste. Therefore, it is importance to develop a cheaper process that employing heterogeneous catalysts and alternative raw material from wastewater containing acrylic acid. In this research, the study for the esterification of AA with 2EH catalysed by ion-exchange resin was conducted. The best sulfonic acid functional cation-exchange resin among SK104, SK1B, PK208, PK216, PK228, RCP145, and RCP160 was screened. PK208 outperformed the other resins and it was used subsequently in the parametric studies. The effect of important parameters (initial concentration of acrylic acid (AA), temperature, molar ratio of reactant (AA and 2EH), catalyst loading, and polymerisation inhibitor loading) was studied using 2 factorial design to determine the significant parameters to the esterification. It was found that the initial concentration of AA and temperature were most significantly affecting the esterification of AA with 2EH.

Separation Processes

012065
The following article is Open access

, and

Modeling of adsorption of Cr6+ on to activated carbon prepared from Sterculia foetida dried seed shells under different drying techniques namely sun, oven, and microwave drying (450W, 600W, 900W power). Optimization of process parameters such as pH, adsorbent dosage (g/ml), temperature (°C), contact time (min) were evaluated using Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). For batch adsorption studies at pH 3, adsorbent dosage of 1.5 g/ml, temperature 35°C and contact time 90 min were found to be optimum for the system under consideration and Microwave Activated Carbonized Sterculia foetida (MACSF) at 450W was found to be best suited for the adsorption of Cr+6 ions. The system was found to follow Langmuir type monolayer adsorption for the given operational parameters. SEM analysis was used to study the surface morphology of the carbon samples and the effect of pretreatment on carbonization.

012066
The following article is Open access

, and

Adsorption of diastase over natural halloysite nanotubes is studied in order to evaluate the adsorption capacity of diastase. The halloysite surface characteristics were assessed using nitrogen adsorption, x-ray diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier transformed infrared (FTIR). The surface area of the natural halloysite is found to be 51 m2·g-1, with total pore volume of 0.106 cm3·g-1. The natural halloysite has a basal spacing (d001) of 10 Å confirming the structure of the natural halloysite material. TGA results indicated that halloysite loses its interlayer water in the range of 30 to 105 °C and the dehydration in the structural layer above 150 °C. The dehydroxylation of halloysite has occurred at approximately 460 °C. The FTIR result of the thermally treated halloysite sample indicated that the bands observed are assigned to Si-O and Al-O bonds. The effects of solution pH and temperature were studied on the adsorption capacity and percent removal of diastase from the solution. The adsorption kinetic found to fit well with both the Pseudo first-order and Pseudo second-order models, and the values of the kinetic constant were found to be 0.173 min-1 and 0.00018 g·mg-1·min-1 respectively. The Langmuir isotherm model is found to fit well to the adsorption data and a kinetic value is found to be 0.00059 m3·g-1. The maximum adsorption capacity was found to be 370 mg·g-1, indicating the potential for applications of the natural nanostructured halloysite material as an effective adsorbent for diastase.

012067
The following article is Open access

, and

Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

012068
The following article is Open access

, and

Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

012069
The following article is Open access

, , , , , and

Hydrogen sulfide, H2S, a pollutant in biofuel gas, i.e., biohydrogen and biomethane, is produced at concentrations ranging from 100 ppm to 10,000 ppm and is recommended to be removed at the early stage of gas purification because it is known as a problematic compound. In this study, adsorption technologies show a promising technique to remove H2S from biofuel gas, which mainly depends on the operating parameters and adsorbent ability. In this study, the development of the models is important to investigate the fundamentals of H2S adsorption mechanism. The fitted mathematics model was performed by considering several assumptions made for fixed-bed adsorption, leading to the determination of the breakthrough curve by solving a set of partial differential equations (PDEs). The operating parameters were as follows: varied inlet concentration at 1000 ppm to 10,000 ppm, flow rate at 0.2 L/min to 0.6 L/min, length bed used at 10 cm to 30 cm, and pressure at 1.5 atm to 5 atm. The adsorption performance was also studied by using commercial activated carbon such as palm kernel shell (PKS-AC), coconut shell activated carbon (coconut shell-AC), and zeolite ZSM-5. To support the effectiveness of the mathematical models, the adsorption test was performed by loading the adsorbent into the fixed-bed adsorption column at an overall diameter of 6 cm and height of 30 cm. The system operated under room temperature, H2S inlet concentration of 1000 ppm, and varying flow rate as in the modelling for PKS-AC. As a result, in the modelling study, the inlet concentration effect was highest in adsorption capacity, breakthrough time, and exhaustion time. However, the increase of flow rate and length bed used only affected the breakthrough and exhaustion times but not adsorption capacity. The total pressure used did not affect adsorption performance. Coconut shell-AC shows longer exhaustion time compared with other adsorbents due to the less frequent changes of adsorbent. In the experimental study, the 1000 ppm inlet concentration shows the highest flow rate effect on the adsorption performance, which, at 0.2 L/min, took almost 23 h to achieve 30 ppm compared with 0.6 L/min, which only took 13 min to exhaust the same outlet concentration. Hence, the adsorption system with the right choice of operational parameters, adsorbent, and fitted mathematical models can optimize the adsorption efficiency, adsorption capacity, breakthrough time, and exhaustion time.

012070
The following article is Open access

, , , and

In this study, two different types of macroporous resins known as XAD-7HP and HP-20 were evaluated for the adsorption and desorption properties against bioactive phenolics extracted from Phanerochaete chrysosporium. From the previous static sorption studies, it was found that the adsorption capacity for both resins had has no significant difference. Then, the kinetic adsorption data were analyzed with both pseudo-first-order and pseudo-second-order equations and the later performed better. The adsorption isotherm data were fitted well by both Langmuir and Freundlich models. Meanwhile in desorption study, HP-20 and XAD-7HP gave 90.52% and 88.28% recoveries, respectively. Considering the desorption results of the macroporous resins, HP-20 and XAD-7HP were packed in chromatography column to further purify the phenolics. For dynamic adsorption, breakthrough capacity of HP-20 (0.522) was found to be higher than XAD-7HP (0.131). Different ethanol concentrations (30% to 50% (v/v)) were investigated at fixed flowrate (1 ml/min) on phenolics recovery from both types of resins. The highest recovery of bioactive phenolics was 94.3% using XAD-7HP resins at 50% (v/v) of ethanol. Only 77.1% of bioactive phenolics were recovered using HP-20 resin at the same experimental conditions. The purified extract subsequently was analyzed using HPLC. The results showed that three phenolics (gallic acid 3,4-dihydroxybenzoic acid and 4-hydroxybenzoic acid) were identified with higher concentrations as compared to non-purified extract. Finally, the purified extract was tested for scavenging activity against DPPH, and it showed that the activity increased significantly to 90.80% from 59.94% in non-purified extract.

012071
The following article is Open access

, , , , , , and

Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL/AC can be regenerated for several times without any significant loss in the performance.

012072
The following article is Open access

, , , and

With the rapid development of modern civilization, carbon dioxide (CO2) is produced in large quantities and mainly generated from industrial sectors. The gas emission is the major contributor to global warming. To address this issue, the membrane technology is implemented for the CO2 removal, due to the energy efficiency and economic advantages presented. Cellulose acetate butyrate (CAB) is selected as the polymeric material, due to the excellent film-forming properties and capable of developing a defect-free layer of neat membrane. This study described the fabrication development of CAB using a wet phase inversion method with different casting conditions. Where the composition of the casting solutions (3-5 wt %) and solvent evaporation time (4-6 min) were determined. The outcomes of these dominant parameters were then used to determine the best CAB membrane for CO2/Nitrogen (N2) separation and supported by the characterization i.e. scanning electron micrograph. Gas permeation measurements showed satisfactory performance for CAB membrane fabricated with 5 min evaporation time and 4 wt% polymer composition (M2). Where, its permeance and selectivity are 120.19 GPU and 3.17, respectively. In summary, this study showed a brief outlined of the future direction and perspective of CAB membrane for CO2/N2 separation.

012073
The following article is Open access

and

Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

012074
The following article is Open access

, , , , and

Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

Waste and Water Treatment & Management

012075
The following article is Open access

, , , , and

Activated carbon was prepared from oil palm empty fruit bunch (OPEFB) by pyrolysis at 873.15 K in a furnace and chemical activation using 0.01 M HCl. Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and BET (Brunauer, Emmett and Teller) surface area analyses were taken into account to investigate the chemical functional group, to characterise the surface morphology and to determine total surface area the OPEFB AC, respectively. Experiments in batch mode were conducted to investigate Cu(II) adsorption capacity by the OPEFB AC whereas the system consisted of 1 g the OPEFB AC in 100 mL Cu(II) aqueous solution with initial concentration in the range of 10-70 mg/L, magnetic stirring at 75 rpm, room temperature of 300.15 K (± 2 K), at 1 atm and neutral pH over contact time in the range of 0-150 min. As the result, Cu(II) adsorption capacity increased exponentially over contact time and initial concentration. The Cu(II) adsorption kinetics followed the pseudo second order kinetics with the correlation coefficients (R2), kinetics rate constant and equilibrium adsorption capacity being 0.98, 4.81 mg/g and 0.15/min, respectively for initial Cu(II) concentration being 58.71 mg/L. In addition, Cu(II) adsorption isotherm followed the Langmuir equation with the R2 value, the mono-layer and over-all adsorption capacity being 0.99, 5.92 mg/g and 0.17 L/mg, respectively.

012076
The following article is Open access

, , , and

A lab-scale ammonia stripping reactor was used to treat raw and diluted (1:1) scheduled waste landfill (SWL) leachate containing ammonia-nitrogen (NH3-N). Operating parameters such as air-liquid ratio, hydrated lime [Ca(OH)2] dosage, types of packing materials and packing heights were investigated with central composite design (CCD) of response surface methodology (RSM) was used to optimize the parameters affecting NH3-N removal from the leachate. The percentage removal on turbidity, colour and phosphate were also evaluated in this study. It was observed that the optimal conditions obtained from desirable response (NH3-N removal) for raw leachate were predicted at air–liquid ratio of 70, Ca(OH)2 dosage of 5 gL-1, packing height of 60 cm and types of packing material was number 3 (non-woven polyester) while for diluted leachate these were 70, 6 gL-1, 60 cm and Type 3 (non-woven polyester), respectively. Quadratic RSM predicted the maximum NH3-N removal to be 78% for raw leachate and 81% for diluted leachate at these optimal conditions concurred with the experiment which successfully removed 76% and 80% of NH3-N, respectively. However, higher removal efficiencies of turbidity (97%), colour (88%) and phosphate (93%) was observed in the treatment with diluted leachate compared to raw leachate merely up to 55%, 34% and 49%, respectively. The finding showed that the difference in the removal of NH3-N in diluted and raw SWL leachate was insignificant. However, turbidity, colour and phosphate showed a significant reduction in the diluted leachate during the treatment. The study suggests that the dilution of SWL leachate does not present a significant effect on the removal of ammonia in the stripping reactor.

012077
The following article is Open access

, and

Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

012078
The following article is Open access

, , and

Colour removal from wastewater is among the major challenge in water and wastewater treatment. Among others, melanoidin could be the source of colour in wastewater. In this study, the estimation of melanoidin concentration in conventional palm oil mill effluent (POME) ponding system was investigated. Melanoidin was analyzed by detecting its absorption using double beam UV-Vis spectrophotometer. For melanoidin, the maximum absorption is 330nm. From the analysis, the melanoidin concentration decrease from anaerobic pond 1 to anaerobic pond 3 and slightly increase in anaerobic pond 4 and aerobic pond 1. After that, the melanoidin concentration decreased from aerobic pond 1 to final discharge. It is estimated that the anaerobic pond 1 had the highest melanoidin concentration which was 87.3 mg/L. Finally, the effectiveness of melanoidin removal using a coagulation/flocculation process was also studied. Calcium lactate was used as a coagulant and low molecular weight anionic polyacrylamide was used as a coagulant aid. The jar test experiment was carried out by using 0.3g/L calcium lactate solution and dosage of anionic polyacrylamide was altered in order to find out the best melanoidin removal. Experiments carried out by using sedimentation time of 20 minutes showed that the highest percentage removal of melanoidin was 80.93% at the dosage of 0.3g/L of calcium lactate without any anionic polyacrylamide being added. This result concluded that the addition of anionic polyacrylamide as coagulant aids is not significant when compared to the use of calcium lactate only.

012079
The following article is Open access

, , , , , and

Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

012080
The following article is Open access

and

The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidity<80 NTU, TSS<400 mg/L, BOD<5 mg/L, COD<70 mg/L, phosphate<3 mg/L and ammonia<0.05 mg/L) for fish culturing activity. Based on current study, there was a drastic increase in nitrate content after 24 hours due to the nitrification process by regenerated bacteria in the filtered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

012081
The following article is Open access

, , , and

Environmental issues have always been a major issue among human kind for the past decades. As the time passes by, the technology field has grown and has helped a lot in order to reduce these environmental issues. Industries such as metal plating facilities, mining operations and batteries production are a few examples that involves in the environmental issues. Carbon nanotube is proven to possess excellent adsorption capacity for the removal of methylene blue and orange red dyes. The effect of process parameters such as pH and contact time was investigated The results revealed that optimized conditions for the highest removal for methylene blue (MB) (97%) and orange red (94%) are at pH 10, CNTs dosage of 1 grams, and 15 minutes for each dyes removal respectively. The equilibrium adsorption data obtained was best fit to Freundlich model, while kinetic data can be characterized by the pseudo second-order rate kinetics.

012082
The following article is Open access

, and

Wastewater from automobile garages and workshops is an important contributor to the water pollution. Oil and grease is one of the major content of wastewater from vehicle garages. Wastewater from a public transport depot at Thrissur district in Kerala, India was collected for the study. A batch reactor has been devised to assess the efficacy of electrocoagulation in removing oil and grease from the wastewater. Aluminium and iron were tested as the anode material with stainless steel as cathode. Experiments were conducted to investigate the effect of various operating parameters such as current density, pH, time and salt concentration on oil and grease removal. The results shown that aluminium is superior to iron in removing the oil and grease from the wastewater. The reactor with aluminium as anode was able to remove 90.8 % of the oil and grease at a current density of 0.6 A/dm2 in 15 minutes. The calculated specific energy consumption is also less for aluminium in comparison with iron.

012083
The following article is Open access

, , and

In this study, polyvinylidene fluoride (PVDF)/silica (SiO2) composite membranes were prepared by diffusion induced phase separation through direct blending method. The roles of SiO2 particles concentration on membrane physicochemical properties were evaluated through oil emulsion separation under high ionic strength environment whereby hydrophobic interaction is prevalent. Membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), contact angle measurement, membrane porosity and pore size distribution. It was expected that by adding the monodispersed SiO2, it will render the membrane with hydrophilic characteristic. However, it is concomitantly changing the physical properties of the membrane. Addition of SiO2 caused the changes to the physicochemical properties of the composite membrane and its effects on the fouling propensity were evaluated. It was found that the mean pore size of the membranes increased with the increase of SiO2 concentration. The addition of hydrophilic SiO2 had accelerated the precipitation of the membrane dope solution resulting in changes of membrane cross section morphology. FESEM images showed the membrane cross-section morphology of PVDF/SiO2 composite membrane had gradually changed from finger-like to macrovoid-like structure with the increased of SiO2 concentration. The hydrophilicity of the PVDF/SiO2 composite membrane was enhanced which is a desired property for water purification. However, the changes in physical properties (pore size, porosity, and surface roughness) had played more dominant role in the oil emulsion fouling behaviour rather than hydrophilicity enhancement. Due to the salting out effect under high ionic strength environment, hydrophobic interaction played an important role in the oil adsorption. The increment in membrane pore size, porosity, and surface roughness after incorporation of SiO2 particles had encountered more serious relative flux reduction and lower flux recovery ratio.

012084
The following article is Open access

, and

Fish farm wastewater needs to be treated as it contains considerably high loading of suspended solids and dissolved nutrients from accumulation of by-products e.g. fish excretions and uneaten feed. In this study, macrophytes, namely Spirodela polyrhiza and Salvinia molesta were examined for their phytoremediation efficiency in treating fish farm wastewater in a raceway pond rig. It was carried out indoor for 14 days under controlled environment. Water samples was collected once every 2 days for analysis of NO3-- N, PO43-, NH3-N, COD, turbidity, MLVSS and pH. The results showed that there was decrement of phosphate in fish farm wastewater using either S. polyrhiza or S. molesta. Interestingly, S. polyrhiza was found to be more efficient in phosphate uptake as it removed 72% phosphate at day 4 and up to 95% in the end of the experiment whereas 72% phosphate removal was only achieved by S. molesta at day 10. Similar ammonia decrement was observed for both plants and most of the ammonia were not detected in the wastewater by day 10 for S. polyrhiza, while by day 8 for S. molesta. Nitrate showed increment for both plants which could be due to nitrification. Both plants achieved highest COD removal on day 12, whereby 68% for S. polyrhiza and 63% for S. molesta. They were able to reduce turbidity and total suspended solids (TSS) to very low level and significantly increase clarity of wastewater. S. polyrhiza reduced up to 96% of initial turbidity value and 86% of TSS. 82% reduction of initial turbidity and 79% TSS decrement were observed for S. molesta. pH fluctuations were minimum for both plants, with a range between 7.62 to 7.77. Both plants demonstrated biomass increment for fresh weight in which 84% for S. polyrhiza while 85% for S. molesta. This study proved that the macrophytes were able to treat fish farm wastewater by significantly removing phosphate, ammonia, turbidity and TSS. It aids in minimizing pollutants released to receiving waters and producing biomass which can be utilized for agriculture sector.

012085
The following article is Open access

, and

This article studies the use of acacia auriculiformis wood sawdust modified with 4,5-dihydroxy-1,3-bis (methoxymethyl) imidazolidin-2-one (m-DMDHEU) and choline chloride for separating CrO42- and H2AsO4- ions in water. NaOH 0.2N/ethanol 70° solution was used to remove lignin from the raw material, the material was then immersed in m-DMDHEU/choline chloride aqueous solution for 24 hours, after that the material was activated at 140oC for one hour. The ability to adsorb and exchange ions of the material was examined using solutions containing CrO42- and H2AsO4- ions in different conditions. The results suggested that the ability to separate CrO42- and H2AsO4- ions of the modified material was better than that of anion resin at pH = 7.0; the chromate adsorption capacity was the highest in acidic condition; the presence of arsenate (V) anions had no effect on the ability to remove chromate. Lastly, the modified material was used to treat water samples containing concentrations of arsenic similar to groundwater in several arsenic-contaminated areas of Vietnam.

012086
The following article is Open access

, and

Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

012087
The following article is Open access

, , , and

Wastewater discharge from the industry into water sources is one of the main reason for water pollution. The oleochemicals industry effluent produces high content of chemical oxygen demand (COD) with value between 6000-20,000 ppm. Effective treatment is required before wastewater effluent is discharged to environment. The aim of the study is to develop submerged bed biofilm reactor (SBBR) with packing materials in the cosmoball® carrier. Water quality such as chemical oxygen demands (COD), turbidity and pH were analysed. The result shows that the initial COD of 6000 ppm was reduced below 200 ppm. The optimum conditions for SBBR were obtained when green sponges used as packing material in cosmoball®; effluent flowrate set at 100 mL/min; 1:1 ratio of cosmoball® volume to reactor volume and 1:1 ratio of active sludge (mixed culture) volume to reactor volume. Turbidity and pH were recorded with 9.0 NTU and 7.0 respectively, which indicated that SBBR is feasible as an alternative for conventional biological treatment in oleochemical industry.

012088
The following article is Open access

, , , and

In this study, the characteristic of colour and COD removal of azo dye Acid Orange 52 (AO52) by ozonation, in combination with complete-mixed activated sludge process (CMAS) was evaluated. The experimentation was arranged in two phases: during the first one, only ozonation was performed, while, during the second phase, it was integrated with CMAS. The performance of colour and COD concentration of AO52 with and without CMAS treatment, is compared and evaluated. From the results, it is obvious that high decolourization from the start of CMAS was contributed from the pre-treatments. The colour removal was due to the fact that ozonation able to cleave the azo bonds that represent colour. Thus, CMAS without pre-treatment are unable to decolourize the dyes sufficiently. 59.6% COD was removed from the first-stage, while merely 9.8% COD fraction removed from the subsequence second-stage CMAS. It is suggested that the rapid COD removal without ozonation are due to activated sludge adsorption processes. The decreased of mixed liquor suspended solids (MLSS) affected the CMAS performances, as the biomass decreased due to lack of nutrient for activated sludge microorganisms to multiply. Results from pre-ozonation alone contributed more than 50% of total COD removal, which indicated that at higher ozone dosage, tend to mineralize azo dye. Thus, ozonation not oxidized the dye though complete mineralization that produce carbon dioxide and water. However, it is a potential process for enhancing colour removal and biodegradability of dye-containing wastewater, once the appropriate ozonation time is determined. Therefore, the role of ozonation seems to break down the dye molecules and created ozonation by-product that is easily biodegraded in the subsequent biological treatment.

012089
The following article is Open access

, , and

Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

012090
The following article is Open access

and

Industrialization and urbanization demand high amount of water consumption, which contributes to their polluted condition. Thus, there is a need to develop a sustainable wastewater remediation technique in order to provide sustainable use of clean water for future generations without ramifications to the economic sectors. The newly synthesized TiO2-SiO2 photocatalyst was used to remediate Methylene Blue contaminated aqueous solution in the presence of active chlorine species. The doping of SiO2 into TiO2 enhanced the removal rate of Methylene Blue dye from the solution by increasing the surface area, thermal stability and surface acidity of the TiO2. The active chlorine species further enhanced the removal rate of Methylene Blue dye from the solution by contributing more reactive species, chlorine radicals, which broke down the dye molecules. The experiments were conducted via Taguchi analysis. The findings show that combining TiO2, SiO2 and active chlorine species enhanced the removal percentage of Methylene Blue dye compared to using TiO2 alone by 70%. About 70% of 50ppm Methylene Blue was degraded by 1 g of TiO2-SiO2 in the presence of 0.3 ppm Ca(OCl)2 under 9 Watts solar irradiation within 3 hours. The enhanced dye removal method brings photocatalysis a step closer to sustainable wastewater remediation methods.

012091
The following article is Open access

and

As one of the world's largest palm oil producers and exporters, Malaysia is committed to sustainable management of this industry to address the emerging environmental challenges. This descriptive study aims to evaluate the oil palm planters' opinions regarding the usage of biomass wastes from palm oil mills and its impact on sustainable development of oil palm plantations in Sarawak. 253 planters across Sarawak were approached for their opinions about the usage of empty fruit bunch (EFB), palm oil mill effluent (POME), mesocarp fibre (MF), and palm kernel shell (PKS). This study revealed that the planters had generally higher agreement on the beneficial application of EFB and POME in oil palm plantations. This could be seen from the higher means of agreement rating of 3.64 – 4.22 for EFB and POME, compared with the rating of 3.19 – 3.41 for MF and PKS in the 5-point Likert scale (with 5 being the strongest agreement). Besides, 94.7 percent of the planters' companies were found to comply with the Environmental Impact Assessment (EIA) requirements where nearly 38 percent carried out the EIA practice twice a year. Therefore high means of agreement were correlated to the compliance of environmental regulations, recording a Likert rating of 3.89 to 4.31. Lastly, the usage of EFB and POME also gained higher Likert scale point of 3.76 to 4.17 against MF and PKS of 3.34 to 3.49 in the evaluation of the impact of sustainability in oil palm plantations. The planters agreed that the usage of EFB and POME has reduced the environmental impact and improved the sustainable development, and its application has been improved and increased by research and development. However the planters were uncertain of the impact of usage of biomass wastes with respect to the contribution to social responsibility and company image in terms of transparency in waste management.

012092
The following article is Open access

, , and

The study on the effect of catalyst loading of photocatalytic degradation of phenol by using N, S co-doped TiO2 was investigated. The precursor of titania was Titanium (IV) isopropoxide (TTIP), while the sources of Nitrogen and Sulfur were ammonium nitrate and thiourea respectively. The photocatalyst were prepared by using dopant concentration at 1% of both Nitrogen and Sulphur that were prepared via sol-gel method. The photocatalyst were tested by different catalyst loading which were 1 g/L, 2g/L and 3 g/L. The gel obtained from the mixing process was dried and calcined at 600°C. The performance of the photocatalyst were tested by using phenol as a model pollutant. The mixture of photocatalyst and pollutant was left under visible light for five hours for irradiation time. The experiment showed that catalyst loading of 3 g/L able to fully degrade phenol while 1 g/L and 2 g/L of photocatalyst degraded phenol at 69.9% and 96.2% respectively.

012093
The following article is Open access

, , , and

The utilization of electrochemical process recovery involving low reactant concentrations of metal requires electrodes with high mass transport rates and specific surface areas. This is essential to increase cross-sectional current densities whilst optimizing the capital and operating costs. Experimental results demonstrated that Circulating Particulate Bed Reactor (CPBE) is suitable for the recovery of low concentrations of gold from aqueous chloride solution containing ${\mathrm{AuCl}}_{4}^{-}$ and ${\mathrm{AuCl}}_{2}^{-}$ of less than 0.5 mol m-3(< 102 g m-3). Elemental gold was successfully obtained on 0.5-1 mm gr particles in an electrochemical reactor incorporating a cation- permeable membrane and operated in bath recycle mode. Depletion to concentration < 5 × 10-3 mol m-3 (< 1 g m-3) appeared to be mass transport controlled at an applied potential of +0.20 V (SCE), specific electrical energy consumption (SEEC) of ca. 800-1300 kWh h (tonne Au)-1 for cell voltages (U) of 2.0-3.0 V, and fractional current efficiencies of ca. 0.95. However, atomic absorption and UV spectrophotometry established that as the $([{\mathrm{AuCl}}_{4}^{-}+[{\mathrm{AuCl}}_{2}^{-}])$ concentration decayed, the $[{\mathrm{AuCl}}_{4}^{-}]:[{\mathrm{AuCl}}_{2}^{-}]$ molar ratio changed. A multi-step mechanism for reduction of ${\mathrm{AuCl}}_{4}^{-}$ ions explained this behavior in terms of changing overpotentials for ${\mathrm{AuCl}}_{4}^{-}$ and ${\mathrm{AuCl}}_{2}^{-}$ reduction as total dissolved gold concentration decreased. In addition, SEM images confirmed that adherent and coherent Au deposits were achieved with CPBE for Au deposition under mass transport control at 0.20 V (SCE).

012094
The following article is Open access

, , , and

The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

012095
The following article is Open access

, , and

Acid mine wastewater (AMW), the wastewater from mining activities which has low pH about 3-5 and contains hazardous heavy metals such as Cu, Fe, Mn, Zn, Pb, etc. Those heavy metals pollution is of prime concern from the environmental view point. Among the heavy metals, Mn occupies the third position in the AMW from one the iron ore mining company in Aceh, Indonesia. In this study, the possibility use of bottom ash from coal fired boiler of steam power plants for the removal of Mn(II) in AMW has been investigated. Experimental has been conducted as follows. Activation of bottom ash was done both by physical and chemical treatments through heating at 270 °C and washing with NaOH activator 0.5 and 1 M. Adsorption test contains two parts observation; preliminary and primary experiments. Preliminary study is addressed to select the best condition of three independent variables i.e.: pH of AMW (3 & 7), bottom ash particle size (40, 60 & 100 mesh) and initial Mn(II) concentrations (100 & 600 mg/l). AMW used was synthetics wastewater. It was found that the best value for NaOH is 1 M, pH is 7, particle size is 100 meshes and initial Mn(II) concentration is 600 mg/l from the adsorption efficiency point of view. The maximum adsorption capacity (qe) is 63.7 mg/g with the efficiency of 85%.

012096
The following article is Open access

, , , , and

Processing fish waste for extraction of value added products such as protein, lipid, gelatin, amino acids, collagen and oil has become one of the most intriguing researches due to its valuable properties. In this study the extraction of lipid from sardine fish waste was carried out using microwave-assisted extraction (MAE) and compared with Soxhlets and Hara and Radin methods. A mixture of two organic solvents isopropanol/hexane and distilled water were used for MAE and Hara and Radin methods. Meanwhile, Soxhlet method utilized only hexane as solvent. The results show that the higher yield of lipid 80.5 mg/g was achieved using distilled water in MAE method at 10 min extraction time. Soxhlet extraction method only produced 46.6 mg/g of lipid after 4 hours of extraction time. Lowest yield of lipid was found at 15.8 mg/g using Hara and Radin method. Based on aforementioned results, it can be concluded MAE method is superior compared to the Soxhlet and Hara and Radin methods which make it an attractive route to extract lipid from fish waste.

012097
The following article is Open access

, , , , , and

Phycocyanin is a pigment-protein complex synthesized by blue-green microalgae such as Arthrospira (Spirulina) platensis. This pigment is used mainly as natural colouring in food industry. Previous studies have demonstrated the potential health benefits of this natural pigment. The price of phycocyanin is a vital factor that dictates its marketability. The cost of culturing the algae, particularly from the substrate used for growth, is one of the main factors that determine the price of phycocyanin. Another important factor is the growth yield of the algae. In our research, agricultural waste such as charcoal produced from rice husk was utilized for the algae cultivation to replace the synthetic chemicals such as urea and triple superphosphate used the mineral medium. The use of this low cost substrate increases the cell concentration by 60 % during 8 days' cultivation to reach 0.39 g/l. The phycocyanin extraction was performed using water at the different biomass-to-solvent ratio and shaking rates. The phycocyanin concentration and purity (A615/A280) obtained were 1.2 g/l and 0.3. These values are 40 % and 20 % lower than the value obtained from the algae produced using the synthetic chemicals. Further purification produced the extract purity required for food grade. The biomass-solvent ratio does not significantly affect the extract purity; however, the higher shaking rate during extraction reduces the purity. This finding demonstrates the potential of using rice husk as an alternative substrate to cultivate algae for phycocyanin extraction.

012098
The following article is Open access

, , , and

The capacity of microorganisms to remove heavy metal from wastewater has been a subject of diverse interest. Whereas some heavy metals are essential for effective microbial activity, some heavy metals could be toxic to the microorganisms at concentrations higher than their minimal inhibitory limit. The kinetics of Zn2+ removal from aqueous solution was evaluated in terms of substrate removal rate for two identical suspended and immobilized bioreactors. The suspended growth bioreactor was used as a control system (CS) and contains only biomass. The immobilized bioreactor (IB) contains both biomass and microwave incinerated rice husk ash (MIRHA). The bioreactors were operated at a fixed HRT of 29.1 hours, whereas Zn2+ influent concentration was varied in the range of 0.5, 1, 2, 5, 10 and 15 mg/L. At steady state conditions, the results show that Zn2+ removal was in the range of 72, 75, 72.5, 68.2, 70.3 and 58.7% for CS, whereas it was in the range of 88, 90, 83, 88.6, 86.2 and 83.7% for IB. The substrate removal rate was found as 1.1856 g/L.d for CS and 4.2693 g/L.d for IB. The results clearly show that Zn2+ removal was more favorable in IB, indicating that the performance of the bioreactor was enhanced by the addition of MIRHA.

012099
The following article is Open access

, , , and

In this study, activated carbons (ACs) wereprepared from tea leaves by using a two-stage self-generated atmosphere method. The process was done by semi-carbonizing the precursor at 300 °C for 1 h, followed by the impregnation of the resulting char at 85 °C for 4 h and finally activation at 500 °C for 2 h. The semi-carbonised samples were impregnated with different ratios of zinc chloride (ZnCl2) and their physicochemical effect was studied. The prepared ACs underwent several aspects of both, chemical and physical characterizations, such as the percentage of yield, moisture content, ash content, pH, porosity, adsorption capacity of 2,4-dichlorophenol (2,4-DCP), surface area, porosity, morphology and surface chemistry studies. It was found that sample AC2, with an impregnation ratio of 2:1 was the best AC produced in this study. The maximum Brunauer, Emmett and Teller surface area of AC2 was found to be 695 m2/g. Langmuir, Freundlich and Temkin isotherm models were used to examine the experimental isotherms while the kinetic data was analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The 2,4-DCP adsorption isotherm results complied well to the Langmuir isotherm for the equilibrium data while the adsorption kinetic data fitted well to the pseudo-second order model, indicating that chemisorption by valency forces via the sharing (covalent bond) or exchanging of electrons between the AC and the 2,4-DCP molecules were mainly responsible for the adsorption process. From these findings, it is concluded that tea leaves can be used as a low cost precursor for the removal of 2,4-DCP in aqueous medium.

012100
The following article is Open access

, and

A novel conducting polymer-based adsorbent, polypyrrole (PPy) fine powder has successfully been prepared as a new adsorbent and utilized in the adsorption of heavy metal ions like arsenic, zinc and cadmium ions from aqueous solution. PPy was chemically synthesized by using FeCl3.6H2O as an oxidant. The prepared PPy adsorbent was characterized by Brunauer-Emmet-Teller (BET) surface analysis, field emission scanning electron microscopy (FESEM) and attenuated total reflectance fourier transform infrared ATR-(FTIR) spectroscopy. The adsorption was conducted by varying different parameters such as, contact time, pH and adsorbent dosage. The concentrations of metal ions were measured by inductively coupled plasma mass spectroscopy (ICP-MS). The results show that PPy acts as an effective sorbent for the removal of arsenic, zinc and cadmium ions from aqueous solution. The as-prepared PPy fine powder is easy to prepare and appeared as an effective adsorbent for heavy metal ions particularly arsenic in wastewater treatment.