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Abstract. Due to the scarcity of water, it has become a necessity to improve the quality of 

wastewater that is discharged into the environment. Conventional wastewater treatment can be 

either a physical, chemical, and/or biological processes, or in some cases a combination of 

these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, 

and organic compounds from effluents. Current wastewater treatment technologies are deemed 

ineffective in the complete removal of pollutants, particularly organic matter. In many cases, 

these organic compounds are resistant to conventional treatment methods, thus creating the 

necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising 

treatment technology for the management of wastewater. AOPs are characterised by a common 

chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving 

complete mineralization of the organic pollutants into carbon dioxide and water. This paper 

delineates advanced oxidation processes currently used for the remediation of water and 

wastewater. It also provides the cost estimation of installing and running an AOP system. The 

costs are separated into three categories: capital, operational, and operating & maintenance. 

 

 
1. Introduction  
Wastewater is generally categorized by properties like total dissolved solids (TDS), turbidity, chemical 

oxygen demand (COD), biological oxygen demand (BOD), dissolved oxygen, hardness, pH, and 

colour. These characteristics vary between industries and also within each industry. Dissolved oxygen 

content in water is reduced by the presence of organic compounds. Therefore, disposing these 

wastewaters, without treatment, to water sources can be harmful to aquatic life.  
Many types of conventional treatment methods can be used for wastewater treatment. These 

methods can be either physical, chemical, or biological processes, or in some cases a combination of 
these operations. The main purpose of wastewater treatment is to eliminate solids, organic matter and, 
in some cases nutrients from wastewater.  

Physical treatment involves isolation or separation of the waste material from the mainstream. In 
this method, little or no degradation of the waste is involved, such as in coagulation, filtration, etc. On 

the other hand, for biological treatment, the main process involves the use of microbes to feed on the 
organic waste. In this case, special care like pH and aeration, should be monitored to sustain the 

microbes’ activities. 

mailto:chandro@utp.edu.my
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However, there are some contaminants found in wastewater that are recalcitrant to several of the 

generally applied physical and/or chemical treatment processes. Chemical oxidation processes can be 

used to expand the current treatment processes, by transformation processes that can be used to destroy 

the recalcitrant compounds through oxidation and reduction reactions. The objective of this review is 

to investigate advanced oxidation processes that have been used for treatment of various types of 

contaminants, to determine the best methods for wastewater generated from different industrial 

processes, as well as provide a cost estimation of running an advanced oxidation system. 

 
2. Advanced Oxidation Process  
Advanced Oxidation Process (AOP) is a chemical treatment method that has been growing in the 

wastewater management industry. It is a highly suggested method for the removal of problematic 
organic matter. The basic principle of AOP involves the production of hydroxyl radicals (HO•), which 

can be generated from hydrogen peroxide (H2O2), ozone, photo-catalysis, or oxidants in combination 
with using ultraviolet (UV) radiation. In some cases, two or more radical generators are used in 

combination. However, it is the HO• that is mainly responsible for the degradation of organic 
compounds.  

The HO• is an unselective strong chemical oxidant. Once produced, it attacks nearly all organic 

complexes. Therefore, attack by the HO• leads to a complete breakdown of the organic compound, and 

as a result, AOPs diminish the concentration of the pollutant from a few hundred ppm to less than 

5ppb [1]. Studies show that with AOP, organic chemicals disintegrate and become smaller and easily 

biodegradable. The HO• takes away a hydrogen atom from an organic compound (R−H) and causes 

the formation of an organic radical (•R) as in Equation (1). This radical then goes through a succession 

of chemical reactions to form several products and by-products [2]. Theoretically, AOPs should fully 

mineralize organic compounds to carbon dioxide and water as illustrated in figure 1. 

R – H  +  HO∙  →  H2O  +  ∙R                                                              (1)  

Advanced oxidation processes use vigorous oxidants, such as hydrogen peroxide, ozone, or 
Fenton’s reagent to generate highly reactive intermediates. In some cases, these reagents are used in 
the presence of ultraviolet light, which enhances the oxidation process. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Principle of advanced oxidation processes [3] 

 

The advantages of the AOPs are due to the fast reaction rates and non-selective oxidation, allowing 
the simultaneous treatment of multiple contaminants. Table 1 shows the relative oxidation power of 
the different oxidizing species, and it can be established that the oxidation power of HO• is relatively 
higher. 
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Table 1. Relative oxidation power [4] 
 

 Oxidizing Groups Relative Oxidation 

  Power 
   

 Chlorine 1.00 

 Hypochlorous Acid 1.10 

 Permanganate 1.24 

 Hydrogen Peroxide 1.31 

 Ozone 1.52 

 Atomic Oxygen 1.78 

 Hydroxyl Radical 2.05 

 TiO2+ 2.35 
   

 

Generally, the rate constant for the reaction of the contaminant with HO• determines the rate of 

destruction of a contaminant. Table 2 shows the rate constants of destruction of various compounds 
with ozone and hydroxyl radicals. It clearly indicates that the reaction rates are much faster with the 
hydroxyl radical compared to ozone. 

 

Table 2. Reaction rate constants of ozone vs. 
hydroxyl radical [4]  

Compound O3 (M
–1

 s
–1

) HO•(M
–1

s
–1

) 

Chlorinated alkenes 10
3
–10

4
 10

9
–10

11
 

Phenols 10
3
 10

9
–10

10
 

N-containing organics 10–10
2
 10

8
–10

10
 

Aromatics 1–10
2
 10

8
–10

10
 

Ketones 1 10
9
–10

10
 

Alcohols 10
–2

–1 10
8
–10

9
 

 

There are a few different ways by which AOPs can generate hydroxyl and other radicals [5]. Table 
3 summarizes the various AOPs that have been studied for the removal of taste and odour compounds, 

along with the reactive species formed during each process. By studying Table 3 below, it clearly 
indicates that the highly reactive HO• is the main driver for all AOPs, and the effectiveness of the 

method depends on the efficiency by which HO• is produced. From the many AOP systems, 
ozonation, UV/ozone, UV/hydrogen peroxide, and photocatalysis are most frequently studied, and 

utilized for many applications. 

 

Table 3. Common AOPs and the reactive 
species produced in each process [5] 

 AOP Reactive Species 
  

Ozone treatment: O3 HO•,  HO2•  ,  HO3•  , 

  O2
-
•, O3

-
• 

O3/H2O2  HO•, O2
-
•, O3

-
• 

Fenton processes: HO•, HO2• 

H2O2/Fe
2+
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Photo-Fenton processes HO• 
  

UV/O3,UV/H2O2, HO•, HO2•/ O2
-
• , O3

-
• 

UV/O3/H2O2  
  

V-UV (λ < 190 nm) HO•, H
+
, e

-
 

Photocatalytic HO•, h
+
, O2

-
, e-, 

1
O2, 

treatment: UV/Vis light HO2•, HOO• 

using catalysts  
  

Ultrasonic treatment HO•, 
•
H 

γ-Radiolysis HO•, 
•
H, e

-
 

 

2.1. Ozonation  
The formation of radicals such as the hydroxyl radical (HO•) and superoxide radical (O2

-
•) occurs 

when ozone is added to water, through a complex series of reactions. The disintegration rate of ozone 
in water is better at higher pH levels [4]. A combination of reactions with molecular ozone and 
reactions with HO• causes the oxidation of organic species. 

3O3 + OH
–
 + H

+
 → 2HO• + 4O2 (2) 

The decomposition cycle of ozone can be enhanced by the addition of hydrogen peroxide to result 
in the formation of HO• [6]. Hydrogen peroxide partially dissociates in water to produce the HO2

-
. 

This hydroperoxide ion reacts with the ozone rapidly producing the HO•. In summary, the 

combination of reactions leads to the following:  

2O3 + H2O2 → 2HO• + 3O2 (3)  
Contact time, alkalinity of water, and the dose of ozone determine the performance of the process. 

By introducing the dose of hydrogen peroxide once the oxidation of highly reactive substances with 

ozone takes place, it enhances the degradation achieved. The process of ozonation by H2O2/O3 

systems seem to be the most established AOP in remediation for water as compared to other AOPs. 

Thus, there is a field-proven history of operation in the implementation of H2O2/O3 systems.  
The second way to speed up ozonation is by the use of homogenous or heterogeneous catalysts. 

Studies have been carried out with various metal oxides and metal ions, and have shown significant 

changes in decomposition, however only in some cases. The concentration of ozone in the inlet gas 

and the ozonation time has been considered as predominant factors to the enhancement of the 

degradation rate. Oxidation studies have been carried out on various organic contaminants using 

Fe2O3, MnO2, TiO2–Me, Fe
2+

, Fe
3+

, and Mn
2+

. The ozone/catalyst system appears to be more 

effective for the reduction of chemical oxygen demand (COD) and total organic carbon (TOC), than 

oxidation with ozone alone at higher pH values [7]. In experiments carried out by Horáková et al. [8], 

it was observed that decomposition of the chemicals is effectively improved by the synergistic effect 

of photo catalytic reactions occurring on TiO2-photocatalyst.  
Ozonation can also be enhanced when ozone decomposes by readily absorbing UV radiation (λ =  

254nm), which generates H2O2 as an intermediate, and then decomposes to HO•. The reactions 

indicated in equations 4 and 5 illustrate the photolysis of ozone to generate hydrogen peroxide, which 

results in the production of the highly reactive HO• [9]. There are however, several oxidation 

mechanisms that result in the destruction of organic contaminants, but HO• is the predominant 

removal 

mechanism.  

O3 + H2O + hυ → O2 + H2O2 at (hυ: λ <300 nm) (4) 

2 O3 + H2O2 → 2 HO• + 3 O2 (5)  
This method comprises all the organic degradation mechanisms through O3/UV, H2O2/O3 and 

H2O2/UV. It is more effective for the destruction of organic substances than using O3 or UV alone, 
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and it is a more efficient way of generating HO• as compared to the UV/H2O2 method at equal 
oxidant concentrations [4]. 

Nevertheless, this process is cost and energy intensive [9]. Furthermore, ozone methods have a 
potential for the formation of bromate. Interfering compounds can affect the absorption of UV 
radiation, thus reducing the efficiency of the system. However, this problem can be mitigated by 
raising the ratio of peroxide to ozone, reducing the pH, or making the concentration of other radical 

scavengers higher [9]. Turbidity also affects the amount of UV radiation absorbed by the ozone. The 
energy costs for ozone generation is the main operation expenditure for this process. The presence of 
bicarbonate or carbonate may act as scavengers of the HO• in natural systems is another drawback of 
these processes [4].  

The use of AOP with ozonation has more industrial applications compared to all other AOPs in 

water treatment. Ozone technology has been used to manage contamination in wastewater from 

electroplating wastes, recycling, electronic chip manufacturing, marine aquaria, textiles, and petroleum 

refineries. Ozonation has also been effectively applied to the food industry, to treat wastewater from 

distilleries, olive mill, meat industry, and molasses [10]. There are recent applications for ozone in 

treating landfill leachates, rubber additive wastewaters, and detergents in municipal treatment plants 

[11]. An industrial scale UV/ozonation system has been set-up in Oklahoma to handle refractory 

organics and metal complexed cyanides [4]. Cadillac Motor Car Division in Detroit, started using 

ozone treatment since 1978. They have managed to maintain the total cyanide levels in the effluent 

below 1 mg/L [4]. Different types of ozonation systems have been studied in their ability to reduce the 

harmful of discharge from the pulp and paper manufacturing [12].  
In the cost estimation shown by Kommineni et al. [9], the vendor provided estimates for their 

H2O2/O3 system per 3.79 cubic meters of water treated. These costs varied between $0.35 for 
1380m3

/h, at influent MTBE concentration of 20 µg/L and $3.62 for 13.8m
3
/h, at initial Methyl tert-

butyl ether (MTBE) concentration of 2,000 µg/L. In their study the capital costs for this system were 
higher, while the operating & maintenance (O&M) costs are suggestively lower. 
 
2.2. AOP using hydrogen peroxide  
Hydroxyl radicals are formed by the photolytic dissociation of hydrogen peroxide in water by UV 
irradiation at a wavelength of 254nm. This formation is indicated in Equation 6 [13]. Medium 
Pressure UV lamps produce a higher radical generation.  

H2O2 + hυ  → 2 HO•    (hυ : λ <300 nm)                                     (6)  

Andreozzi et al. [6] found that the rate of photolysis of aqueous H2O2 to be pH dependent, and it 

increases  when  more  alkaline  conditions  are  used.  As  with  the  UV/Ozone  system,  interfering 

compounds  and  turbidity  can  absorb  the  UV  light,  thus  reducing the  efficiency  of  the  system. 

Hydrogen peroxide can be introduced into the system as a single dose or at many points in the system 

[9]. Each water source requires optimization based on lab scale testing, in order to ascertain the ideal 

dose of hydrogen peroxide. If there is excess H2O2, it reacts with other contaminants (e.g. elemental 

sulphur) producing complex, oxidizable materials. Vaferi et al. [13] concluded that this system can be  
used to appropriate design, and for scaling up of industrial batch reactors for wastewater treatment. 

UV/H2O2 system is seen as a beneficial method for AOP, as it has high reaction rates, and is  
flexible in the design of reactors, which leads to a lesser footprint in the treatment plant. The use of 

ultraviolet lamps also provide disinfection of the water. Akin et al. [14] suggested that the polyethoxy 

chain of the surfactant used was more susceptible to degradation in the H2O2/UV treatment process. 

In their comparisons between H2O2/UV and Photo-Fenton processes, they concluded that H2O2/UV 

treatment was more efficient than the Photo-Fenton process in the overall TOC removal efficiencies of 

the nonylphenol polyethoxylate surfactant. This is supported in studies conducted by Antonopoulou 

[5], who reported that the UV/H2O2 process was proved effective to reduce odorous aldehyde 

concentrations. They further state that the findings showed that direct UV photolysis is the main 

mechanism involved in this degradation process.  
This method for AOP treatment is cheaper because of the lower cost and easy availability of 

hydrogen peroxide [9]. However, this system has some drawbacks. H2O2 has poor UV light 
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absorption characteristics, thus this can be considered as wasting most of the light input. The 

formation of bromate for this system can hinder this process, but by lowering the pH, and increasing 

the peroxide to ozone ratio can reduce this problem.  
Most studies conducted on this method stress the importance of optimization of the parameters 

(dose and concentration of H2O2, concentration of contaminant, retention time, UV intensity, etc.) [2, 
5, 13 - 15]. It has been concluded in a number of studies that the removal efficiency of organic 

contaminants is above 95%, however, the COD reduction increases to a certain extent and then 
declines after a certain point indicating the reactions of hydroxyl radicals with other inorganic species 
to form oxidizable materials [16 -17].  

Phenolic complexes that are usually found in olive mill wastewater have been treated using 
UV/H2O2 method. UV/H2O2 has also been successfully used for removal of dyes from textile 

industry effluents. Various studies on textile effluent treatment show that increase in UV dosage and 
H2O2 concentration increases the rate of decolorization. Furthermore, there are a number of 

H2O2/UV industrial applications for remediation of drinking water. For example, Calgon Carbon runs 

two industrial AOP applications for drinking water treatment. This method is the only AOP that is 
used in drinking water remediation [4]  

Calgon Carbon Corporation provided cost estimates for the UV/H2O2 system which is discussed in 
a study provided by Kommineni [9]. The cost shown per 3.79m3

 of treated water ranged from $0.32 
for a flow rate of 1380m

3
/h, at 20 µg/L pollutant concentration, and $4.11 at 13.8m

3
/h with 2,000 µg/L 

pollutant concentration. Their system had the lowest capital costs, but O&M expenditures were more 
due to higher energy utilisation [9]. 
 
2.3. AOP using Fenton’s Reagent, Fenton-Like and Photo Fenton Processes  
Radicals are produced when iron (II) reacts with hydrogen peroxide, where Fe

2+
 ion acts as a catalyst 

for this reaction. Fenton’s Process is a simple method to produce HO• without the need for neither 

special apparatus nor chemicals, and takes place at ambient temperature and pressure. This method is 

an attractive way for oxidation, as hydrogen peroxide and iron salts are easily available, easy to handle 

and environmentally safe. The destruction of organic compounds takes places by reacting with the 

HO•. Equation 7 shows how the HO• are formed [6]: 

Fe
2+

 + H2O2 → Fe
3+

 + OH⁻ + HO• (7) 

The rate of degradation of organic pollutants with Fenton–Fenton like reagents is strongly 

accelerated by irradiation with UV-VIS light at wavelengths greater than 300nm. The photolysis of 

Fe
3+

 complexes allows Fe
2+

 to be regenerated. The occurrence of Fenton reactions in the presence of 

hydrogen peroxide is shown in equation 8 [15].  

Fe(OH)2+ hν → Fe
2⁺ + HO• + OH⁻ (8) 

This process, like the other AOPs, is initiated by the hydroxyl radical for the degradation of organic 
compounds, mainly by oxidation reactions. However, the Fenton process is strict and requires pH 
control [2, 14], so as to prevent precipitation of the iron. For this method, the reactor must be 
constructed so as to allow proper mixing of the Fe(II) and H2O2. This allows for optimum hydroxyl 
radical formation, and degradation of the contaminants. The extraction of iron from the effluent water 
could possibly raise the costs of using this system.  

For Fenton-like processes, elements with several redox states such as chromium, copper, and can 
be used to decompose H2O2 into HO• through conventional ways [2]. However, the Fenton-like 
system, each non-ferrous catalyst could counterbalance the practical gains of better catalyst stability 
and working at neutral pH. Therefore, the activation process for H2O2 is specific to the nature of the 
catalyst and is influenced by its composition.  
Toxic compounds such as phenols and herbicides in wastewater can be destroyed by this method [6].  

However, the low pH value that is required for this system to keep the iron in solution increases the 

maintenance and operation costs.  Advanced oxidation pre-treatment using Fenton reagent has been 

found to be very effective at enhancing the biodegradability of wastewater containing surfactants The 

Fenton, photo-Fenton and Fenton-Like methods are popular methods for AOP due to their flexibility, 

simplicity, and integration into existing water remediation processes such as coagulation. 
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Furthermore, this method has a rapid reaction between iron and H2O2, which then generates HO• in 
the shortest time compared to other AOPs [2].  

The optimum amount of H2O2 for this process needs to be determined since any excess H2O2 

reacts with other inorganic matter, affecting the COD reduction. This method has high elimination for 

the degradation of linear alkylbenzene sulfonates (LAS), and alkyl benzene sulfonate (ABS) 

surfactants.  
However, there is one major drawback of using the Fenton process, which is the production of 

sludge that contains iron hydroxide as a byproduct. Large amounts of flocs of various sizes have been 

observed during a number of studies conducted [2, 18]. The disposal of the sludge formed has to be 

included when estimating the cost of this process. Nevertheless, chemical coagulation has been found 

as an effective method for the removal of the flocs, as well as COD [16, 19].  
Until now, Fenton and photo Fenton processes have been used to treat effluents from dye and 

chemical manufacturing, pulp bleaching, and agricultural processing. Additionally, Fenton 

pretreatment can be used to enhance biological wastewater treatment. Since this process is deemed as 

easy-to-handle, Fenton’s reaction has demonstrated to be more efficient in terms of operating expenses 

for the treatment of toxic and food industrial wastewater [20].  
In a study of the degradation of phenol from aqueous solutions by photo-Fenton process by Alam et 

al. [21] optimum economic condition was found by using 30 mmol/L of H2O2 and 0.5 g/L of 

FeSO4·7H2O for irradiation time of 60 min. The total estimated costs with maximum degradation 

were found to be $2.88 US/m
3
. 

 

2.4. AOP using titanium dioxide (TiO2)  
Heterogeneous photocatalysis using titanium dioxide (TiO2) is an efficient advanced oxidation method 
in industrial effluent treatment process. When the TiO2 is illuminated by UV, it generates a 
conduction band of electrons (ecb) and valence band holes (h

+
) (Eq. 9-11). These band electrons 

interact with surface adsorbed oxygen to produce superoxide radical anions. The hydroxyl radicals are 
produced when the band holes interact with water. 

TiO2 + hν → ecb + h⁺ (9) 

ecb + O2 → O2‾• (10) 

h⁺ + H2O → H
+
 + HO• (11) 

It has been shown that many organic complexes can be degraded by oxidation in the presence of 
UV/TiO2 [20, 22, 23] . As with all the other processes in AOP, the degradation of organic compounds 
takes place by reacting with the hydroxyl radicals.  

Furthermore, TiO2 nanoparticles are deemed suitable for wastewater treatment, because they are 

non-toxic, chemically and biologically inert, and inexpensive [4]. In addition, TiO2 has a 

comparatively high oxidative power as compared to other oxidizing species [22]. Suspended 

TiO2particles were used in most studies that pertain to the photocatalytic oxidation of contaminants 

[23 – 25] . However, the recycling and recovery of these nanoparticles become cumbersome and 

expensive, thus making it a disadvantage of using suspended systems. This results in the need for 

composing new methods for using immobilized TiO2 to create systems with an immobilized active 

phase [22, 26 - 27]. Therefore, different techniques to create immobilized TiO2 have been studied 

using white plaster cement for the photodegradation of surfactants present in produced water [27].  
Since photocatalytic oxidation is considered as an emerging technology, there aren’t many 

industrial applications of the process. However, several studies show the photocatalytic process has 

been successfully used in the treatment of effluents from winery and distillery, olive mill, dairy 

industry, molasses, candy and sugar industry, fresh-cut vegetable industry, etc [20]. Photocatalysis was 

found to be effective for reducing counts of bacteria, molds, and yeasts.  
Hydroxyl Systems Incorporated stipulated the costs for TiO2/UV AOP system, in the study 

conducted by Kommineni et al. [9]. The estimated costs per 3.79m
3
 of treated water range between 
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$1.01 for a flow 1380m
3
/h at 20 µg/L contaminant concentration and $5.17 for 13.8m

3
/h at 2,000 

µg/L. Compared to the other processes, this system appears to be the least cost effective. 
 
 

3. Cost estimation  
The expenses for AOPs greatly rely on the quality of the effluent to be treated and the aim of the 
treatment. Hence, there are very few reports on the cost estimation of the different types of AOPs. 
According to some of the studies that include cost analysis, it is recommended to carry out pilot 
testing to ascertain site specific costs.  

It was found that the main factors influencing the prices were the removal efficiency and flow-rate, 

not owing to the concentration of the influent [4, 9, 18, 28]. The operating and management costs, as 

well as the capital costs, increased considerably with higher removal efficiency [4, 9]. Location of the 

plant, the time requirement for treatment, environmental trepidations and community influences 

should also be taken into account when evaluating the cost.  
For this cost estimation, we have followed Kommineni’s [9] cost evaluation guidelines. The cost 

estimation has been adjusted to the current year, with minimum 3% inflation rate. Out of the four cost 
estimations shown in Kommineni’s study, Applied Process Technology provided the most cost 
effective rates for Capital expenditure (CAPEX) and operating expenditure (OPEX) combined for each 
process. Their H2O2/O3 system per 3.79m

3
 of water, costs between $0.35 and $3.62 for 1380m

3
/h (20 

µg/L), and 13.8m
3
/h (2000 µg/L) respectively to be treated.  

In their study, Kommineni compared costs of the various AOPs based on the cost estimates. Each 
study was provided with a number of treatment conditions. The budget included prices for equipment, 
electricity, chemical quantities and spare parts. The budgets were prepared for given influent water 
characteristics, as shown in Table 4. 

 

Table 4. Influent water characteristics [9] 
 

 Parameters Value 

 

  

 Hardness (mg/L as CaCO3) 200 

 Alkalinity (mg/L as CaCO3) 250 

 Bromide ND 

 Iron (mg/L) <1 

 pH 7.0 

 Temperature (°F) 65 

 TDS (mg/L) 500 

 Nitrate (mg/L as NO3) 25 

 (mg/L as N) 5 
   

 

The costs were divided into three categories, which are capital, operational, and O&M. The 

investment costs contain the full treatment system and its setting up. Under the capital cost, each of 

the installing costs were calculated. Valves, Piping, and electrical work were approximated at 30%, 

site work at 10%, engineering at 15% and contractors at 15% of the equipment costs. In addition, 20% 

of the overall cost was included as a contingency. Amortization of the annual capital cost was based 

on a 30-year period, at a discount rate of 7%. The full illustration of the calculation is shown in Table 

5. 
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Table 5: Cost estimation for AOP Unit [9]  
Item Costs 

 (USD) 
  

Advanced oxidation unit 1,200,000 

Piping, valves, electrical (30%) 360,000 

Site work (10%) 120,000 

Contractor O&P (15%) 252,000 

Engineering (15%) 289,800 

Contingency (20%) 444,360 

TOTAL CAPITAL 2,666,160 

Amortized capital 214,864 

Annual O&M 207,507 

Total annual cost 422,371 

Total  cost  per  1,000  gallons 1.34 

treated  

  

 
 
For the annual OPEX, replacement expenses are based on the estimate of 1.5% capital cost. The 

labour costs will vary for different countries. Analytical costs are based on the number of sampling 
conducted per week. The chemical costs will be based on dosages. Power is based on estimated 
consumption and price per unit for the country of operation.  

In a study conducted by Mahmuni et. al [28], a method to estimate treatment costs of various AOPs 

was developed. Kinetic data of pollution removal from various literature were used for their 

estimation. The rate constants for the kinetic data were then used to estimate the time it takes for 

degradation of the pollutant by 90% of its original concentration. This time was taken to be the 

residence time of the reactor. The residence time was then multiplied with the design flowrate to 

calculate the reactor capacity. Total energy requirement in the AOP reactor was calculated, and this 

used to find the estimated cost of the AOP reactor. 

 
4. Conclusions and ways forward  
Advanced oxidation process is gaining popularity in the wastewater treatment industry. The main 

focus of this process is the hydroxyl radical, which once generated aggressively attacks virtually all 

organic compounds. Thus far, photocatalytic (TiO2/UV) process, ozonation, H2O2/UV process and  
Fenton’s reactions have been studied and extensively used for the removal of recalcitrant organic 

chemicals thus reducing the COD, TOC, dyes, and phenolic compounds that are commonly found in 

industrial and municipal wastewater. Major factors affecting these processes are the initial 

concentration of the pollutant, the quantity of oxidizing agents and catalysts, light intensity, irradiation 

time and the nature of the wastewater’s solution (pH, presence of solids and other ions). It is pertinent 

to conduct experimental studies in order to develop a method suitable for the specific wastewater. It 

has been established that it is necessary to estimate the capital costs, and overhead and management 

costs by conducting pilot studies, since pilot plant studies are better capable of providing closer 

conditions to estimate accurate costs. Based on the limited reviews, H2O2/O3 and H2O2/UV appear to 

be the two most promising AOP systems, and they are economically practical.  
Few AOPs have been examined in detail under controlled experimental conditions, for many it is 

uncertain what the exact chemical mechanisms are, and few field tests have been carried out in such a 
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manner that the entire process could be critically examined. Hence, process optimization should be 

carried out for specific wastewater, to ensure no harmful by-products are generated, and residual 

reagents are limited in the effluent from the AOP system. At the same time the knowledge about the 

exact mechanisms of AOPs is still incomplete. Furthermore, one should clearly see the importance of 

AOPs as a technological tool for environmental management, and they must be developed from this 

firm scientific and engineering basis. 
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