Table of contents

Volume 5

Number 2, April 2023

Previous issue Next issue

Buy this issue in print

Perspective

021001
The following article is Open access

, , , , and

Water electrolysis has attracted significant attention for large-scale production of green hydrogen as next-generation clean fuels. Recently, the development of graphdiyne (GDY), a new member of carbon allotropes, has been promisingly offering novel alternatives for acquisition of inexpensive and efficient catalysts in the water electrolyzer. The unique atomic arrangement in GDY architecture leads to coexistence of sp– and sp2–C, correspondingly brings numerous intriguing features such as heterogeneous electron distribution, wide tailorable natural bandgap, rapid electron/mass transport and rich chemical bonds. These unique intrinsic natures of GDY provide brilliant inspirations for scientists to design new-concept electrocatalyst toward cathodic hydrogen evolution reaction, anodic oxygen evolution reaction and the overall water-splitting. Based on the immense progress, in this short perspective, current principal design strategies of GDY-based catalysts are systematically summarized, including interface engineering, individual atom fixation, induced constrained growth and bottom-up fabrication. With abundant implementation examples for achieving highly efficient water electrolysis, in particular we focus on clarifying the decisive role of GDY on these design strategies with comprehensive theoretical and experimental evidences. The future direction in developing GDY-based electrocatalysts in hydrogen energy field is also depicted with the urgent anticipation of deeper understanding of structure-performance relationship and catalytic mechanism, especially those in real industry water electrolyzers.

Roadmaps

021501
The following article is Open access

, , , , , , , , , et al

The market dynamics, and their impact on a future circular economy for lithium-ion batteries (LIB), are presented in this roadmap, with safety as an integral consideration throughout the life cycle. At the point of end-of-life (EOL), there is a range of potential options—remanufacturing, reuse and recycling. Diagnostics play a significant role in evaluating the state-of-health and condition of batteries, and improvements to diagnostic techniques are evaluated. At present, manual disassembly dominates EOL disposal, however, given the volumes of future batteries that are to be anticipated, automated approaches to the dismantling of EOL battery packs will be key. The first stage in recycling after the removal of the cells is the initial cell-breaking or opening step. Approaches to this are reviewed, contrasting shredding and cell disassembly as two alternative approaches. Design for recycling is one approach that could assist in easier disassembly of cells, and new approaches to cell design that could enable the circular economy of LIBs are reviewed. After disassembly, subsequent separation of the black mass is performed before further concentration of components. There are a plethora of alternative approaches for recovering materials; this roadmap sets out the future directions for a range of approaches including pyrometallurgy, hydrometallurgy, short-loop, direct, and the biological recovery of LIB materials. Furthermore, anode, lithium, electrolyte, binder and plastics recovery are considered in order to maximise the proportion of materials recovered, minimise waste and point the way towards zero-waste recycling. The life-cycle implications of a circular economy are discussed considering the overall system of LIB recycling, and also directly investigating the different recycling methods. The legal and regulatory perspectives are also considered. Finally, with a view to the future, approaches for next-generation battery chemistries and recycling are evaluated, identifying gaps for research. This review takes the form of a series of short reviews, with each section written independently by a diverse international authorship of experts on the topic. Collectively, these reviews form a comprehensive picture of the current state of the art in LIB recycling, and how these technologies are expected to develop in the future.

021502
The following article is Open access

, , , , , , , , , et al

The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape.

Topical Reviews

022001
The following article is Open access

, , , , , , , , , et al

Internet-of-thing (IoT) is an assembly of devices that collect and share data with other devices and communicate via the internet. This massive network of devices, generates and communicates data and is the key to the value in IoT, allowing access to raw information, gaining insight, and making an intelligent decisions. Today, there are billions of IoT devices such as sensors and actuators deployed. Many of these applications are easy to connect, but those tucked away in hard-to-access spots will need to harvest ambient energy. Therefore, the aim is to create devices that are self-report in real-time. Efforts are underway to install a self-powered unit in IoT devices that can generate sufficient power from environmental conditions such as light, vibration, and heat. In this review paper, we discuss the recent progress made in materials and device development in power- and, storage units, and power management relevant for IoT applications. This review paper will give a comprehensive overview for new researchers entering the field of IoT and a collection of challenges as well as perspectives for people already working in this field.

022002
The following article is Open access

, , , and

This work reviews different techniques available for the synthesis and modification of cathode active material (CAM) particles used in Li-ion batteries. The synthesis techniques are analyzed in terms of processes involved and product particle structure. The knowledge gap in the process-particle structure relationship is identified. Many of these processes are employed in other similar industries; hence, parallel insights and knowledge transfer can be applied to battery materials. Here, we discuss examples of applications of different mechanistic models outside the battery literature and identify similar potential applications for the synthesis of CAMs. We propose that the widespread implementation of such mechanistic models will increase the understanding of the process-particle structure relationship. Such understanding will provide better control over the CAM synthesis technique and open doors to the precise tailoring of product particle morphologies favorable for enhanced electrochemical performance.

022003
The following article is Open access

, , and

Numerical models are versatile tools to study and predict efficiently the performance of solid oxide cells (SOCs) according to their microstructure and composition. As the main contribution to the cell polarisation is due to the oxygen electrode, a large part of the proposed models has been focused on this electrode. Electrode modelling aims to improve the SOCs performance by serving as a guide for the microstructural optimisation, and helps to better understand the electrochemical reaction mechanisms. For studying the electrode microstructure, three categories of models can be distinguished: homogenised models, simplified geometry based models, and reconstructed microstructure based models. Most models are based on continuum physics, while elementary kinetic models have been developed more recently. This article presents a review of the existing SOCs models for the oxygen electrode. As a perspective, the current challenges of electrode modelling are discussed in views of a better prediction of the performance and durability, and more specifically for the case of thin-film SOCs.

Special Issue Articles

024001
The following article is Open access

, , , , , , , and

Focus on Translating Insight: From Model Electrocatalysis Experiments to Full Electrolysers and Fuel Cells

Numerous catalysts have been reported with enhanced performance, e.g. longer lifetime and improved selectivity, for the electrochemical CO2 reduction reaction (CO2RR). Respectively little is, however, known about the influence of the electrode structuring and pre-treatment on this reaction for catalytic layers. Thus, we herein report on the modification of the catalyst environment of a Cu-ZnO-carbon black catalyst by variation of the ink composition and subsequent electrode treatment before performing CO2RR. We furthermore provide insight into the impact of different solvents, ionomer, and additives like pore forming agents used for the ink preparation as well as post-treatment steps in terms of pressing and sintering of the generated electrodes on the CO2RR performance. Although using the same catalyst for all electrodes, remarkable differences in hydrophobicity, surface morphology, and electrochemical performance with respect to stability and product distribution were observed. Our study reveals the critical role of the catalytic layer assembly aside from using proper catalysts. We furthermore show that the parasitic hydrogen formation and flooding behavior can be lowered and C2+ product formation can be enhanced when operating in optimized gas diffusion electrodes.

024002
The following article is Open access

and

Focus on Grand Challenges in Halide Perovskites: Scalability

Organic–inorganic hybrid perovskites manifest unique photophysical properties in terms of their long carrier lifetime, low recombination rate, and high defect tolerance, enabling them to be promising candidates in optoelectronic devices. However, such advanced properties are unexpected in perovskite materials with moderate charge mobility. Recent investigations have revealed that these appealing properties were endowed due to the formation of large polarons in the perovskite crystals, resulting from the coupling of photogenerated carriers and a polarized crystal lattice, which largely affected the carrier-transport dynamics and structural stability of perovskite solar cells (PSCs). In this review, first the crystal structure of the perovskite lattice and the formation mechanism of polarons are elucidated. Then, the modulation of polaron states in PSCs, including large polaron stabilization, polaron-facilitated charge transport, hot-carrier solar cells, and polaron-related stability issues such as polaron-induced metastable defects, polaronic strain, and photostriction are systematically investigated. Finally, the prospect of further understanding and manipulating polaron-related phenomena, working toward highly efficient and stable PSCs, is suggested.

024003
The following article is Open access

, , , , and

Focus on Bioenergy and Biofuels

This study reports optimization and simulation of biodiesel synthesis from waste cooking oil through supercritical transesterification reaction without the use of any catalyst. Although the catalyst enhances the reaction rate but due to the presence of water contents in waste cooking oil, the use of catalyst could cause a negative impact on the biodiesel yield. The transesterification reaction without catalyst also offers the advantage of the reduction of pretreatment cost. This study comprises of two steps; first step involves the development and validation of process simulation scheme. The second step involves the optimization using Response Surface Methodology. Face-centered central composite design of experiments is used for experimental matrix development and subsequent statistical analysis of the results. Analysis of variance is employed for optimization purpose. In addition, a sensitivity study of the process parameters including pressure, temperature, and molar ration of oil-to-methanol was conducted. The statistical analysis reveals that temperature is the most influential process parameter as compared to pressure and oil-to-methanol molar ratio. The optimization study results in the maximum biodiesel yield (94.16%) at an optimum temperature of 274.8 °C, 7.02 bar pressure, and an oil-to-methanol molar ratio of 12.43.

024004
The following article is Open access

and

Focus on Machine Learning for Catalysis and Energy Materials

Li10Ge(PS6)2 (LGPS) is a highly concentrated solid electrolyte, in which Coulombic repulsion between neighboring cations is hypothesized as the underlying reason for concerted ion hopping, a mechanism common among superionic conductors such as Li7La3Zr2O12 (LLZO) and Li1.3Al0.3Ti1.7(PO4)3 (LATP). While first principles simulations using molecular dynamics (MD) provide insight into the Li+ transport mechanism, historically, there has been a gap in the temperature ranges studied in simulations and experiments. Here, we used a neural network potential trained on density functional theory (DFT) simulations, to run up to 40-nanosecond long MD simulations at DFT-like accuracy to characterize the ion conduction mechanisms across a range of temperatures that includes previous simulations and experimental studies. We have confirmed a Li+ sublattice phase transition in LGPS around 400 K, below which the ab-plane diffusivity $D^*_{ab}$ is drastically reduced. Concomitant with the sublattice phase transition near 400 K, there is less cation-cation (cross) correlation, as characterized by Haven ratios closer to 1, and the vibrations in the system are more harmonic at lower temperature. Intuitively, at high temperature, the collection of vibrational modes may be sufficient to drive concerted ion hops. However, near room temperature, the vibrational modes available may be insufficient to overcome electrostatic repulsion, thus resulting in less correlated ion motion and comparatively slower ion conduction. Such phenomena of a sublattice phase transition, below which concerted hopping plays a less significant role, may be extended to other highly concentrated solid electrolytes such as LLZO and LATP.

024005
The following article is Open access

, , , , , , , , , et al

A mixed Co and Ni boride precursor was synthesized via chemical reduction and subsequently annealed at 400 or 500 °C with or without prior addition of the monomer benzoxazine (BO). The resulting mixed CoNiB materials were investigated as electrocatalysts for three alcohol oxidation reactions (AOR) in alkaline electrolyte: the oxidation of glycerol (GOR), ethylene glycol (EGOR) and ethanol (EOR). Comparison of the rotating disk electrode (RDE) cyclic voltammograms for the different catalysts revealed that CoNiB annealed at 500 °C without the addition of BO exhibited the lowest overpotentials in AORs at 10 mA cm−2, promoting GOR at 224 ± 6 mV lower potential compared to OER. When pyrolysis was conducted at 400 °C, the BO-containing catalyst showed a significant increase in the electrocatalytic activity for the AORs compared to the CoNiB catalyst only. The product selectivity on the different catalysts was investigated in a batch-type reactor with flow recirculation revealing formate as the main oxidation product during GOR and EGOR with faradaic efficiencies (FE) in a range of 60%–80%, while acetate was obtained during EOR (FE ∼ 85%–90%). The electrode potential, electrolyte composition and the type of ionomer were explored with respect to their influence on the GOR selectivity. The use of different ionomers resulted in significant differences in the activity trends between RDE and the batch-type reactor with flow recirculation measurements, indicating a strong influence of the two different substrates used, namely glassy carbon and carbon paper on the catalyst formation and thus on the recorded electrochemical activity.

024006
The following article is Open access

, , , , , , , , and

Focus on Sodium-ion Batteries

We present a combination of experiments and theory to study the effect of sulfur doping in hard carbons anodes for sodium-ion batteries. Hard carbons are synthesised through a two step process: hydrothermal carbonisation followed by pyrolysis of a biomass-derived carbon precursor. Subsequent sulfur doping is introduced via chemical-vapour deposition. The resulting sulfur-doped hard carbon shows enhanced sodium storage capacity with respect to the pristine material, with significantly improved cycling reversibility. Atomistic first principles simulations give insight into this behaviour, revealing that sulfur chemisorbed onto the hard carbon increases the sodium adsorption energies and facilitates sodium desorption. This mechanism would increase reversible Na storage, confirming our experimental observations and opening a pathway towards more efficient Na-ion batteries.

024007
The following article is Open access

, , , and

Focus on Translating Insight: From Model Electrocatalysis Experiments to Full Electrolysers and Fuel Cells

In recent years, gas diffusion electrode (GDE) half-cell setups have attracted increasing attention, bridging the gap between fundamental and applied fuel cell research. They allow quick and reliable evaluation of fuel cell catalyst layers and provide a unique possibility to screen different electrocatalysts at close to real experimental conditions. However, benchmarking electrocatalysts' intrinsic activity and stability is impossible without knowing their electrochemical active surface area (ECSA). In this work, we compare and contrast three methods for the determination of the ECSA: (a) underpotential deposition of hydrogen (Hupd); (b) CO-stripping; and (c) underpotential deposition of copper (Cuupd) in acidic and alkaline electrolytes, using representative electrocatalysts for fuel cell applications (Pt and PtRu-alloys supported on carbon). We demonstrate that, while all methods can be used in GDE setups, CO-stripping is the most convenient and reliable. Additionally, the application of Cuupd offers the possibility to derive the atomic surface ratio in PtRu-alloy catalysts. By discussing the advantages of each method, we hope to guide future research in accurately determining surface area and, hence, the intrinsic performance of realistic catalyst layers.

024008
The following article is Open access

, , and

Focus on Caloric Materials and Devices

Effective and, at the same time, efficient active magnetic regenerator (AMR) performance requires balanced geometry and operating conditions. Here the influence of regenerator shape, magnetocaloric material size, operating frequency, and utilization on the performance of gadolinium packed-particle bed AMRs is demonstrated experimentally. Various metrics are applied to assess effectiveness and efficiency. Observed temperature spans and cooling powers across a wide range of operating conditions are used to evaluate system performance and estimate exergetic cooling power and exergetic power quotient. A new metric combining exergetic cooling power and pump power provides an estimate of the maximum achievable second law efficiency. Five regenerator geometries with equal volumes and the aspect ratio from 1.0 to 3.8, and four different ranges of Gd spherical particles between 182 and 354 µm, are investigated. Improvements in system performance are demonstrated by a boost in specific cooling power of gadolinium from 0.85 to 1.16 W g−1 and maximum temperature span from 8.9 to 15.1 K. The optimum exergetic cooling power is observed for 1.37 utilization and 3 Hz operating frequency, exergetic power quotient exhibits a maximum at the same utilization but at 2 Hz frequency, while the highest efficiency is recorded at 1 Hz and utilization of 0.5, demonstrating that multiple performance metrics must be balanced to achieve regenerator design meeting all performance targets.

024009
The following article is Open access

, , and

Focus on Caloric Materials and Devices

Caloric cooling is an attractive family of technologies owing to their environmental friendliness and potential for higher efficiency than present refrigeration systems. Cooling devices based on the electrocaloric (EC) effect specifically have the added benefit of being easily miniaturized, enabling applications in electronic thermal management, wearables and localized cooling. A challenge in prior compact EC cooling devices has been the need for a separate actuation mechanism to cyclically contact the EC material with hot and cold interfaces. Here, we propose a self-actuated EC polymer heat pump, exploiting recent discoveries of giant EC and electromechanical responses under low electric fields in P(VDF-TrFE-CFE-FA) (VDF: vinylidene fluoride, TrFE: trifluoroethylene, CFE: chlorofluoroethylene, FA: fluorinated alkynes) relaxor tetrapolymers. We show that the transverse electroactuation of P(VDF-TrFE-CFE-FA) relaxor tetrapolymer films can be tailored over a broad range, from strong actuation to weak actuation, without affecting the high EC response. Using this principle, a unimorph actuator was constructed from two EC tetrapolymer layers with large differences in electroactuation. This device autonomously achieves a large displacement between the heating and cooling cycles of the EC films, which could be used to switch thermal contact between hot and cold interfaces. This concept could thus enable highly efficient and compact EC heat pumps.

024010
The following article is Open access

, and

Focus on Fundamental Challenges in Chemical Looping for Clean Energy

Faced with increasingly serious energy and global warming, it is critical to put forward an alternative non-carbonaceous fuel. In this regard, hydrogen appears as the ultimate clean fuel for power and heat generation, and as an important feedstock for various chemical and petrochemical industries. The chemical looping reforming (CLR) concept, is an emerging technique for the conversion of hydrocarbon fuels into high-quality hydrogen via the circulation of oxygen carriers which allows a decrease in CO2 emissions. In this review, a comprehensive evaluation and recent progress in glycerol, ethanol and methane reforming for hydrogen production are presented. The key elements for a successful CLR process are studied and the technical challenges to achieve high-purity hydrogen along with the possible solutions are also assessed. As product quality, cost and the overall efficiency of the process can be influenced by the oxygen carrier materials used, noteworthy attention is given to the most recent development in this field. The use of Ni, Fe, Cu, Ce, Mn and Co-based material as potential oxygen carriers under different experimental conditions for hydrogen generation from different feedstock by CLR is discussed. Furthermore, the recent research conducted on the sorption-enhanced reforming process is reviewed and the performance of the various type of CO2 sorbents such as CaO, Li2ZrO3 and MgO is highlighted.

024011
The following article is Open access

, , , , , , and

Two-dimensional Ruddlesden–Popper (2DRP) perovskites are promising owing to their excellent environmental stability and competitive efficiency. During the fabrication process, 2DRP perovskites were often unintentionally exposed to light in the laboratory. However, the influence of light illumination on the surface structure of 2DRP during fabrication is unclear. Herein, the photodegradation of 2DRP perovskite (phenethylammonium lead iodide, PEA2PbI4) is comprehensively investigated using x-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence spectroscopy. We observed that only high-energy light, including that from a blue laser, air mass 1.5G, and notably, the daily used fluorescent lamp (FL) in the laboratory, significantly degraded PEA2PbI4. However, the red laser and ultraviolet-filtered FL, which had low energies, did not cause photodegradation. From this systematic study, we can explain the discrepancies in the surface morphologies previously studied. For instance, randomly oriented nanorod or rough surface of PEA2PbI4 mostly stems from photodegradation. We observed that photodegradation occurred more strongly when the films were illuminated during annealing than when they were illuminated after all fabrication processes were completed. We suggest that this difference stems from the completeness of the structure and the photodegraded PbI2 passivation effect. Our study provides two key guidelines for the fabrication of PEA2PbI4 films. The daily-use FL in the laboratory must be avoided for high-quality samples, and dark conditions are highly recommended, at least during the annealing process.

024012
The following article is Open access

, , , , and

Focus on Caloric Materials and Devices

Cu-based superelastic shape memory alloys are promising for low-stress elastocaloric cooling. We have synthesized bulk alloys of 68Cu–16Al–16Zn under different conditions in order to promote its grain growth and enhance its elastocaloric properties. High-temperature x-ray diffraction of untreated 68Cu–16Al–16Zn alloy showed that the phase boundary between the α + β mixed phases and the high temperature phase (β phase) was between 973 K and 1023 K. Based on this result, the 68Cu–16Al–16Zn alloy was heated and cooled in a furnace repeatedly between 773 K and 1173 K. The maximum grain size after heat treatment of the ingot rolled to 67% reached 11.1 mm. The latent heat of the martensitic transformation after grain growth was 6.3 J g−1, which is higher than the previously reported value for the compound. The stress–strain curve of 68Cu–16Al–16Zn rolled to 67% rolling with cyclical heat treatments showed a maximum stress of 106 MPa at 4.5% strain, with adiabatic temperature change of 5.9 K in heating during stress loading and 5.6 K in cooling in stress removal. Furthermore, no fatigue in the stress–strain behavior was observed up to at least 60 000 mechanical cycles at 2% strain.

024013
The following article is Open access

, , , and

Focus on Materials for Nuclear Fusion

A critical design criterion for future fusion reactor components is low activation. The equiatomic multi-principal element alloy VCrMnFe is comprised solely of low activation elements and forms a single-phase solid solution at temperatures over 1000 °C. However, at lower temperatures it forms detrimental sigma phase. In this work, compositional gradients of Ga, Sn or Al were induced in VCrMnFe using only a furnace to investigate their effect on intermetallic formation. By examining how the microstructure changed across a region with varying composition, phase stability limits could be assessed. For example, all three elements were found to prevent sigma phase from forming within the alloy when they were present at relatively low concentrations (2–5 at%). Al was found to be the most promising addition (in terms of not causing embrittlement), and the approach used enabled the characterisation of the VCrMnFe–Al pseudo binary phase diagram up to 50 at% Al after heat treatment of 800 °C/240 h followed by ageing at 600 °C/240 h, with numerous ordered phases found using electron diffraction. The level of Al addition required to suppress the sigma phase has been identified more precisely, which will be useful for future alloy development work.

024014
The following article is Open access

, , , , , , and

Focus on Monolithic Thin Film Tandem Devices and their Components

We present monolithic copper–indium–gallium–diselenide (Cu(In,Ga)Se2, CIGSe)-perovskite tandem solar cells with air- or N2-transferred NiOx:Cu with or without self-assembled monolayer (SAM) as a hole-transporting layer (HTL). A champion efficiency of 23.2%, open-circuit voltage (V$_\mathrm{oc}$) of 1.69 V, and a fill factor (FF) of 78.3% are achieved for the tandem with N2-transferred NiOx:Cu + SAM. The samples with air-transferred NiOx:Cu + SAM have V$_\mathrm{oc}$ and FF losses, while those without SAM are heavily shunted. We find via x-ray and UV photoelectron spectroscopy that the air exposure leads to non-negligible loss in the Ni2+ species and changes in the NiOx:Cu's work function and valence band maxima, both of which can negatively impact the V$_\mathrm{oc}$ and the FF of the tandems. Furthermore, by performing dark lock-in thermography, photoluminescence (PL), and scanning electron microscopy studies, we are able to detect various morphological defects in the tandems with poor performance, such as ohmic shunts originating from defects in the bottom CIGSe cell, or from cracking/delaminating of the perovskite top cell. Finally, by correlating the detected shunts in the tandems with PL-probed bottom device, we can conclude that not all defects in the bottom device induce ohmic shunts in the tandems since the NiOx:Cu + SAM HTL bi-layer can decouple the growth of the top device from the rough, defect-rich and defect-tolerant bottom device and enable high-performing devices.

024015
The following article is Open access

, , and

Focus on Advances in Phase Change Materials for Energy Applications

The growing interest in phase-change materials (PCM) is related to their possible role in thermal energy storage and thermal management. The choice of materials depends strongly on the required temperature range, whereas the latent heat of solid–liquid phase transition has to be as high as possible. Among other organic PCM, sugar alcohols have gained some attention due to their availability and certain advantageous properties. However, the thermal processes in these materials still require investigation. In the present work, we focused on the materials with solid–liquid phase change within 80 °C–100 °C. A comprehensive literature survey was conducted to elucidate the available sugar alcohols relevant to this range. It was found that the use of pure materials of this type is not very practical, because of their scarcity in the required range and their specific features, like difficulties with crystallization and solidification. On the other hand, based on the literature, we have discerned three eutectic mixtures of erythritol with other organic materials, namely, erythritol–xylitol, erythritol–urea and erythritol– trimethylolethane (TME). In all those cases, it is remarkable that while the components commonly have rather high melting temperatures, the eutectic mixtures had the phase transitions in the required range. Still, each of these mixtures has its own peculiar features, especially at cooling and solidification. An extensive experimental study was performed to provide detailed visualization of these major processes. The results revealed the melting temperature and latent heat of the mixtures to be: 84 °C and 190 J g−1 for erythritol–xylitol, 82 °C and 227 J g−1 for erythritol–urea. Erythritol–TME has two phase transitions at 82 °C and 97 °C, with total latent heat of 198 J g−1. Based on the present findings, the erythritol–urea mixture is the best PCM candidate for the melting range within 80 °C–100 °C.

024016
The following article is Open access

, , and

Focus on Caloric Materials and Devices

Multiferroic materials with strong coupling between different degrees of freedom are prone to exhibit giant multicaloric effects resulting from the application or removal of diverse external fields. These materials exhibit a synergic response to the combined action of two fields when the monocaloric effects are both conventional (or both inverse), while a non-synergic response occurs when one of the monocaloric effects is conventional and the other is inverse. In all cases, the multicaloric properties (isothermal entropy and adiabatic temperature changes) do not result from the simple addition of the corresponding monocaloric quantities because there is a contribution from the interplay between degrees of freedom (cross-coupling term). In this paper, we analyse in detail the contribution of the cross-coupling term to the multicaloric entropy values obtained for both synergic and non-synergic multicaloric materials. We first introduce basic thermodynamic concepts accounting for the multicaloric effects, and next the contribution from the cross-coupling term is illustrated via several model examples. We finally analyse the realistic situation for two prototype materials with synergic and non-synergic multicaloric effects.

024017
The following article is Open access

, , , , , and

Focus on Caloric Materials and Devices

Electrocaloric (EC) materials, presenting large adiabatic temperature change or isothermal entropy change under the application (or removal) of electric fields, offer an efficient alternative to caloric heat pumps for replacing hazardous gases used in traditional vapor-compression systems. Recently, a large EC temperature change of 5.5 K have been reported in Pb(Sc0.5Ta0.5)O3 multilayer ceramic capacitors (Nair et al 2019 Nature575 468) thanks to its strong first-order phase transition and a temperature span of 13 K has been reported in a prototype based on these capacitors (Torelló et al 2020 Science370 125). However, the toxicity of lead forces researchers to find eco-friendly materials exhibiting competitive EC performances. Here, we study the EC effect in lead-free BaTiO3 multilayer capacitors using an infrared camera. Unlike commercial BaTiO3 capacitors, we prepared our samples without sacrifying the first-order phase transition in BaTiO3 while a low amount of 0.2 mol% Mn was added as an acceptor dopant to improve electrical resistivity. Their EC adiabatic temperature variations show two peaks versus temperature, which match BaTiO3 two first-order phase transitions, as observed by differential scanning calorimetry. We measured a temperature drop of ∼0.9 K over a temperature range of 70 K under 170 kV cm−1, starting at 30 °C near the tetragonal-to-orthorhombic phase transition. Under the same electric field, a maximum temperature change of 2.4 K was recorded at 126 °C, at BaTiO3's Curie temperature. Our findings suggest that further optimized BaTiO3 capacitors could offer a path for designing lead-free caloric cooling prototypes.

024018
The following article is Open access

, , , , , , , , and

Focus on Caloric Materials and Devices

The magnetically frustrated manganese nitride antiperovskite family displays significant changes of entropy under changes in hydrostatic pressure near a first-order antiferromagnetic to paramagnetic phase transition that can be useful for the emerging field of solid-state barocaloric cooling. In previous studies, the transition hysteresis has significantly reduced the reversible barocaloric effects (BCE). Here we show that the transition hysteresis can be tailored through quaternary alloying in the Mn3Cu$_{1-x}$Sn$_{x}$N system. We find the magnitude of hysteresis is minimised when Cu and Sn are equiatomic (x = 0.5) reaching values far less than previously found for Mn3AN ($A = $ Pd, Ni, Ga, Zn), whilst retaining entropy changes of the same order of magnitude. These results demonstrate that reversible BCE are achievable for p < 100 MPa in the Mn3(A, B)N family and suggest routes to modify the transition properties in compounds of the same family.

024019
The following article is Open access

, and

Focus on Caloric Materials and Devices

Rare-earth-free magnetostructural MnNiSi-based solid solutions are considered as promising candidates for solid-state cooling applications. In this paper, we use density functional theory calculations to study the energetics, variations in atomic displacements and bond length, and magnetic properties of high-entropic, intermetallic MnNi-X (X = Si0.2Ge0.2Sn0.2Al0.2Ga0.2) magnet in both the low-symmetry Pnma and high-symmetry $P6_3/mmc$ structures, where we confine the large configurational entropy to the non-magnetic X-site of the compound. Our calculations reveal that the high-entropic chemical substitution of Si0.2Ge0.2Sn0.2Al0.2Ga0.2 in the X-site carry fingerprints that favor a reduction in magnetostructural transition temperature with minimal impact of total magnetization. These results motivate a promising path of high-entropic X-site substitutions to tune the magnetostructural properties of MnNiSi-based solid solutions.

024020
The following article is Open access

, , and

Focus on Caloric Materials and Devices

Caloric cooling enlisting solid-state refrigerants is potentially a promising eco-friendly alternative to conventional cooling based on vapor compression. The most common refrigerant materials for elastocaloric cooling to date are Ni-Ti based superelastic shape memory alloys. Here, we have explored tuning the operation temperature range of Ni50.8Ti49.2 for elastocaloric cooling. In particular, we have studied the effect of thermal treatments (a.k.a. aging) on the transformation temperature, superelasticity, and elastocaloric effects of Ni50.8Ti49.2 shape memory alloy tubes. The isothermal compressive test revealed that the residual strain of thermally-treated Ni-Ti tubes at room temperature approaches zero as aging time is increased. Short-time aging treatment at 400 °C resulted in good superelasticity and elastocaloric cooling performance with a large tunable austenite finish (Af) temperature range of 24.7 °C, as determined from the Af temperature of the samples that were aged 5–120 min. The main reason of the property change is the formation of a different amount of Ni4Ti3 precipitates in the NiTi matrix. Our findings show that it is possible to tailor the Af temperature range for development of cascade elastocaloric cooling systems by thermally treating a starting single composition Ni-Ti alloy.

024021
The following article is Open access

, , , and

Focus on Caloric Materials and Devices

In most cases, substitution studies that aim to optimize magnetic properties are performed at the magnetic atomic site. However, in the case of MnB, magnetic substitutions at the Mn site significantly decrease the once promising magnetocaloric and magnetic properties. This study employs computationally directed search to optimize the magnetocaloric properties of MnB where partial substitutions of boron atoms (Mn50B50−xSix and Mn50B50−xGex where x = 3.125, 6.25, and 12.5) reveal new compounds with a greater magnetocaloric effect than pure MnB at the same Curie temperature. These new compounds were obtained by arc melting the pure elements and further characterized. The computationally driven screening process is based on density functional theory calculations that do not require large databases of known compounds. This work demonstrates that using simple computational screening procedures to search for new magnetocaloric materials with improved properties can be done quickly, cost-effectively, and while maintaining reliability.

Papers

025001
The following article is Open access

, , and

Electrochemical production of hydrogen peroxide (H2O2) from oxygen reduction reaction (ORR) is a promising alternative to the costly anthraquinone method. However, the sluggish kinetics of ORR on most electrocatalysts restricts its wide application. Therefore, exploring electrocatalysts with high activity and selectivity for two–electron ORR is significant. Herein, cobalt atoms anchored on nitrogen-doped hollow carbon spheres (Co–NHCS) are presented for H2O2 electrosynthesis. The Co–NHCS catalyst exhibits excellent H2O2 electrosynthesis performance in acidic media with high reactivity with an ORR potential of 0.581 V at 1.0 mA cm−2 and H2O2 selectivity up to 90%. Moreover, the H2O2 output in the assembled device reaches 2980 mg l−1 h−1 with high Faraday efficiency. The enhanced performance of Co–NHCS originates from the hollow structure and center sites of Co introduction. This work affords a facile strategy for the fabrication of high-efficient carbon-based materials for H2O2 electrosynthesis.

025002
The following article is Open access

, , , , and

Preparing aqueous silicon slurries in presence of a low-pH buffer improves the cycle life of silicon electrodes considerably because of higher reversibility of the alloying process and higher resilience towards volume changes during (de)alloying. While the positive effects of processing at low pH have been demonstrated repeatedly, there are gaps in understanding of the buffer's role during the slurry preparation and the effect of buffer residues within the electrode during cycling. This study uses a combination of soft and hard x-ray photoelectron spectroscopy to investigate the silicon particle interface after aqueous processing in both pH-neutral and citrate-buffered environments. Further, silicon electrodes are investigated after ten cycles in half-cells to identify the processing-dependant differences in the surface layer composition. By tuning the excitation energy between 100 eV and 7080 eV, a wide range of probing depths were sampled to vertically map the electrode surface from top to bulk. The results demonstrate that the citrate-buffer becomes an integral part of the surface layer on Si particles and is, together with the electrode binder, part of an artificial solid-electrolyte interphase that is created during the electrode preparation and drying.

025003
The following article is Open access

, , , and

Rendering the solid electrolyte interphase and the inter-particle connections more resilient to volume changes of the active material is a key challenge for silicon electrodes. The slurry preparation in a buffered aqueous solution offers a strategy to increase the cycle life and capacity retention of silicon electrodes considerably. So far, studies have mostly been focused on a citrate buffer at pH = 3, and therefore, in this study a series of carboxylic acids is examined as potential buffers for slurry preparation in order to assess which chemical and physical properties of carboxylic acids are decisive for maximizing the capacity retention for Si as active material. In addition, the cycling stability of buffer-containing electrodes was tested in dependence of the buffer content. The results were complemented by analysis of the gas evolution using online electrochemical mass spectrometry in order to understand the SEI layer formation in presence of carboxylic acids and effect of high proton concentration.

025004
The following article is Open access

, , , , , , , , , et al

Cerium dioxide CeO2 (ceria) is an important material in catalysis and energy applications. The intrinsic Frenkel and Schottky defects can impact a wide range of material properties including the oxygen storage capacity, the redox cycle, and the ionic and thermal transport. Here, we study the impact of Frenkel and Schottky defects on the structural dynamics and thermal properties of ceria using density functional theory. The phonon contributions to the free energy are found to reduce the defect formation free energies at elevated temperature. The phonon dispersions of defective CeO2 show significant broadening of the main branches compared to stoichiometric ceria. Phonon modes associated with the defects are identifiable in the infrared spectra through characteristic shoulders on the main features of the stoichiometric fluorite structure. Finally, the presence of Frenkel and Schottky defects are also found to reduce the thermal conductivity by up to 88% compared to stoichiometric CeO2.

025005
The following article is Open access

, and

Despite the high capacitance and low cost, transition metal oxides have the limitation of low electrical conductivities and structural instability. In order to resolve these problems, herein, we propose a one-pot facile synthesis approach to construct a hierarchically structured nanohybrid material, where carbon nanotube (CNT) branches encapsulate NiO nanoparticles inside the tubes and interconnect them with steam-activated reduced graphene oxide. This unique hierarchical structure is attributed to large accessible surface areas, rapid electronic conduction, fast ion diffusion, and buffering effects. Moreover, the mixed Ni and NiO particles acts as catalysts to grow CNT branches and high capacitance redox active materials. In particular, the resulting composite electrode deliver a high specific capacitance of up to 1605.81 F g−1 at a current density of 1 A g−1 as well as, an excellent cycle stability with 71.56% capacitance retention after more than 10 000 cycles. Consequently, this research provides a rational material design chemistry to construct hierarchical architectures and multiple compositions of CNT/graphene/metal oxide nanoparticle hybrids for high-capacitance electrodes of composite capacitors.

025006
The following article is Open access

, and

Temperature is one of the most crucial outdoor variables that influence the photovoltaic performance and stability of carbon perovskite solar cells (CPSCs), although not many reports are there on temperature-dependent CPSCs performance based on various mesoscopic structures. This study demonstrates the temperature coefficient (TC) of carbon-based triple and double mesoscopic devices having MAPICL [MAPbI3−xClx] and CSFAMA [Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3] to understand the performance compatibility of different CPSC configurations despite the thermal treatment (MA = methylammonium, FA = formamidinium). While treating a single device in the range of 5 °C–65 °C, MAPICL-based CPSC maintained a power conversion efficiency (PCE) of ∼9%–11.7%. In contrast, CSFAMA-based double mesoscopic devices showed a PCE variation of ∼14%–16% in the same temperature window. The interesting fact of this analysis is that the average TC values for MAPICL and CSFAMA are in the order of 10−4, implying better retention of performance for both mesoscopic devices despite thermal stress. A photoluminescence analysis has been done to understand the temperature-dependent charge transfer properties between the perovskite and transport layer. To the best of our knowledge, this analysis, for the first time, provides insight into the temperature coefficient of different CPSC mesoscopic structures to promote suitable future development.

025007
The following article is Open access

, , and

We present a drift–diffusion model of a perovskite solar cell (PSC) in which carrier transport in the charge transport layers (TLs) is not based on the Boltzmann approximation to the Fermi–Dirac (FD) statistical distribution, in contrast to previously studied models. At sufficiently high carrier densities the Boltzmann approximation breaks down and the precise form of the density of states function (often assumed to be parabolic) has a significant influence on carrier transport. In particular, parabolic, Kane and Gaussian models of the density of states are discussed in depth and it is shown that the discrepancies between the Boltzmann approximation and the full FD statistical model are particularly marked for the Gaussian model, which is typically used to describe organic semiconducting TLs. Comparison is made between full device models, using parameter values taken from the literature, in which carrier motion in the TLs is described using (I) the full FD statistical model and (II) the Boltzmann approximation. For a representative TiO2/MAPI/Spiro device the behaviour of the PSC predicted by the Boltzmann-based model shows significant differences compared to that predicted by the FD-based model. This holds both at steady-state, where the Boltzmann treatment overestimates the power conversion efficiency by a factor of 27%, compared to the FD treatment, and in dynamic simulations of current–voltage hysteresis and electrochemical impedance spectroscopy. This suggests that the standard approach, in which carrier transport in the TLs is modelled based on the Boltzmann approximation, is inadequate. Furthermore, we show that the full FD treatment gives a more accurate representation of the steady-state performance, compared to the standard Boltzmann treatment, as measured against experimental data reported in the literature for typical TiO2/MAPI/Spiro devices.

025008
The following article is Open access

, , , , , and

Metastability is a characteristic feature of perovskite solar cell (PSC) devices that affects power rating measurements and general electrical behaviour. In this work the metastability of different types of PSC devices is investigated through current–voltage (IV) testing and voltage dependent photoluminescence (PL-V) imaging. We show that advanced IV parameter acquisition methods need to be applied for accurate PSC performance evaluation, and that misleading results can be obtained when using simple fast IV curves, which can lead to incorrect estimation of cell efficiency. The method, as applied in this work, can also distinguish between metastability and degradation, which is a crucial step towards reporting stabilised efficiencies of PSC devices. PL-V is then used to investigate temporal and spatial PL response at different voltage steps. In addition to the impact on current response, metastability effects are clearly observed in the spatial PL response of different types of PSCs. The results imply that a high density of local defects and non-uniformities leads to increased lateral metastability visible in PL-V measurements, which is directly linked to electrical metastability. This work indicates that existing quantitative PL imaging methods and point-based PL measurements of PSC devices may need to be revisited, as assumptions such as the absence of lateral currents or uniform voltage bias across a cell area may not be valid.