This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 444

2013

Previous issue Next issue

7th International Conference on 3D Radiation Dosimetry (IC3DDose) 4–8 December 2012, Sydney, Australia

Accepted papers received: 09 May 2013
Published online: 26 June 2013

Preface

011001
The following article is Open access

and

IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4–8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose.

The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference.

The conference objectives were:

  • to enhance the quality and accuracy of radiation therapy treatment through improved clinical dosimetry

  • to investigate and understand the dosimetric challenges of modern radiation treatments

  • to provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry

  • to energise and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D and semi-3D dosimetry techniques

We believe the conference program, with its excellent range of expert and specialist speakers, met these objectives.

Thanks are due to all invited speakers for their participation, to the Local Organising Committee members for all their hard work in making the conference happen, particularly the small core administrative support group, and to the range of academic, organisation and commercial sponsors who generously supported the meeting. The Scientific Committee members are also thanked for reviewing the submitted manuscripts and for assisting in the editorial process. Finally, all who travelled to Sydney, Australia for the meeting are acknowledged for choosing to attend and contribute to making this a successful conference.

 

Local Conference Organising Committee

  • David Thwaites (Conference Convener)

  • Clive Baldock

  • Leanne Price

  • Elizabeth Starkey

  • May Whitaker

  • Peter Greer

  • Lois Holloway

  • Phil Vial

  • Robin Hill

Conference Scientific Committee

  • Sven Back (Sweden)

  • Clive Baldock (Australia)

  • Cheng-Shie Wuu (USA)

  • Yves de Deene (Belgium)

  • Simon Doran (UK)

  • Geoffrey Ibbott (USA)

  • Andrew Jirasek (Canada)

  • Kevin Jordan (Canada)

  • Martin Lepage (Canada)

  • Mark Oldham (USA)

  • Evangelos Pappas (Greece)

  • John Schreiner (Canada)

  • David Thwaites (Australia)

David ThwaitesClive Baldock
DirectorExecutive Dean
Institute of Medical PhysicsFaculty of Science
School of PhysicsMacquarie University
University of SydneyNorth Ryde
NSW 2006NSW 2109
AustraliaAustralia

The PDF also contains the conference program.

011002
The following article is Open access

All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Papers

Refresher

012001
The following article is Open access

and

Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

012002
The following article is Open access

An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

012003
The following article is Open access

The absorbed radiation dose fixated in a polymer gel dosimeter can be read out by several methods such as magnetic resonance imaging (MRI), optical CT, X-ray CT and ultrasound with MRI being the first method that was explored. Although MRI was considered as an elegant scanning technique, readily available in most hospitals, it was later found that using a non-optimized imaging protocol may result in unacceptable deviations in the obtained dose distribution. Although most medical physicists have an understanding of the basic principles of magnetic resonance imaging (MRI), the optimization of quantitative imaging sequences and protocols is often perceived as the work of MRI experts. In this paper, we aim at providing the reader with some easy guidelines in how to obtain reliable quantitative MRI maps.

012004
The following article is Open access

In this article, which accompanies one of the morning "refresher" sessions at the IC3D Dose 2012 conference, a workflow for optical CT scanning is described and the following steps in that workflow are illustrated: sample positioning, refractive index matching, the importance of apparatus cleanliness to the imaging process, the pre-scan and image reconstruction and post-processing.

012005
The following article is Open access

This review paper addresses the basic considerations required when performing x-ray CT polymer gel dosimetry. The review focuses on recent developments pertaining to these basic considerations.

012006
The following article is Open access

In this review of the accuracy required and achievable in radiotherapy dosimetry, older approaches and evidence-based estimates for 3DCRT have been reprised, summarising and drawing together the author's earlier evaluations where still relevant. Available evidence for IMRT uncertainties has been reviewed, selecting information from tolerances, QA, verification measurements, in vivo dosimetry and dose delivery audits, to consider whether achievable uncertainties increase or decrease for current advanced treatments and practice. Overall there is some evidence that they tend to increase, but that similar levels should be achievable. Thus it is concluded that those earlier estimates of achievable dosimetric accuracy are still applicable, despite the changes and advances in technology and techniques. The one exception is where there is significant lung involvement, where it is likely that uncertainties have now improved due to widespread use of more accurate heterogeneity models. Geometric uncertainties have improved with the wide availability of IGRT.

Invited Review

012007
The following article is Open access

In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D involves the measurement of dose in a volume mimicking the patient.There are different advantages and limitations of all three categories and of systems within these categories. Choice of measurement method in a given case depends on the aim of the measurement, and examples are given of verification measurements with various aims.

012008
The following article is Open access

, , , , , , , , , et al

Centre for Medical Radiation Physics (CMRP) is a research strength at the University of Wollongong, the main research theme of this centre is to develop prototype novel radiation dosimeters. Multiple detector systems have been developed by Prof Rosenfelds' group for various radiation detector applications. This paper focuses on four current detector systems being developed and studied at CMRP. Two silicon array detectors include the magic plate and dose magnifying glass (DMG), the primary focus of these two detectors is high spatial and temporal resolution dosimetry in intensity modulated radiation therapy (IMRT) beams. The third detector discussed is the MOSkinTM which is a high spatial resolution detector based on MOSFET technology, its primary role is in vivo dosimetry. The fourth detector system discussed is BrachyView, this is a high resolution dose viewing system based on Medipix detector technology.

012009
The following article is Open access

This review covers papers from the previous two years not being represented at this conference. Optically stimulated luminescence detectors, diamond detectors and radiochromic film are the major topics. An effort to link these papers to 3D dosimetry is included in this brief report. An overall theme of linear, water equivalent response is seen throughout the topics included.

012010
The following article is Open access

This article presents an overview of pre-treatment verification of volumetric modulated arc therapy (VMAT) with electronic portal imaging devices (EPIDs). Challenges to VMAT verification with EPIDs are discussed including EPID sag/flex during rotation, acquisition using cine-mode imaging, image artefacts during VMAT and determining the gantry angle for each image. The major methods that have been proposed to verify VMAT with EPIDs are introduced including those using or adapting commercial software systems and non-commercial implementations. Both two-dimensional and three-dimensional methods are reviewed.

012011
The following article is Open access

, , , , , , , and

In this paper the various approaches of EPID-based in vivo IMRT and VMAT dose verification, and their clinical implementation, are described. It will be shown that EPID-based in vivo dosimetry plays an important role in the total chain of verification procedures in a radiotherapy department. EPID-based dosimetry, in combination with in-room imaging, is a fast and accurate tool for 3D in vivo verification of VMAT delivery. EPID-based in vivo dosimetry provides clinically more useful information and is less time consuming than patient-specific pre-treatment dose verification. In addition to accurate 3D dose verification, in vivo EPID-based dosimetry will also detect major errors in the dose received by individual patients, and provides a safety net for advanced treatments such as IMRT and VMAT.

012012
The following article is Open access

and

As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

012013
The following article is Open access

, , and

Plastic scintillation dosimeters (PSD) have been a topic of a keen research interest for the past 20 years. Numerous PSD systems have been proposed, most times differentiating from the previous by a slight change in one or more components, such as the photodetector. However, a few major technological and engineering innovations have also been made. Over the past few years PSDs have been evaluated for small field dosimetry, in vivo dose measurements, building of arrays and much more. The present manuscript is intended to present the basic physics and properties of PSDs and its application over the past two decades.

012014
The following article is Open access

, and

Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

012015
The following article is Open access

and

Gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as it covers the whole treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. A major obstacle that has hindered the wider dissemination of polymer gel dosimetry in radiotherapy centres is the lack of confidence in the reliability of the measured dose. Discrepancies in dose response of small versus large polymer gel dosimeters have been reported and although several hypothesis for these discrepancies have been postulated, the actual contribution of these error sources to the overall inaccuracy of the dose maps has not been determined. Several gel dosimetry research groups have chosen to use an internal calibration of gel dosimeters. In this study, the inter-and intra-batch reproducibility of the current state-of-the-art 3D gel dosimeters has been assessed. It is demonstrated that with a carefully designed scanning set-up, the overall accuracy that can be obtained with an independent calibration is well within 5% of all pixels.

012016
The following article is Open access

, and

One component of clinical treatment validation, for example in the commissioning of new radiotherapy techniques or in patient specific quality assurance, is the evaluation and verification of planned and delivered dose distributions. Gamma and related tests (such as the chi evaluation) have become standard clinical tools for such work. Both functions provide quantitative comparisons between dose distributions, combining dose difference and distance to agreement criteria. However, there are some practical considerations in their utilization that can compromise the integrity of the tests, and these are occasionally overlooked especially when the tests are too readily adopted from commercial software. In this paper we review the evaluation tools and describe some practical concerns. The intent is to provide users with some guidance so that their use of these evaluations will provide valid rapid analysis and visualization of the agreement between planned and delivered dose distributions.

012017
The following article is Open access

, , and

The use of Cone beam CT (CBCT) systems for Image Guided Radiotherapy is rapidly expanding in the developed world. With its use comes concern for the increased risks of additional radiation exposure. Quantification of the imaging dose is necessary in order to report, optimise and justify CBCT exposures. This article reviews the current methods of dose measurement and calculation including dose measurements in cylindrical phantoms, use of point dosimeters in anthropomorphic phantoms, calculation of dose using mathematical phantoms and calculation of individualised patient dose using Monte Carlo and model based techniques. Typical doses from commercial systems are reported and the clinical consequences, both risks and benefits, of using CBCT based IGRT reviewed briefly.

Clinical Challenges & Dosimetry Systems

012018
The following article is Open access

, and

A three-dimensional (3D) film stack dosimeter (FSD) using Gafchromic® EBT2 film was characterized for use in external-beam radiotherapy. The FSD was found to have negligible energy dependence and orientation dependence less than 2% using Monte Carlo simulations. Percent-depth-dose measurements with the FSD aligned parallel and perpendicular to the beam axis agreed with Monte Carlo simulations within 2%. Measurements of a 60Co slit field with the FSD and thermoluminescent dosimeters agreed with a gamma passing rate of 97.6% using 1.5%/1.5 mm criteria. Edge artifacts were smaller than 2 mm, minimally affecting the usable measurement volume. The FSD is water equivalent, energy independent and orientation independent within measurement uncertainty at 60Co energies, providing a 3D dosimeter that can be analyzed with a desktop scanner.

012019
The following article is Open access

, , and

The sensitivity of the ArcCHECK 3D dosimeter in detecting VMAT delivery errors has been investigated. Dose and leaf positional errors of different magnitudes were introduced to whole arc and individual control points (CPs) of a simple open arc VMAT plan. The error introduced and error free plans were delivered and measured using the ArcCHECK device. The measured doses were compared against the treatment planning system calculated doses using gamma (γ) criteria with 2%/2mm and 3%/3mm tolerance levels. ArcCHECK effectively detected the dose errors resulting from MLC leaf positioning errors in limited CPs and Whole arc. For errors introduced to MU, ArcCHECK effectively detected the MU delivery errors in whole arc but not the MU errors introduced to CPs in integrated dose comparison.

012020
The following article is Open access

, , , and

A new dosimetry insert for the Radiological Physics Center's spine phantom was designed to hold a specially molded dosimeter. The phantom was irradiated with the traditional insert loaded with radiochromic film and TLD, and then with the new 3D dosimetry insert. A comparison with the calculated dose distribution showed that PRESAGE® dosimeter, as well as the film and TLD system, agreed to within ±2mm. Further analysis of the 3D dosimeter, including a measured dose volume histogram, demonstrated the advantages of 3D dosimetry in a clinical environment.

012021
The following article is Open access

, and

In this study, a 4D dosimetry concept was developed. This concept included a method for calculation of 3D reference absorbed dose matrices at every control point of the delivery using a clinical treatment planning system (TPS). Further, the gamma evaluation method was extended to incorporate the 4th dimension of the TPS calculated dose distributions. The applications of the 4D dosimetry concept on pre-treatment quality control and real-time in vivo dosimetry were investigated.

012022
The following article is Open access

, and

There is a pressing need for clinically intuitive quality assurance methods that report metrics of relevance to the likely impact on tumor control of normal tissue injury. This paper presents a preliminary investigation into the accuracy of a novel "transform method" which enables a clinically relevant analysis through dose-volume-histograms (DVHs) and dose overlays on the patient's CT data. The transform method was tested by inducing a series of known mechanical and delivery errors onto simulated 3D dosimetry measurements of six different head-and-neck IMRT treatment plans. Accuracy was then examined through the comparison of the transformed patient dose distributions and the known actual patient dose distributions through dose-volume histograms and normalized dose difference analysis. Through these metrics, the transform method was found to be highly accurate in predicting measured patient dose distributions for these types of errors.

New Dosimetry Systems

012023
The following article is Open access

, , and

We present a novel, high-resolution 3D dosimeter based on the tomographic acquisition of the dose using long scintillating fibers. This study aims to demonstrate the concept of the dosimeter with simulated acquisitions using the input dose from Pinnacle3. The dosimeter is composed of concentric, cylindrical planes in which scintillating fibers are placed at different angles between the fiber and the cylindrical plane. Upon a complete rotation of the device around its central axis, the incident dose distribution on the cylindrical planes can be reconstructed using tomographic reconstruction algorithm. The 3D dose in the dosimeter can then be interpolated from the cylindrical 2D dose distributions. Using a simulated acquisition composed of two concentric cylindrical planes of 36 and 32 fibers each, we achieve below 1% local dose difference between the reconstructed 3D dose and the expected dose from Pinnacle3 in the high dose, low gradient region of the volume encompassed inside the innermost cylindrical plane. The results show the potential of the method to perform high-resolution 3D dose measurements of both square and IMRT fields.

012024
The following article is Open access

, , , and

Micelle gel is a radiochromic hydrogel with the potential to be used as a three dimensional (3D) radiation dosimeter. Since an ideal dosimeter should present water equivalent properties, in this study the water equivalence of two formulations of micelle gel has been investigated by calculating electron density, effective atomic number, fractional interaction probabilities, mass attenuation coefficient. The depth doses for kilovoltage and megavoltage x-ray beams have also modelled using Monte Carlo code. Based on the results of this work, micelle gels can be considered as water equivalent dosimeters.

012025
The following article is Open access

, , , , , and

The aim of this study is to present the first experimental validation and quantification of the dose enhancement capability of bismuth oxide nanoparticles (Bi2O3-Nps). A recently introduced multi-compartment 3D radiochromic dosimeter for measuring radiation dose enhancement produced from the interaction of X-rays with metal nanoparticles was employed to investigate the 3D spatial distribution of ionizing radiation dose deposition. Dose-enhancement factor for the dosimeters doped with Bi2O3-NPs was ~1.9 for both spectrophotometry and optical CT analyses. Our results suggest that bismuth-based nanomaterials are efficient dose enhancing agents and have great potential for application in clinical radiotherapy.

012026
The following article is Open access

, and

Different low-density polymer gel dosimeters have been constructed that can be used to acquire the radiation dose distribution of IMRT treatments in the thoracic region. A heterogeneous phantom consisting of a low density polymer gel dosimeter sandwiched between two layers of soft tissue equivalent gel has been constructed. As a proof-of-principle, the phantom has been irradiated with a square 4 cm × 4 cm beam. The dose distribution is read out by use of both quantitative NMR spin-spin (R2) and magnetization transfer (MT) imaging. Sources of error in the dose readout have been assessed and are discussed.

012027
The following article is Open access

, and

The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

012028
The following article is Open access

, , , and

New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

Polymer Gel Dosimetry

012029
The following article is Open access

, , , , and

PRESAGE® is a solid radiochromic dosimeter consisting of a polyurethane matrix, a triarylmethane leuco dye, and a trihalomethane initiator. Varying the composition and/or relative amounts of these constituents can affect the dose sensitivity, post-irradiation stability, and physical properties of the dosimeter. This allows customisation of PRESAGE® to meet application-specific requirements, such as low sensitivity for high dose applications, stability for remote dosimetry, optical clearing for reusability, and tissue-like elasticity for deformable dosimetry. This study evaluates five hard, non-deformable PRESAGE® formulations and six deformable PRESAGE® formulations and characterizes them for dose sensitivity and stability. Results demonstrated sensitivities in the range of 0.0029 – 0.0467 ΔOD/(Gy·cm) for hard formulations and 0.0003 – 0.0056 ΔOD/(Gy·cm) for deformable formulations. Exceptional stability was seen in both standard and low sensitivity non-deformable formulations, with promising applications for remote dosimetry. Deformable formulations exhibited potential for reusability with strong post-irradiation optical clearing. Tensile compression testing of the deformable formulations showed elastic response consistent with soft tissues, with further testing required for direct comparison. These results demonstrate that PRESAGE® dosimeters have the flexibility to be adapted for a wide spectrum of clinical applications.

012030
The following article is Open access

, , , , and

The study assessed the dosimetric characteristics of the N-isopropylacrylamide (NIPAM) polymer gel dosimeter. Experiments on the intra-dosimeter consistency and reproducibility of NIPAM polymer gels were performed. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated using the four-field box treatment with a field size of 3 cm × 3 cm. A fast, optical computerized tomography scanner was used to scan the gel phantoms. The results showed that the dose profiles were consistent at various depths. The isodose lines agreed quantitatively with the calculated TPS dose and the measured NIPAM polymer gel dose within the 30 to 90 percentage isodose lines. In addition, the Gamma pass rates were determined to be 94.9%, 95.2%, and 95.7% at depths of 40 mm, 45 mm, and 50 mm, respectively, using 5% dose difference and 5 mm distance-to-agreement criteria. Using the same Gamma criteria, the Gamma pass rates were 95.1%, 95.3%, and 95.7% for the three replicated. The results indicated that the NIPAM polymer gel dosimeter was stable and reliable. The dosimetric characteristics highlighted the potential of NIPAM polymer gel dosimeter in radiotherapy.

012031
The following article is Open access

, , , , , and

The purpose of this study is to investigate gel dosimetry for a small irradiation field in stereotactic radiotherapy. Treatment plans were generated by the Pinnacle3 treatment plan system (TPS) for three different circular irradiated fields: 10 mm, 15 mm, and 20 mm. The polymer gels were irradiated to 6 Gy with 10-, 15-, and 20-mm-diameter collimators in 4 MV photon beams for stereotactic irradiation following TPS. Irradiated gels were evaluated with MRI at 1.5 T with R2 images. Firstly, the line profile of the irradiated center between TPS plan and the R2 image was compared. In the center profile at a dose calculated from the treatment plan, the full width at half maximum (FWHM) of 10-mm, 15-mm, and 20-mm collimators, were 13 mm, 19 mm, and 25 mm, respectively. In the center profile at R2 from the gel dosimetry, the FWHM were 13 mm, 20 mm, and 23 mm, respectively. Secondly, R2 images were converted to dosimetric maps to apply the gamma evaluation method. Comparison using gamma evaluation in the center of the irradiated plane between TPS plan and the dose map from the R2 image was performed. In gamma evaluation, when 3% and 3 mm criteria were used for comparison of the center plane of dose image from TPS and gel dosimetry, the pass ratio of the gamma criterion between calculated dose from the TPS and the dose map of irradiated gels in stereotactic irradiation was 98.6%. In comparison of the center profile and center plane, results of gel dosimetry were shown to have good agreement with the generated treatment plan dosimetric map for stereotactic irradiation.

012032
The following article is Open access

, , , , and

Inter- and intra-fractional variation in anatomic structures is a significant challenge in contemporary radiotherapy (RT). In this study, we describe the implementation of a novel deformable gel dosimetry system (dubbed 'DEFGEL') for application to external beam RT and brachytherapy experimental measurements. Complex / redistributed dose distributions due to applied deformations were readily observed and the discrepancies relative to a control case with an absence of deformation could be quantified. This work has obvious extensions to validation of deformable image registration algorithms, deformable dose calculation algorithms, and quality assurance of motion compensation strategies in RT.

012033
The following article is Open access

, , , , , , , and

We have recently reported the significant reduction of radiation product diffusion by the incorporation of clay nanoparticles into dichromate gel (DCG) dosimeters. In this work, we investigate the influence of the nanoclay addition and gelation on the MRI R1 (1/T1) image response of the dichromate dosimeter to the therapeutic carbon ion beam (12C6+ 290 MeV/u). The MRI R1 distribution in the aqueous dichromate solution well reproduces physical dose-depth distribution with a high linear-energy-transfer (LET) efficiency. The nanoclay DCG dosimeters, on the other hand, exhibit composition-dependent LET efficiency degradation, while a sharp Bragg peak can still be detected. These results indicate that the nanocomposite gel addition may induce change in the radiation-induced reaction mechanism.

012034
The following article is Open access

, , and

A comparison between a commercial leucomalachite green (LMG) dye and three newly synthesised derivatives incorporated into the PRESAGE® dosimeter was carried out to determine their effect on the sensitivity and post-response photofading of the dosimeter. For all of the substituted LMG derivatives (with either methoxy, chlorine or bromine substituents), the sensitivity of the resulting dosimeters to radiation dose increased significantly and was dependent on the type of LMG derivative used, with the bromine substituted derivative showing the highest sensitivity increase (450%) followed by chlorine and methoxy substituted derivatives (340%, 200 %, respectively) relative to commercial LMG. All LMG dyes investigated showed similar post-response photofading characteristics except the methoxy-LMG derivative, which showed a slight improvement in post-response photo-retention.

Radiochromic and Other Novel Dosimetry

012035
The following article is Open access

and

Dose distributions for photon beam were measured using a Photo-Stimulated Luminescence Dosimeter (PSLD) sheet, which has 18 × 24 cm2 dimension and 0.2 mm thickness. Its density and effective atomic number are 1.0 g/cm3 and 7.6, respectively. The read out was performed by blue LED lights for 20 seconds, which was much shorter than the readout time for TLD. The percent depth dose and dose profile were obtained as smooth curve after the calibration and it reproduced the measurements with ionization chamber, except for the tail region in the dose profile. We demonstrated the measurement of the prostate VMAT dose distribution also. The result reproduces the calculation by treatment planning system (TPS) qualitatively. It is shown that the PSLD sheet has the potential to measure the dose distribution.

012036
The following article is Open access

, , , , and

The aim of this study was to explore the dose response of a newly developed radio-chromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. The original dosimeter composition was first investigated in terms of dose response and dose-rate dependence. In addition, the initiating compounds producing chlorine radicals were substituted with compounds producing fluorine radicals, oxygen-centered radicals, carbon-centered radicals and bromine radicals. Also the surfactant was substituted by other compounds of different molecular size and charge. The original composition gave a dose response of 3.5·10−3 Gy−1cm−1 at 6 Gy/min with a dose rate dependence giving a 27 % increase when decreasing the dose rate to 1 Gy/min. None of the substituted initiating components contributed to an increase in dose response while only one surfactant increased the dose response slightly.

012037
The following article is Open access

, and

Measurement traceability of dosimetry systems to standards of measurement underpins reliable radiation treatments. A method to determine the product of the molar linear absorption coefficient and the radiation chemical yield is presented, which provides a means of photometric calibration of chemical dosimetry systems in order that the absorbed dose be determined directly from photometric measurements.

012038
The following article is Open access

, , , , , and

The aim of this study was to investigate the diffusion properties of a radiochromic hydrogel dosimeter based on leuco malachite green dye in a gelatine matrix. One half of each dosimeter was irradiated while the other half was left un-irradiated creating dose gradients over which diffusion could be investigated. Read-out of the optical response was performed with a high-resolution optical scanner. The dosimeters were found to exhibit a low diffusion rate but a high auto-oxidation level leading to a fading of the contrast in the dose response with time.

012039
The following article is Open access

This study examines photochromic response in radiation sensitive hydrogels. Genipin, crosslinked, gelatin gel can support high resolution images because the chromophores do not diffuse. A low power, 633 nm He-Ne laser was used to write lines into the gels by a photobleaching reaction. Optical cone-beam computed tomography (CBCT) scans mapped the high resolution images in 3D with 0.25 mm voxel resolution. A straight line was written into a deformed gel and then readout in its relaxed, initial shape. The curved, photo-bleached line demonstrated deformable 3D dosimetry is possible with this system to the balloon edge. High resolution, photochromic images provide key information for characterizing optical CT scanners and 3D dosimeters. Many, ionizing radiation, dosimeter materials demonstrate either a photochromic or photothermal response, allowing this approach to be widely used in quantitative 3D scanning.

012040
The following article is Open access

, and

An evaluation of the diffusion coefficient of a genipin-gelatin gel dosimeter was carried out by fitting an inverse square root function to image profile data. A comparison was made with a Fricke-gelatin-xylenol orange (FGX) gel dosimeter, in which the ions are known to diffuse. The diffusion coefficient for this FGX gel, consisting of 0.5 mM ferrous ammonium sulphate, 50 mM sulphuric acid, 0.15 mM xylenol orange and 3 % by weight gelatin was 0.70 ± 0.05 mm2 h−1 at 5 Gy. The genipin-gelatin gel consisted of 50 μM genipin, 4 % by weight gelatin and 100 mM sulphuric acid. The fitted parameter that is proportional to the diffusion coefficient did not significantly change over time, demonstrating that this genipin-gelatin gel is a non-diffusing dosimeter.

012041
The following article is Open access

, , and

Emulsified diacetylenes as reporter molecules in micelle gel dosimeters were evaluated in the current article. It was observed that gels containing PCDA emulsified in deionized water using SDS changed from colourless to blue upon irradiation. Unfortunately, recipes that led to turbid gels resulted in a colour change, but transparent gels did not change colour. The colour change may be due to the oligomerization of precipitated solid PCA crystals, rather than emulsified PCDA.

EPID Dosimetry and Verification of Complex Treatments

012042
The following article is Open access

and

Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.

012043
The following article is Open access

, , and

In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

012044
The following article is Open access

, , , and

There is a clear need for an accurate and practical dosimeter that is able to verify 3-D dose distributions from complex radiation treatments. The purpose of this study is to evaluate the dosimetric performance of PRESAGE radiochromic plastic dosimeter in conjunction with a cone-beam optical CT scanner, VistaTM, for 3-D dosimetry. The cone-beam optical CT scanner presented in this study can perform optical readout in less than 30 min, which makes same day dose verification for treatment possible. For dosimetric accuracy, a complete 3-D dose verification procedures were performed, including dose response calibration with a 12 MeV electron beam, a 6 MV photon square field irradiation, as well as a 5-field IMRT irradiation. This study shows that 3-D dose verification with fast optical CT scan of PRESAGE dosimeter is feasible. First-generation optical CT scanner can be used as a gold standard for optical readout of dosimeters.

012045
The following article is Open access

, , , , , and

The impact of 3D rotational errors in patient positioning on dose delivered target volumes and critical structures in IMRT was studied. Patient rotational errors ranging from −30 to +30 was introduced to IMRT treatment plans of pelvis, head and neck and brain treatment sites and the impact of rotational error on DVH metrics was assessed. The magnitude of impact of rotational error on the error in dose delivered to the target volume and critical structures depends on the location of the structures from plan isocentre. In studied plans, a maximum percentage difference of up to −9.8(1s=13.4) % in D95 to PTV was observed for head and neck treatments. Similarly, in Brain treatments a maximum difference of up to 24.0(1s=33.0) % in maximum dose of Optic chiasm was observed. The results suggest that failure to correct patient's rotational error results in under-dosage to target volumes and over-dosage to the critical structures in some specific treatment scenarios.

012046
The following article is Open access

, and

Imaging procedures utilised for patient position verification during breast radiotherapy can add a considerable dose to organs surrounding the target volume on top of therapeutic scatter dose. This study investigated the dose from a breast kilovoltage cone-beam CT (kV-CBCT), a breast megavoltage fan-beam CT (MV-FBCT), and a TomoDirectTM breast treatment. Thermoluminescent dosimeters placed within a female anthropomorphic phantom were utilised to measure the dose to various organs and tissues. The contralateral breast, lungs and heart received 0.40 cGy, 0.45 cGy and 0.40 cGy from the kV-CBCT and 1.74 cGy, 1.39 cGy and 1.73 cGy from the MV-FBCT. In comparison to treatment alone, daily imaging would increase the contralateral breast, contralateral lung and heart dose by a relative 12%, 24% and 13% for the kV-CBCT, and 52%, 101% and 58% for the MV-FBCT. The impact of the imaging dose relative to the treatment dose was assessed with linear and linear-quadratic radiation-induced secondary cancer risk models for the contralateral breast. The additional imaging dose and risk estimates presented in this study should be taken into account when considering an image modality and frequency for patient position verification protocols in breast radiotherapy.

012047
The following article is Open access

, , , and

3DVH software is capable of generating a volumetric patient VMAT dose by applying a volumetric perturbation algorithm based on comparing measurement-guided dose reconstruction and TPS calculated dose to a cylindrical phantom. The primary purpose of this paper is to validate this dose reconstruction method on an anthropomorphic heterogeneous thoracic phantom by direct comparison to independent measurements. Reconstructed "patient" doses compare well with the independent dose profile measurements in the unit-density target inside a thoracic phantom lung. The largest differences are observed in lung and are associated with the highly modulated plan with narrow (few mm) MLC openings. Such a plan is instructive as a stress test of the algorithm but is not likely to be clinically encountered in lung. This residual disagreement underscores the fact that 3DVH is not designed to correct the errors related to the TPS dose calculations in the low-density media.

IMRT and IGRT

012048
The following article is Open access

, and

Patient-specific IMRT QA is dependent on the dosimetry system and the evaluation procedure. The ICRU report 83 provides recommendations of tolerated deviations between measured and calculated absorbed dose distributions for QA of IMRT treatment plans. The result of doing IMRT patient-specific QA with the Delta4 dosimetry system and using the ICRU recommendations for evaluation is studied. To be able to investigate the QA procedure the original IMRT treatment plans were modified in the treatment planning system to create calculated dose distributions with dosimetric deviations from the original treatment plans. The modified dose distributions were compared to the dose distributions from the Delta4 measurements of the original treatment plans and the differences were evaluated with criteria and tolerance levels according to the recommendations from ICRU. The evaluation for all 28 modified dose distributions have gamma passing rates higher than the tolerance level recommended from ICRU and will therefore pass the patient-specific QA. More than half of the evaluations have a gamma passing rate of 100 %. Evaluation of the differences between the modified and the original calculated dose distributions revealed in several cases large unacceptable dose differences in the PTV volumes and the organs at risk, for example an increase in the near-maximum dose D2% to the spinal cord of 5.5 Gy. This study indicates that patient-specific QA with the Delta4 dosimetry system and the ICRU recommendations for evaluation can not be used to distinguish differences between planned and measured dose of dosimetrical relevance.

012049
The following article is Open access

, , , , and

Clinical recommendations to address tumor motion management have been derived from studies dealing with simulations and 2D measurements. 3D measurements may provide more insight and possibly alter the current motion management guidelines. This study provides an initial look at true 3D measurements involving leaf motion deliveries by use of a motion phantom and the PRESAGE/DLOS dosimetry system. An IMRT and VMAT plan were delivered to the phantom and analyzed by means of DVHs to determine whether the expansion of treatment volumes based on known imaging motion adequately cover the target. DVHs confirmed that for these deliveries the expansion volumes were adequate to treat the intended target although further studies should be conducted to allow for differences in parameters that could alter the results, such as delivery dose and breathe rate.

012050
The following article is Open access

, , , and

Six base of skull IMRT treatment plans were delivered to Presage dosimeters within the RPC Head and Neck Phantom for quality assurance (QA) verification. Isotropic 2mm 3D data were acquired by optical-CT scanning with the DLOS system (Duke Large Optical-CT Scanner) and compared to the Eclipse (Varian) treatment plan. Normalized Dose Distribution (NDD) pass rates were obtained for a number of criteria. High quality 3D dosimetry data was observed from the DLOS system, illustrated here through colormaps, isodose lines, and profiles. Excellent agreement with the planned dose distributions was also observed with NDD analysis revealing > 90% pass rates (with criteria 3%, 2mm), and noise < 0.5%. The results comprehensively confirm the high accuracy of base-of-skull IMRT treatment in our clinic.

012051
The following article is Open access

, , and

A treatment planning system IMRT beam model is usually validated using phantom-based measurement, however this will not detect errors related to patient anatomy and inhomogeneity. In this study a secondary treatment system (CMS XIO) was used as a 3D dosimeter to verify an IMRT beam model recently commissioned in a Philips Pinnacle treatment planning system. Data sets from three head-neck and two prostate patients previously treated were utilised. The IMRT plans for these patients were planned in Pinnacle and transferred to XIO. The dose at each voxel in the patient volume was calculated in both XIO and Pinnacle. The 2D dose gamma maps for three orthogonal planes passing through the isocenter were calculated with a criteria of 3%/3mm. The mean gamma pass rate for all patients was 96.86% with maximum and minimum values of 99.6% and 95%. One coronal dose plane at 5.5 cm depth in the phantom was also measured and compared with dose calculated by the Pinnacle IMRT beam model using same gamma criteria. The measured mean gamma pass rate for this coronal plane dose was 96.7% with maximum and minimum of 98.41% and 95.3%. This was comparable with the gamma map pass rates for the three orthogonal dose planes calculated by XIO for the patient data. A secondary treatment planning system was shown to provide a supplementary verification tool based on calculation-based 3D dosimetry using patient anatomy.

012052
The following article is Open access

, , and

A custom in-house built multi-purpose phantom has been designed and built to investigate the integrity of the 2D Matrixx ion chamber (Scanditronix-Welhoffer, Bartlett, TN) and 3D electronic portal image device (EPID) techniques employed for patient specific IMRT delivery QA at our centre. Single ion chamber, EBT3 film and FXG gel dose measurements from the common phantom system were found to be consistent with the Matrixx and EPID measurements except in the limit of highly modulated plan deliveries.

012053
The following article is Open access

and

In the present study an in-house developed leucodye micelle gel was used in combination with an in-house developed optical laser scanner for the 3D dose verification of an IMRT treatment of a pituitary adenoma. In an initial prospective study, a gel measured depth dose distribution of a square 6 MV photon beam was compared with an ion chamber measurement. In a second experiment, the gel and scanner were used to verify a clinical dose distribution on a recently installed linear accelerator. The calibration procedure is identified as the major source of dose deviations.

2D versus 3D Dosimetry and 3D

012054
The following article is Open access

, , and

Proton ion beam therapy demands for high resolution dosimetry due to the high dose gradients present in lateral confinement and final Bragg-peak. In polymer gels the reduction of the linear dose response in the area of the Bragg-peak is reported (Bragg-peak quenching), which is assumed to be mainly due to the high linear energy transfer (LET). We here investigate the impact of the spatial resolution in T2-mapping for accurate Magnetic Resonance Imaging (MRI)-based polymer gel dosimetry in the Bragg-peak for monoenergetic ion beams. We implemented MR-protocols for T2-mapping at microscopic resolution on a High-Field 7T human MR-scanner using an insert gradient system and sensitive rf-coils. The best results are obtained for an optimzed polymer gel based on THPC with an optimized MR-protocol for reduced measurement time and sufficient SNR at 0,547 mm pixel size. The dose in the fine Bragg-peak could be measured correctly for a monoenergetic proton beam as confirmed by Monte Carlo dose simulations. Such high spatial resolutions at minimum are necessary for an accurate measurement of the dose in the sharp Bragg-peak for monoenergetic ion beams. We demonstrate that at higher pixel size the dose levels may be underestimated due to spatial averaging in MRI-based polymer gel dosimetry.

012055
The following article is Open access

, , , , and

The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.

012056
The following article is Open access

, , , , , , , , and

All patient specific range compensators (RCs) are customized for achieving distal dose conformity of target volume in passively scattered proton therapy. Compensators are milled precisely using a computerized machine. In proton therapy, precision of the compensator is critical and quality assurance (QA) is required to protect normal tissues and organs from radiation damage. This study aims to evaluate the precision of proton-based quality assurance of range compensator. First, the geometry information of two compensators was extracted from the DICOM Radiotherapy (RT) plan. Next, RCs were irradiated on the EBT film individually by proton beam which is modulated to have a photon-like percent depth dose (PDD). Step phantoms were also irradiated on the EBT film to generate calibration curve which indicates relationship between optical density of irradiated film and perpendicular depth of compensator. Comparisons were made using the mean absolute difference (MAD) between coordinate information from DICOM RT and converted depth information from the EBT film. MAD over the whole region was 1.7, and 2.0 mm. However, MAD over the relatively flat regions on each compensator selected for comparison was within 1 mm. These results shows that proton-based quality assurance of range compensator is feasible and it is expected to achieve MAD over the whole region less than 1 mm with further correction about scattering effect of proton imaging.

012057
The following article is Open access

, , , and

The purpose of this study is to evaluate the dose response of polyacrylamide-based gel (PAGAT) when irradiated with clinical proton beams. Recently inorganic salt additive in gel has been reported to improve dose sensitivity substantially. We attempted to add MgCl2 (0.5M) to regular PAGAT gel in order to compensate its lower radiation sensitivity. The spin-spin relaxation rates (R2) as dose readout was calculated from MR imaging after irradiation with 150MeV proton beam. The dose sensitivity was discussed from the slope at dose-R2 response curve. As the result, the sensitivity of the gel with MgCl2 is approximately 3 times higher than that of regular PAGAT gel without spoiling dose response stability under the various irradiation conditions such as dose rate and dose integration.

012058
The following article is Open access

, , , and

PRESAGE® has previously shown potential for 3D dosimetry of heavy particles. A new formulation has specifically developed for dosimetry of protons/heavy ions. This work provides a preliminary characterization the new formulation of PRESAGE® by measuring optical absorbance and dose response after irradiating by a 62 MeV proton beam for a dose range of 0.5 – 20 Gy. Results show linear dose response and the evolution over time of the optical density of the 3D dosimeter.

012059
The following article is Open access

, , , and

To evaluate the effects of overlapping dose volumes for varying field arrangements in PRESAGE®, several sequential beam irradiations were delivered each to formulations intended for, and irradiated with, proton beams as well as photon beams. The dosimeters were irradiated within timespans consistent of overlapping fields in clinical treatment plans. Dose profiles taken along the beam direction indicated slight over-responses in higher dose regions relative to similar irradiations given in a single fraction. These results will aid future measurements of overlapping field treatment plans delivered to PRESAGE® for treatment verification of proton and photon 3D dosimetry.

Optical Dosimetry I

012060
The following article is Open access

, and

Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to describe the initial evaluation of a newly fabricated laser CT scanner for 3D gel dosimetry which works using the first generation principle. A normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When a laser passes through the gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor. The scanner motion is controlled by a computer program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software.

012061
The following article is Open access

, , , and

An array of air core scintillation dosimeters (of round or square cross section) is an efficient solution for managing the problem of Cerenkov background light in megavoltage radiation. This array generates a high-resolution dose map in a way that satisfies ICRU dosimetric accuracy recommendations without the need for correction factors. Efficient scintillation signal transportation is vital to sensitivity of the dosimeter. The attenuation of the light irradiance as a function of waveguide length in PMMA and silver hollow square and round waveguides is studied experimentally and theoretically. In practice, the silvered square waveguide has the least attenuation while the PMMA square waveguide performs almost as well as commercially sourced silvered tubes. The attenuation of the commercially sourced tubes is increased by the rough internal silver surfaces.

012062
The following article is Open access

, and

A new scanner geometry for fast optical cone-beam computed tomography is reported. The system consists of a low power laser beam, raster scanned, under computer control, through a transparent object in a refractive index matching aquarium. The transmitted beam is scattered from a diffuser screen and detected by a photomultiplier tube. Modest stray light is present in the projection images since only a single ray is present in the object during measurement and there is no imaging optics to introduce further stray light in the form of glare. A scan time of 30 minutes was required for 512 projections with a field of view of 12 × 18 cm. Initial performance from scanning a 15 cm diameter jar with black solutions is presented. Averaged reconstruction coefficients are within 2% along the height of the jar and within the central 85% of diameter, due to the index mismatch of the jar. Agreement with spectrometer measurements was better than 0.5% for a minimum transmission of 4% and within 4% for a dark, 0.1% transmission sample. This geometry's advantages include high dynamic range and low cost of scaling to larger (>15 cm) fields of view.

012063
The following article is Open access

, and

We address the problem of dose reconstruction based on limited experimentally accessible data due to the effect of refraction in optical-CT gel dosimetry. The refractive index mismatch between the components of the optical-CT scanner result in light scattering and ultimately in the inability to capture parts of the projection datasets. We determine the maximum loss of data and the corresponding refractive index mismatch for which accurate dose reconstruction in the central part of the phantom is still possible. Also, a mathematical formalism that indicates how exact reconstructions can be obtained using a priori knowledge of the optical attenuation coefficient of the gel is presented. This study establishes rigorous design principles for accurate 3D dose reconstruction.

012064
The following article is Open access

and

The use of radiochromic FX gel for mapping 3D dose distribution is hampered by the diffusion of gel and the slow scanning techniques. The development of fast optical cone beam scanning has improved the chances of using radiochromic gel as a feasible dosimeter for radiotherapy applications. In this work an optical cone beam scanner has been developed in-house and its performance characteristics have been studied. The reconstructed image of the optical scanner was analyzed by studying the resolution, signal-to-noise ratio and contrast to noise ratio (CNR). The resolution of the optical cone beam CT scanner was studied by scanning a catheter of 1 mm outer diameter and the scanner was able to detect the catheter. The geometrical accuracy of the reconstruction was studied by placing catheters in spiral geometry in the gel phantom and measuring the distances. It has been observed that the in-house Optical Cone beam scanner is suitable for scanning radiochromic gels for radiotherapy applications.

012065
The following article is Open access

and

Achieving accurate optical CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Software has been developed to simulate optical CT 3D dosimetry for a range of scanning configurations including parallel-beam, point and converging light sources. For each configuration the efficacy of 3 refractive media were investigated: air, water, and a fluid closely matched to Presage (RI = 1.00, 1.33 and 1.49 respectively). The results revealed that the useable radius of the dosimeter (i.e. where data was within 2% of truth) reduced to 68% for water-matching, and 31% for dry-scanning in air. Point source incident ray geometry produced slightly more favourable results, although variation between the three geometries was relatively small. The required detector size however, increased by a factor six for dry-scanning, introducing cost penalties. For applications where dose information is not required in the periphery, some dry and low-viscous matching configurations may be feasible.

012066
The following article is Open access

, and

The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

012067
The following article is Open access

, , and

This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.

012068
The following article is Open access

, , , , and

In this study, two types of normoxic N-vinylpyrrolidone based polymer gel, VIPET1v and VIPET2v, were presented. VIPET2v had the double amount of monomer compared to the VIPET1v. The influence of this difference in the dosimetric characteristics of the polymer gel dosimeters was investigated. The doubling in N-vinylpyrrolidone concentration increased the dose sensitivity in the linear dose range region and improved the dose resolution at 95% confidence level for lower doses (D<10Gy). Unfortunately, this increase in concentration reduced the dose range response. VIPET1v was sensitive in the dose range of 2 to 60 Gy, while VIPET2v was sensitive in the dose range of 1 to 30 Gy. Moreover, both gels showed a linear R2-dose response for one month post-irradiation time period. During this time, variations in dose sensitivity and offset values of both dosimeters were observed. Finally, the dose resolution temporal stability was studied and was eventually improved by doubling the N-vinylpyrrolidone concentration.

012069
The following article is Open access

and

The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

Dosimetry for Audit, SRS/SBRT and Small Fields

012070
The following article is Open access

, , , , and

There is significant interest in delivering precisely targeted small-volume radiation treatments, in the pre-clinical setting, to study dose-volume relationships with tumor control and normal tissue damage. In this work we investigate the IGRT targeting accuracy of the XRad225Cx system from Precision x-Ray using high resolution 3D dosimetry techniques. Initial results revealed a significant targeting error of about 2.4mm. This error was reduced to within 0.5mm after the IGRT hardware and software had been recalibrated. The facility for 3D dosimetry was essential to gain a comprehensive understanding of the targeting error in 3D.

012071
The following article is Open access

, , , , and

Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.

012072
The following article is Open access

, , , , and

Stereotactic radiosurgery has become a widely used technique to treat solid tumors and secondary metastases of the brain. Multiple targets can be simultaneously treated with a single isocenter in order to reduce the set-up time to improve patient comfort and workflow. In this study, a 5-arc multifocal RapidArc treatment was delivered to multiple PRESAGE® dosimeters in order to explore the repeatability of the treatment. The three delivery measurements agreed well with each other, with less than 3% standard deviation of dose in the target. The deliveries also agreed well with the treatment plan, with gamma passing rates greater than 90% (5% dose-difference, and 2 mm distance-to-agreement criteria). The optical-CT PRESAGE® system provided a reproducible measurement for treatment verification, provided measurements were made immediately following treatment.

012073
The following article is Open access

, , , and

This work describes the use of a motion phantom and 1D, 2D, and 3D ion chamber, EBT3 film, electronic portal imaging device (EPID) and FXG gel measurements for dosimetric validation of a stereotactic ablative radiation therapy (SBRT) technique in our clinic. Results show good agreement between the measurements and calculated treatment plan dose.

012074
The following article is Open access

, , , and

Optical CT is a method that can potentially provide both accurate dosimetry at high spatial resolution and 3-D visualisation over a large field-of-view in a single dataset. The major factors limiting spatial resolution in previous studies are analysed here and it is shown that improvements in equipment specification can overcome many of these. The need for ultra-high spatial resolution in the verification of microbeam radiation therapy verification is demonstrated and example images of a PRESAGE® sample are presented.

012075
The following article is Open access

, , , , , , and

New radiotherapy treatment techniques make unprecedented demands on dosimetry. Water equivalence, radiation hardness, high temporal and spatial resolution in 4D are no longer desirable but essential for safe implementation of several techniques. Plastic scintillation dosimetryhas the capabilities to meet all of the above criteria. Despite several attempts, a system has not yet been commercialised for widespread availability in the clinic. Successful translation of good science to the benefits of clinical practice demands that the primary focus be shifted from the technological innovation to the patient needs. We will present the clinically beneficial features of scintillation dosimetry and some remaining challenges. Then we will discuss the barriers to widespread availability of scintillation dosimeters.

Optical Dosimetry II

012076
The following article is Open access

Fluorinated ethylene propylene tubing is investigated as a method of preparing a contrast-resolution phantom for quantitative characterization of optical CT scanners and hydrogel dosimeters. Two sizes of tubing were examined: 6 and 13 mm inner diameter with 0.75 and 0.5 mm wall thicknesses, respectively. Water solutions of carbon black, nanoparticles in micelles provided continuously adjustable absorption contrast. Cross-sectional slices from two phantoms scanned with two different optical CT scanners are presented. Reconstructions from these simple phantoms can be used to identify scanner artefacts and improve instrument design. These phantoms represent a more reproducible approach than casting "gel fingers" into gel phantoms for system characterization. The thinner walled tubes have fewer optical artefacts.

012077
The following article is Open access

, and

This study examines effects of radiation-induced refractive index (RI) changes in polymer gel dosimeters. A prototype fan-beam optical computed tomography scanner was used to image a normoxic polymer gel dosimeter that was irradiated with two simple irradiation patterns–one single beam, one cross beam. A combed fan-beam was used for rayline tracing. Scans revealed that notable rayline errors occur when a steep, side-to-side dose gradient (i.e. RI gradient) is encountered. When the gradient occurs in the plane of the detector system, distinctive streaks in images are observed. When the gradient occurs perpendicular to the plane of the detector system, much more severe image errors are observed.

012078
The following article is Open access

Ongoing progress on development of an in-air scanning optical CT is reported, specifically dealing with the minimization of scanner imaging artefacts. Improved scratch resistance of the PMMA gel cylinder was a primary goal, so that routine cleaning would not degrade the polished surfaces. This was achieved by the addition of a hard coating to the cylinder surfaces. New artefacts were introduced and subsequently reduced by alternative processing of projection data. The outcome was a gel cylinder of much greater practicality for routine use while maintaining similar signal to noise ratios and uniformity in the image reconstruction field of view.

012079
The following article is Open access

, , , , , , and

The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

012080
The following article is Open access

, , , and

Deformable 3D dosimeters have potential applications in validating deformable dose mapping algorithms. This study evaluates a novel deformable PRESAGE® dosimeter and its application toward validating the deformable algorithm employed by VelocityAI. The deformable PRESAGE® dosimeter exhibited a linear dose response with a sensitivity of 0.0032 ΔOD/(Gy/cm). Comparison of an experimental dosimeter irradiated with an MLC pencilbeam checkerboard pattern under lateral compression up to 27% to a non-deformed control dosimeter irradiated with the same pattern verified dose tracking under deformation. CTs of the experimental dosimeter prior to and during compression were exported into VelocityAI and used to map an Eclipse dose distribution calculated on the compressed dosimeter to its original shape. A comparison between the VelocityAI dose distribution and the distribution from the dosimeter showed field displacements up to 7.3 mm and up to a 175% difference in field dimensions. These results highlight the need for validating deformable dose mapping algorithms to ensure patient safety and quality of care.

012081
The following article is Open access

, , and

Latex balloons filled with radiation sensitive hydrogels were evaluated as 3D dosimeters with optical computed tomography (CT) readout. Custom balloons, with less than 10 cm diameters, were made from latex sheets. Commercial, 13 cm diameter, clear balloons were investigated for larger volumes. Ferrous-xylenol orange and genipin gelatin gels selected for 1 and 30 Gy experiments, respectively. The thin stretched latex membrane allowed optical imaging to within 1 mm of the interior balloon edge. Reconstructed dose distributions demonstrated valid measurements to within 2 mm of the balloon surface. The rubber membrane provides a hybrid approach to deforming hydrogels. Uniform irradiation of a deformed gel resulted in a uniform dose being measured when scanned in the relaxed, initial balloon shape. The 13 cm diameter balloons were also effective and inexpensive vessels for hydrogels due to their high clarity, thinness and mechanical strength. Latex balloons represent an inexpensive method to obtain useful information from nearly the entire dosimeter volume.

3D Analysis and Ultrasound Evaluation of Gels

012082
The following article is Open access

The gamma evaluation method has become the gold standard for the comparison between measured and calculated absorbed dose distributions. However, test criteria and failure rate tolerance levels have hitherto normally been based on empirical evidence, rather than rigorous statistical analysis. In this work, it is proposed that the gamma-evaluation method could be reinterpreted such that the absorbed dose difference and distance-to-agreement criteria are replaced by the standard deviations of the associated uncertainties. By comparison between absorbed dose calculations and simulated measurements for clinically realistic test cases in 1D and 2D, it is then shown that the resulting squared gamma distribution follows a chi-squared distribution with one degree of freedom. This result can be used to test the statistical significance of measured deviations, and to determine proper failure rate tolerance levels in clinical radiotherapy quality control.

012083
The following article is Open access

, and

In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.

012084
The following article is Open access

, and

Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system.

012085
The following article is Open access

, , and

This work describes the use of a motion phantom and 1D, 2D, and 3D ion chamber, EBT3 film, electronic portal imaging device (EPID) and FXG gel measurements for dosimetric validation of a stereotactic ablative radiation therapy (SBRT) technique in our clinic. Results show good agreement between the measurements and calculated treatment plan dose.

012086
The following article is Open access

, , , , and

In IMRT/VMAT system commissioning (as with any system), quality is improved by striving for tight tolerances of stringent metrics of accuracy. For 5 cases, passing rates for 3%/3mm gamma analysis were generated following the TG119 instructions. Subsequently, more stringent/sensitive criteria combined with advanced volumetric dose analysis were applied, and in each case significant systematic errors were clearly identified despite the high 3%/3mm passing rates. In 4 of 5 cases, the error was easily remedied. These real-world examples of observed "false negatives" (insensitivities) point towards the inappropriateness of the 3%/3mm gamma passing rate metric as the basis for acceptance testing/commissioning of the IMRT/VMAT delivery chain.

012087
The following article is Open access

, and

The main recent developments in radiotherapy have focused on improved treatment techniques in order to generate further significant improvements in patient prognosis. There is now an internationally recognised need to improve 3D verification of highly conformal radiotherapy treatments. This is because of the very high dose gradients used in modern treatment techniques, which can result in a small error in the spatial dose distribution leading to a serious complication. In order to gain the full benefits of using 3D dosimetric technologies (such as gel dosimetry), it is vital to use 3D evaluation methods and algorithms. We present in this paper a software solution that provides a comprehensive 3D dose evaluation and analysis. The software is applied to gel dosimetry, which is based on magnetic resonance imaging (MRI) as a read-out method. The software can also be used to compare any two dose distributions, such as two distributions planned using different methods of treatment planning systems, or different dose calculation algorithms.

CBCT Dosimetry; Radiological Properties of Gels, X-ray CT, MRI

012088
The following article is Open access

, , , , and

Two pulse sequences were used for the estimation of dosimetric characteristics of VIPET polymer gels. The first one, multi- echo spin echo (MESE) is the well-established method for T2 measurements. The other method is a new multi-echo single shot turbo spin echo pulse sequence, MEHASTE that reduces the acquisition time significantly. Both techniques showed a linear R2-dose response. With MESE sequence, the dose sensitivity was slightly enhanced as compared to MEHASTE. The linear portion of the R2-dose curve was restricted using the MEHASTE sequence. For doses above 7 Gy both methods fulfill the 2% ICRU criterion limit for dose resolution estimations (95% confidence level). Finally, for a time period of one month the temporal stability of R2-dose response was maintained stable utilizing both MESE and MEHASTE pulse sequences. MEHASTE serves as an excellent means for fast 3D polymer gel dosimetry.

012089
The following article is Open access

, , , , , , , , and

Measurement methods that accurately measure radiation dose distribution in a three dimensional manner in order to allow comparisons of treatment plans are needed for quality assurance. One such measurement method involves the use of a polymer gel dosimeter to measure the dose distribution in three dimensions. During irradiation, a polymerization reaction makes new chemical bonds and induces changes of the chemical structure of the gel of the gel dosimeter. In the present study, dose-response measurement of an environment-friendly material used in the gel dosimeter was performed by imaging with computed tomography (CT) and R1, R2, and fluid-attenuated inversion-recovery (FLAIR) magnetic resonance imaging (MRI) under various imaging conditions. Dose-response characteristics in the gel dosimeter used in the experiment were observed at doses of 5–20 Gy administered by X-ray CT and MRI. Although the FLAIR signal was a relative value, the dose-response values with FLAIR were excellent compared to those with R1, R2, and CT. Determination of more appropriate imaging conditions could help expand the dose-response parameters of each measurement method.

012090
The following article is Open access

, , and

PRESAGE® is a radiochromic solid dosimeter which shows promising potential for 3D proton beam dosimetry. Since an idea dosimeter should be water-equivalent, total depth dose distributions in two PRESAGE® formulations irradiated by a 62 MeV proton beam were compared with that in water using GEANT4 Monte Carlo simulations. The dose delivered by secondary particles was also calculated. Our results show that after water-equivalent depth scaling, PRESAGE® can be considered water equivalent for dosimetry of a 62 MeV clinical proton beam.

012091
The following article is Open access

, , and

In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the 'zero-scan' method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner's x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.

012092
The following article is Open access

, , and

This work evaluates the temporal stability, spatial stability, batch reproducibility and dose rate dependence of a new cosolvent-free polymer gel dosimeter optimized for use with x-ray computed tomography readout. Temporal and spatial stability investigations reveal the new gel formulation should be imaged between 15-36 hours after irradiation. Intra- and inter-batch reproducibility were found to be excellent over the entire range of doses examined. A dose rate dependence was found for gels irradiated with machine dose rates between 100-600MU/min. An intensity-modulated radiation therapy treatment validation is also presented to illustrate an example clinical application using the new gel formulation.

012093
The following article is Open access

, , and

In this study PAGAT dosimeter evaluation by TSE sequence was tested. PAGAT dosimeter preparation procedure was modified to increase the dosimeter sensitivity. Because THPC reacts with gelatin, adding THPC to monomer solution prior to dissolved gelatine helps exploit THPC as an antioxidant. Turbo spin echo sequence enables to evaluate gel dosimeter with 3D equidistant resolution in a reasonable scanning time. Glass walls of the phantom cause problems both by computing inaccuracies and MR imaging artefacts. The inner dosimeter volume is not affected by these inaccuracies and should be used for radiotherapy plan verification.

012094
The following article is Open access

, , and

On the NMR dose sensitivities of polyacrylamide-based gel dosimeters irradiated by X-ray, the additive effect of various inorganic salts (electrolytes) is investigated. Among the various combination of cations (Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Al3+) and anions (Cl, NO3 and SO2-4), MgCl2 is shown to be the most effective sensitizer. In the result, it is suggested that the extent of the increase of the dose sensitivity may correlate to the hydration power of cations rather than anions. Contrary to the dose sensitivity enhancement, the depression of melting point caused by the additives is also pointed out.

012095
The following article is Open access

, , and

Radiation-induced chemical changes in the N-isopropylacrylamide (NIPAM) gels used in three-dimensional dosimeters were investigated using 1H-NMR in this study. The experimental results show that the signal from C=C bonds of NIPAM and N,N'-Methylenediacrylamide (BIS) are 5.5 and 6.3 ppm, respectively. The double bonds from the NIPAM and BIS disappeared with half-dose (D50) were about 10.90 Gy ± 0.76 Gy and 10.09 Gy ± 0.29 Gy, respectively. This observation demonstrates that the polymerization rate of BIS is faster than that of the NIPAM monomer. The 1H-NMR can indicate the chemical structure changes of the polymer gel dosimeter after irradiation and successfully determine the D50 in the NIPAM gel dosimeter.

012096
The following article is Open access

, , , , , , and

Mono-energetic proton and heavy ion beams for tumour therapy feature high dose gradients laterally and at its penetration depth, characterized by the Bragg-peak. The 3-dimensional dosimetry of such Hadron particle beams poses high demands on the spatial resolution of the imaging methodology and linearity of the polymer gel dose response in a wide dose range and at high linear energy transfer (LET). In almost all polymer gels the Bragg-peak dose response is therefore quenched. Volume selective MR-spectroscopy is in principle capable of delivering information on the polymerization process. We here present the MR-methodology to obtain MR-spectroscopic (MRS) data on the monomer consumption at the very small voxel volumes necessary for resolving e.g. the Bragg-peak area. Using additional hardware components, i.e. a strong gradient system and a very sensitive rf-detector at a high field human 7T scanner, MR-microimaging and MRS with 600 μm depth resolution can be implemented at very short measurement time. The vinyl groups of methacrylic acid in a MAGIC-type polymer gel can be resolved by volume selective MRS. The complete monomer consumption in the Bragg-peak due to polymerization is demonstrated selectively in the Bragg-peak indicating one main reason for Bragg-peak quenching in the investigated polymer gel.

Motion, Brachytherapy, Heterogeneity and Miscellaneous

012097
The following article is Open access

and

As IMRT/VMAT technology continues to evolve, so do the dosimetric QA methods. We present the theoretical framework for the novel planned dose perturbation algorithm. It allows not only to reconstruct the 3D volumetric doe on a patient from a measurement in a cylindrical phantom, but also to incorporate the effects of the interplay between the intrafractional organ motion and dynamic delivery. Unlike in our previous work, this 4D dose reconstruction does not require the knowledge of the TPS dose for each control point of the plan, making the method much more practical. Motion is viewed as just another source of error, accounted for by perturbing (morphing) the planned dose distribution based on the limited empirical dose from the phantom measurement. The strategy for empirical verification of the algorithm is presented as the necessary next step.

012098
The following article is Open access

, , , and

Respiratory motion during dynamic radiotherapy may affect the absorbed dose distribution both by dose-reducing smoothing and by more complicated interplay effects. In this study we present a novel method to determine the relative importance of these two effects. For the two dynamic deliveries studied in this work, the expected target dose reduction due to the smoothing effect was estimated by measurements convolved by the motion function. Remaining absorbed dose differences were attributed to interplay effects between the motion of the gel phantom and the movement of the modulating MLC leaves during modulated arc radiotherapy. The total dosimetric effect due to breathing motion and dynamic MLC motion during VMAT delivery resulted in an average of about 4% target dose reduction. Comparing with only the smoothing effect, the average difference was decreased to around 1%, and the remaining distribution was attributed to interplay effects. Although the interplay effects were small compared to the smoothing effect, the standard deviations of 1.4–2.3% (1SD) were larger than the narrow distribution for repeated stationary measurement with a standard deviation between 0.5–0.9% (1SD).

012099
The following article is Open access

and

The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.

012100
The following article is Open access

, , , , , and

We describe a method to directly measure the radial dose and anisotropy functions of brachytherapy sources using polyurethane based dosimeters read out with optical CT. We measured the radial dose and anisotropy functions for a Cs-137 source using a PRESAGE® dosimeter (9.5cm diameter, 9.2cm height) with a 0.35cm channel drilled for source placement. The dosimeter was immersed in water and irradiated to 5.3Gy at 1cm. Pre- and post-irradiation optical CT scans were acquired with the Duke Large field of view Optical CT Scanner (DLOS) and dose was reconstructed with 0.5mm isotropic voxel size. The measured radial dose factor matched the published fit to within 3% for radii between 0.5–3.0cm, and the anisotropy function matched to within 4% except for θ near 0° and 180° and radii >3cm. Further improvements in measurement accuracy may be achieved by optimizing dose, using the high dynamic range scanning capability of DLOS, and irradiating multiple dosimeters. Initial simulations indicate an 8 fold increase in dose is possible while still allowing sufficient light transmission during optical CT. A more comprehensive measurement may be achieved by increasing dosimeter size and flipping the source orientation between irradiations.

012101
The following article is Open access

, and

There is a need to modernise clinical brachytherapy dosimetry measurement beyond traditional point dose verification to enable appropriate quality control within 3D treatment environments. This is to keep pace with the 3D clinical and planning approaches which often include significant patient-specific optimisation away from 'standard loading patterns'. A multi-dimension measurement system is required to provide assurance of the complex 3D dose distributions, to verify equipment performance, and to enable quality audits. However, true 3D dose measurements around brachytherapy applicators are often impractical due to their complex shapes and the requirement for close measurement distances. A solution utilising an array of radiochromic film (Gafchromic EBT3) positioned within a water filled phantom is presented. A calibration function for the film has been determined over 0 to 90Gy dose range using three colour channel analysis (FilmQAPro software). Film measurements of the radial dose from a single HDR source agree with TPS and Monte Carlo calculations within 5 % up to 50 mm from the source. Film array measurements of the dose distribution around a cervix applicator agree with TPS calculations generally within 4 mm distance to agreement. The feasibility of film array measurements for semi-3D dosimetry in clinical HDR applications is demonstrated.

012102
The following article is Open access

, , , and

In this study, the Plaque SimulatorTM eye plaque brachytherapy planning system was commissioned for ROPES eye plaques and Amersham Health model 6711 Iodine 125 seeds, using TG43-UI data. The brachytherapy module of the RADCALC® independent checking program was configured to allow verification of the accuracy of the dose calculated by Plaque SimulatorTM. Central axis depth dose distributions were compared and observed to agree to within 2% for all ROPES plaque models and depths of interest. Experimental measurements were performed with a customized PRESAGEm 3-D type dosimeter to validate the calculated depth dose distributions. Preliminary results have shown the effect of the stainless steel plaque backing decreases the measured fluorescence intensity by up to 25%, and 40% for the 15 mm and 10 mm diameter ROPES plaques respectively. This effect, once fully quantified should be accounted for in the Plaque SimulatorTM eye plaque brachytherapy planning system.

012103
The following article is Open access

, and

The purpose of this study is to characterize the response of MAGAT normoxic polymer gel for breast brachytherapy applications using two balloon applicators (MammoSite® and Contoura®) and verify the dose distribution with a commercial treatment planning system (BrachyVision® version 8.9.15). We present the fabrication, irradiation and readout of the gel used for the work described herein.

012104
The following article is Open access

and

The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.

012105
The following article is Open access

and

Auto-oxidation and fast diffusion in Fricke gels are major drawbacks to wide-spread application of these gels in 3D dosimetry. Aiming to limit both processes, we used mixed dopants: the ferric-specific ligand xylenol orange with a ferrous-specific ligand (1,10-phenanthroline) and/or a bi-functional cross-linking agent (glyoxal). Markedly improved auto-oxidation stability was observed in the xylenol orange and phenanthroline doped gel at the expense of increased background absorbance and faster diffusion. Addition of glyoxal limited the diffusion rate and led to a partial bleaching of the gel. It is conceivable that these two new compositions may find useful practical application.

012106
The following article is Open access

, , , , and

The N-isopropylacrylamide (NIPAM) gel dosimeter was investigated as a suitable material for measuring absorbed doses from radionuclide sources. In this study, NIPAM gel dosimeter was used to evaluate the dose distributions of the Tc-99m radionuclide in NIPAM gel. The accumulated radioactivity range of the Tc-99m NIPAM gel is from approximately 0 MBq to 13.6 MBq (about 0.37 mCi). The NIPAM gel dosimeter with high stability and high-dose linear and non-energy dependent properties can provide various radiopharmaceutical activity intensities in the conduct of dose assessment in nuclear medicine, thereby producing the most promising dose verification tools.

012107
The following article is Open access

, , , , and

Algorithms exist for the deformation of radiotherapy doses based on patient image sets, though these are sometimes contentious because not all such image calculations are constrained by appropriate physical laws. By use of a deformable dosimetric gel phantom, 'DEFGEL', we demonstrate a full 3D experimental validation of a range of dose deformation algorithms publicly available. Spatial accuracy in low contrast areas was assessed using "ghost" fiducial markers (digitally removed from CT images prior to registration) implanted in the phantom. The accuracy with which the different algorithms deform dose was evaluated by comparing doses measured with the deformable phantom to warped planned doses, via 3D g-analysis. Mean spatial errors ranged from 1.9 mm with a g3D passing ratio of 95.8 % for the original Horn and Schunck algorithm to 3.9 mm with a g3D passing ratio of 39.9 % for the modified demons algorithm.

012108
The following article is Open access

, , , , , and

In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated.

Poster

012109
The following article is Open access

, , , and

Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

012110
The following article is Open access

, , , , , , , , and

The incorporation of clay nanoparticles into gel dosimeters shows promise for significant diffusion reduction – but to what extent does the presence of the nano-clay influence charged particle interactions and, in particular, what is the impact on water equivalence? In this work, we quantify the radiological characteristics of electron, proton and carbon ion interactions in the RIKEN dichromate nanoclay gel and specifically evaluate the water equivalence over a broad energy range. Results indicate that the radiological properties are sufficiently representative of tissues that this low-diffusion gel could readily be used for validation of complex dose distributions. Electron and proton ranges are within 1 % of those in water. Mean effective atomic numbers for electron interactions in the range 10 keV – 10 GeV are within 1 % of those of water which, coupled with the similar mass density, ultimately means the overall impact on dose distributions is not great. The range of C6+ ions in the nanoclay gel is closer to that of water (< 4 %) than a common polymer gel dosimeter (< 7 %), though experimentally measured R1 values indicate an over-response at low doses.