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Abstract. The incorporation of clay nanoparticles into gel dosimeters shows promise for 
significant diffusion reduction – but to what extent does the presence of the nano-clay 
influence charged particle interactions and, in particular, what is the impact on water 
equivalence? In this work, we quantify the radiological characteristics of electron, proton and 
carbon ion interactions in the RIKEN dichromate nanoclay gel and specifically evaluate the 
water equivalence over a broad energy range. Results indicate that the radiological properties 
are sufficiently representative of tissues that this low-diffusion gel could readily be used for 
validation of complex dose distributions. Electron and proton ranges are within 1 % of those in 
water. Mean effective atomic numbers for electron interactions in the range 10 keV – 10 GeV 
are within 1 % of those of water which, coupled with the similar mass density, ultimately 
means the overall impact on dose distributions is not great. The range of C6+ ions in the 
nanoclay gel is closer to that of water (< 4 %) than a common polymer gel dosimeter (< 7 %), 
though experimentally measured R1 values indicate an over-response at low doses. 

1. Introduction 
Contemporary radiotherapy involves increasingly small fields and often complex dose distributions 
1and, within this context, gel dosimetry possesses many advantages over other dosimetric methods (1). 
Polymer gels have reduced diffusion when compared to ferrous-sulphate (Fricke) based formulations, 
but exhibit greater artefacts (due mostly to Mie scattering) when imaged with modern optical readout 
techniques compared to ferrous-sulphate gels, which are amenable to spectrophotometric approaches 
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(2). A novel alternative currently being explored is dichromate gel dosimetry, with a clay nanoparticle 
additive as a diffusion suppressant (3). This, however, raises the immediate question as to the 
radiological influence of the nano-clay and, particularly, the extent of deviation from water 
equivalence. In this work, we investigate the fundamental characteristics of charged particle (electron, 
proton and Carbon ions) interactions and quantify any differences to water and tissue. 
 
2. Methods 
A range of calculations and comparisons have been made for electron, proton and Carbon ion 
interactions. For electron interactions: (i) Mean energy-dependent effective atomic numbers have been 
calculated via the Taylor approach (4-7); (ii) Collisional interaction cross sections have been presented 
as a function of kinetic energy using the standard Bethe-Bloch (8-10) approach recommended by the 
ICRU (11); (iii) Radiative interaction cross sections have been determined using the combined method 
of Seltzer and Berger (12, 13); (iv) Continuous slowing down approximation (CSDA) ranges have 
also been calculated. For proton interactions: (i) electronic and (ii) nuclear stopping powers have been 
determined, and (iii) projected proton ranges have been computed according to Ziegler (14, 15). 
Equivalent calculations have also been undertaken for Carbon ions. Example dose distributions have 
also been computed. In each case, comparisons are made to water and ICRU-defined tissues. 
Experimental measurements for C6+ ion beams (Heavy Ion Medical Accelerator, NIRS Japan) are also 
shown, with readout undertaken via MRI (1.5T Philips Achieva).	
  

 
3. Results  
The mean effective atomic number for electron interactions in the nanoclay gel over the range 10 keV 
– 10 GeV are presented in Table 1, along with other media (relevant to medical physics) for 
comparison. Stopping powers are shown in Figure 1(a) for electron interactions, with the ratio to water 
presented as an insert. The continuous slowing down approximation ranges for electrons in the 
nanoclay gel are presented in Figure 1(b); plotted as dashed lines against the right axis is the ratio of 
ranges in gel to water and tissue. A depth-dose distribution of 1 MeV electrons in the nanoclay gel 
(not shown) indicates a shift in dmax of approximately 0.2 mm relative to water. Figure 1(c) shows that 
the electronic stopping power for proton interactions is lower than that for water (by a maximum of 5 
%) while nuclear stopping powers, which comprise a small fraction of the total stopping power, are 
similar. Proton ranges are within several percent of those in water; see Figure(d). Figure 1(e) indicates 
that the range of 270 MeV/u C6+ ions in nanoclay gel is within 6 mm of that of water, compared to 10 
mm for a common polymer gel formulation (BANG-3). Both measured and calculated data are shown. 
The R1 values indicate an over-response to the high LET radiation in low-dose regions. 
 
Table 1. Mean effective atomic numbers for the partial and total electron interaction processes; the spread of 
values over the 10 keV – 10 GeV range is indicated by the standard deviation. Along with the nanoclay gel, data 
for water, tissues and other dosimeters are provided for comparison. 

effZ  Radiative σ Collisional σ Total σ 

Nanoclay gel 4.605 0.113 3.659 0.462 3.732 0.534 
Water 4.569 0.112 3.623 0.465 3.696 0.534 
Tissue (16) 4.613 0.108 3.688 0.416 3.772 0.502 
Bone (16) 5.757 0.156 4.273 0.231 4.552 0.562 
BANG gel (17) 4.598 0.104 3.709 0.418 3.784 0.493 
TLD-100 (4) 6.653 0.066 6.200 0.204 6.230 0.237 
 

R (nanoclay/water) 1.008 - 1.010 - 1.010 - 
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Figure 1 (a) Collisional, radiative and total electron interaction cross sections in the nanoclay gel; data relative 
to water and human tissues are provided as an insert. (b) The continuous slowing down approximation range of 
electrons (left axis); the dashed lines indicate the ratio of ranges in gel to those in water and tissue (right axis). 
(c) Proton electronic stopping powers plotted alongside those for water and muscle tissue; the insert indicates the 
nuclear stopping power. (d) Proton range as a function of energy (left axis; note these effectively overlap); the 
dashed lines indicate the ratio of ranges in gel to those in water and tissue (right axis). (e) The depth dose profile 
corresponding to 270 MeV/u C6+ ions in the nanoclay gel, both measured and calculated. For comparison, an 
equivalent profile in water (measured with an ionisation chamber) is also provided, demonstrating a 6 mm 
difference in range. The insert indicates the total (electronic and nuclear) stopping power for Carbon ions in the 
nanoclay gel. (f) For comparison to the nanoclay gel, we have also measured (and calculated) depth dose curves 
in BANG gel. The discrepancy compared to water is more pronounced in this case (10 mm). 
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4. Conclusions 
The nanoclay gel exhibits broadly similar radiological properties to water, tissue and other dosimeters 
over the keV – GeV range for electron, proton and Carbon interactions. The addition of clay 
nanoparticles raises the effective atomic number only at the sub-percent level and the mass density is 
not significantly different to water; consequently, resultant dose distributions are not greatly impacted. 
By comparison, the difference in effective atomic number for the BANG gel formulation is greater 
relative to water (due mostly to collisional interactions). Ultimately, the results suggest that the 
formulation could be readily employed for validation of phantom-mapped patient plans. 
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