Table of contents

Volume 2

Number 3, September 2022

Previous issue Next issue

Buy this issue in print

Topical Reviews

032001
The following article is Open access

, , , and

Focus Issue on Extreme Edge Computing

In the internet-of-things era, edge intelligence is critical for overcoming the communication and computing energy crisis, which is unavoidable if cloud computing is used exclusively. Memristor crossbars with in-memory computing may be suitable for realizing edge intelligence hardware. They can perform both memory and computing functions, allowing for the development of low-power computing architectures that go beyond the von Neumann computer. For implementing edge-intelligence hardware with memristor crossbars, in this paper, we review various techniques such as quantization, training, parasitic resistance correction, and low-power crossbar programming, and so on. In particular, memristor crossbars can be considered to realize quantized neural networks with binary and ternary synapses. For preventing memristor defects from degrading edge intelligence performance, chip-in-the-loop training can be useful when training memristor crossbars. Another undesirable effect in memristor crossbars is parasitic resistances such as source, line, and neuron resistance, which worsens as crossbar size increases. Various circuit and software techniques can compensate for parasitic resistances like source, line, and neuron resistance. Finally, we discuss an energy-efficient programming method for updating synaptic weights in memristor crossbars, which is needed for learning the edge devices.

032002
The following article is Open access

, , , and

Focus on Organic Materials, Bio-interfacing and Processing in Neuromorphic Computing and Artificial Sensory Applications

This manuscript serves a specific purpose: to give readers from fields such as material science, chemistry, or electronics an overview of implementing a reservoir computing (RC) experiment with her/his material system. Introductory literature on the topic is rare and the vast majority of reviews puts forth the basics of RC taking for granted concepts that may be nontrivial to someone unfamiliar with the machine learning field (see for example reference Lukoševičius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686). This is unfortunate considering the large pool of material systems that show nonlinear behavior and short-term memory that may be harnessed to design novel computational paradigms. RC offers a framework for computing with material systems that circumvents typical problems that arise when implementing traditional, fully fledged feedforward neural networks on hardware, such as minimal device-to-device variability and control over each unit/neuron and connection. Instead, one can use a random, untrained reservoir where only the output layer is optimized, for example, with linear regression. In the following, we will highlight the potential of RC for hardware-based neural networks, the advantages over more traditional approaches, and the obstacles to overcome for their implementation. Preparing a high-dimensional nonlinear system as a well-performing reservoir for a specific task is not as easy as it seems at first sight. We hope this tutorial will lower the barrier for scientists attempting to exploit their nonlinear systems for computational tasks typically carried out in the fields of machine learning and artificial intelligence. A simulation tool to accompany this paper is available online7.

032003
The following article is Open access

, , , , , , , , , et al

Focus on Benchmarks for Neuromorphic Computing

Though neuromorphic computers have typically targeted applications in machine learning and neuroscience ('cognitive' applications), they have many computational characteristics that are attractive for a wide variety of computational problems. In this work, we review the current state-of-the-art for non-cognitive applications on neuromorphic computers, including simple computational kernels for composition, graph algorithms, constrained optimization, and signal processing. We discuss the advantages of using neuromorphic computers for these different applications, as well as the challenges that still remain. The ultimate goal of this work is to bring awareness to this class of problems for neuromorphic systems to the broader community, particularly to encourage further work in this area and to make sure that these applications are considered in the design of future neuromorphic systems.

032004
The following article is Open access

, , , , , and

Focus Issue on 2D materials for Neuromorphic Computing

Neuromorphic computing systems employing artificial synapses and neurons are expected to overcome the limitations of the present von Neumann computing architecture in terms of efficiency and bandwidth limits. Traditional neuromorphic devices have used 3D bulk materials, and thus, the resulting device size is difficult to be further scaled down for high density integration, which is required for highly integrated parallel computing. The emergence of two-dimensional (2D) materials offers a promising solution, as evidenced by the surge of reported 2D materials functioning as neuromorphic devices for next-generation computing. In this review, we summarize the 2D materials and their heterostructures to be used for neuromorphic computing devices, which could be classified by the working mechanism and device geometry. Then, we survey neuromorphic device arrays and their applications including artificial visual, tactile, and auditory functions. Finally, we discuss the current challenges of 2D materials to achieve practical neuromorphic devices, providing a perspective on the improved device performance, and integration level of the system. This will deepen our understanding of 2D materials and their heterojunctions and provide a guide to design highly performing memristors. At the same time, the challenges encountered in the industry are discussed, which provides a guide for the development direction of memristors.

Papers

034001
The following article is Open access

, , , , , , , , and

Focus Issue on Energy Efficient Neuromorphic Devices, Systems and Algorithms

Computation-in-memory using memristive devices is a promising approach to overcome the performance limitations of conventional computing architectures introduced by the von Neumann bottleneck which are also known as memory wall and power wall. It has been shown that accelerators based on memristive devices can deliver higher energy efficiencies and data throughputs when compared with conventional architectures. In the vast multitude of memristive devices, bipolar resistive switches based on the valence change mechanism (VCM) are particularly interesting due to their low power operation, non-volatility, high integration density and their CMOS compatibility. While a wide range of possible applications is considered, many of them such as artificial neural networks heavily rely on vector-matrix-multiplications (VMMs) as a mathematical operation. These VMMs are made up of large numbers of multiplication and accumulation (MAC) operations. The MAC operation can be realised using memristive devices in an analog fashion using Ohm's law and Kirchhoff's law. However, VCM devices exhibit a range of non-idealities, affecting the VMM performance, which in turn impacts the overall accuracy of the application. Those non-idealities can be classified into time-independent (programming variability) and time-dependent (read disturb and read noise). Additionally, peripheral circuits such as analog to digital converters can introduce errors during the digitalization. In this work, we experimentally and theoretically investigate the impact of device- and circuit-level effects on the VMM in a VCM crossbars. Our analysis shows that the variability of the low resistive state plays a key role and that reading in the RESET direction should be favored to reading in the SET direction.

034002
The following article is Open access

, , , , and

Focus on Neuromorphic Circuits and Systems using Emerging Devices

Convolutional neural networks (LeCun and Bengio 1998 The Handbook of Brain Theory and Neural Networks 255–58; LeCun, Bengio and Hinton 2015 Nature521 436–44) are state-of-the-art and ubiquitous in modern signal processing and machine vision. Nowadays, hardware solutions based on emerging nanodevices are designed to reduce the power consumption of these networks. This is done either by using devices that implement convolutional filters and sequentially multiply consecutive subsets of the input, or by using different sets of devices to perform the different multiplications in parallel to avoid storing intermediate computational steps in memory. Spintronics devices are promising for information processing because of the various neural and synaptic functionalities they offer. However, due to their low OFF/ON ratio, performing all the multiplications required for convolutions in a single step with a crossbar array of spintronic memories would cause sneak-path currents. Here we present an architecture where synaptic communications are based on a resonance effect. These synaptic communications thus have a frequency selectivity that prevents crosstalk caused by sneak-path currents. We first demonstrate how a chain of spintronic resonators can function as synapses and make convolutions by sequentially rectifying radio-frequency signals encoding consecutive sets of inputs. We show that a parallel implementation is possible with multiple chains of spintronic resonators. We propose two different spatial arrangements for these chains. For each of them, we explain how to tune many artificial synapses simultaneously, exploiting the synaptic weight sharing specific to convolutions. We show how information can be transmitted between convolutional layers by using spintronic oscillators as artificial microwave neurons. Finally, we simulate a network of these radio-frequency resonators and spintronic oscillators to solve the MNIST handwritten digits dataset, and obtain results comparable to software convolutional neural networks. Since it can run convolutional neural networks fully in parallel in a single step with nano devices, the architecture proposed in this paper is promising for embedded applications requiring machine vision, such as autonomous driving.

034003
The following article is Open access

, , and

Focus Issue on Quantum Materials for Neuromorphic Computing

Simulations of complex-valued Hopfield networks based on spin-torque oscillators can recover phase-encoded images. Sequences of memristor-augmented inverters provide tunable delay elements that implement complex weights by phase shifting the oscillatory output of the oscillators. Pseudo-inverse training suffices to store at least 12 images in a set of 192 oscillators, representing 16 × 12 pixel images. The energy required to recover an image depends on the desired error level. For the oscillators and circuitry considered here, 5% root mean square deviations from the ideal image require approximately 5 μs and consume roughly 130 nJ. Simulations show that the network functions well when the resonant frequency of the oscillators can be tuned to have a fractional spread less than 10−3, depending on the strength of the feedback.

034004
The following article is Open access

, and

Focus Issue on Machine Learning for Neuromorphic Engineering

In principle, sparse neural networks should be significantly more efficient than traditional dense networks. Neurons in the brain exhibit two types of sparsity; they are sparsely interconnected and sparsely active. These two types of sparsity, called weight sparsity and activation sparsity, when combined, offer the potential to reduce the computational cost of neural networks by two orders of magnitude. Despite this potential, today's neural networks deliver only modest performance benefits using just weight sparsity, because traditional computing hardware cannot efficiently process sparse networks. In this article we introduce Complementary Sparsity, a novel technique that significantly improves the performance of dual sparse networks on existing hardware. We demonstrate that we can achieve high performance running weight-sparse networks, and we can multiply those speedups by incorporating activation sparsity. Using Complementary Sparsity, we show up to 100× improvement in throughput and energy efficiency performing inference on FPGAs. We analyze scalability and resource tradeoffs for a variety of kernels typical of commercial convolutional networks such as ResNet-50 and MobileNetV2. Our results with Complementary Sparsity suggest that weight plus activation sparsity can be a potent combination for efficiently scaling future AI models.

034005
The following article is Open access

, and

Focus Issue on Bioinspired Adaptive Intelligent Robots

Compelling evidence has been given for the high energy efficiency and update rates of neuromorphic processors, with performance beyond what standard Von Neumann architectures can achieve. Such promising features could be advantageous in critical embedded systems, especially in robotics. To date, the constraints inherent in robots (e.g., size and weight, battery autonomy, available sensors, computing resources, processing time, etc), and particularly in aerial vehicles, severely hamper the performance of fully-autonomous on-board control, including sensor processing and state estimation. In this work, we propose a spiking neural network capable of estimating the pitch and roll angles of a quadrotor in highly dynamic movements from six-degree of freedom inertial measurement unit data. With only 150 neurons and a limited training dataset obtained using a quadrotor in a real world setup, the network shows competitive results as compared to state-of-the-art, non-neuromorphic attitude estimators. The proposed architecture was successfully tested on the Loihi neuromorphic processor on-board a quadrotor to estimate the attitude when flying. Our results show the robustness of neuromorphic attitude estimation and pave the way toward energy-efficient, fully autonomous control of quadrotors with dedicated neuromorphic computing systems.

034006
The following article is Open access

, , , , , , , , , et al

Focus Issue on 2D materials for Neuromorphic Computing

Overfitting is a common and critical challenge for neural networks trained with limited dataset. The conventional solution is software-based regularization algorithms such as Gaussian noise injection. Semiconductor noise, such as 1/f noise, in artificial neuron/synapse devices, which is often regarded as undesirable disturbance to the hardware neural networks (HNNs), could also play a useful role in suppressing overfitting, but that is as yet unexplored. In this work, we proposed the idea of using 1/f noise injection to suppress overfitting in different neural networks, and demonstrated that: (i) 1/f noise could suppress the overfitting in multilayer perceptron (MLP) and long short-term memory (LSTM); (ii) 1/f noise and Gaussian noise performs similarly for the MLP but differently for the LSTM; (iii) the superior performance of 1/f noise on LSTM can be attributed to its intrinsic long range dependence. This work reveals that 1/f noise, which is common in semiconductor devices, can be a useful solution to suppress the overfitting in HNNs, and more importantly, further evidents that the imperfectness of semiconductor devices is a rich mine of solutions to boost the development of brain-inspired hardware technologies in the artificial intelligence era.

034007
The following article is Open access

, , and

Focus Issue on Bioinspired Adaptive Intelligent Robots

The human eye has three rotational degrees of freedom: azimuthal, elevational, and torsional. Although torsional eye movements have the most limited excursion, Hering and Helmholtz have argued that they play an important role in optimizing visual information processing. In humans, the relationship between gaze direction and torsional eye angle is described by Listing's law. However, it is still not clear how this behavior initially develops and remains calibrated during growth. Here we present the first computational model that enables an autonomous agent to learn and maintain binocular torsional eye movement control. In our model, two neural networks connected in series: one for sensory encoding followed by one for torsion control, are learned simultaneously as the agent behaves in the environment. Learning is based on the active efficient coding (AEC) framework, a generalization of Barlow's efficient coding hypothesis to include action. Both networks adapt by minimizing the prediction error of the sensory representation, subject to a sparsity constraint on neural activity. The policies that emerge follow the predictions of Listing's law. Because learning is driven by the sensorimotor contingencies experienced by the agent as it interacts with the environment, our system can adapt to the physical configuration of the agent as it changes. We propose that AEC provides the most parsimonious expression to date of Hering's and Helmholtz's hypotheses. We also demonstrate that it has practical implications in autonomous artificial vision systems, by providing an automatic and adaptive mechanism to correct orientation misalignments between cameras in a robotic active binocular vision head. Our system's use of fairly low resolution (100 × 100 pixel) image windows and perceptual representations amenable to event-based input paves a pathway towards the implementation of adaptive self-calibrating robot control on neuromorphic hardware.

034008
The following article is Open access

and

Hardware implementing spiking neural networks (SNNs) has the potential to provide transformative gains in energy efficiency and throughput for energy-restricted machine-learning tasks. This is enabled by large arrays of memristive synapse devices that can be realized by various emerging memory technologies. But in practice, the performance of such hardware is limited by non-ideal features of the memristor devices such as nonlinear and asymmetric state updates, limited bit-resolution, limited cycling endurance and device noise. Here we investigate how stochastic switching in binary synapses can provide advantages compared with realistic analog memristors when using unsupervised training of SNNs via spike timing-dependent plasticity. We find that the performance of binary stochastic SNNs is similar to or even better than analog deterministic SNNs when one considers memristors with realistic bit-resolution as well in situations with considerable cycle-to-cycle noise. Furthermore, binary stochastic SNNs require many fewer weight updates to train, leading to superior utilization of the limited endurance in realistic memristive devices.

034009
The following article is Open access

, , , , , and

Focus on Organic Materials, Bio-interfacing and Processing in Neuromorphic Computing and Artificial Sensory Applications

In the nervous system synapses play a critical role in computation. In neuromorphic systems, biologically inspired hardware implementations of spiking neural networks, electronic synaptic circuits pass signals between silicon neurons by integrating pre-synaptic voltage pulses and converting them into post-synaptic currents, which are scaled by the synaptic weight parameter. The overwhelming majority of neuromorphic systems are implemented using inorganic, mainly silicon, technology. As such, they are physically rigid, require expensive fabrication equipment and high fabrication temperatures, are limited to small-area fabrication, and are difficult to interface with biological tissue. Organic electronics are based on electronic properties of carbon-based molecules and polymers and offer benefits including physical flexibility, low cost, low temperature, and large-area fabrication, as well as biocompatibility, all unavailable to inorganic electronics. Here, we demonstrate an organic differential-pair integrator synaptic circuit, a biologically realistic synapse model, implemented using physically flexible complementary organic electronics. The synapse is shown to convert input voltage spikes into output current traces with biologically realistic time scales. We characterize circuit's responses based on various synaptic parameters, including gain and weighting voltages, time-constant, synaptic capacitance, and circuit response due to inputs of different frequencies. Time constants comparable to those of biological synapses and the neurons are critical in processing real-world sensory signals such as speech, or bio-signals measured from the body. For processing even slower signals, e.g., on behavioral time scales, we demonstrate time constants in excess of two seconds, while biologically plausible time constants are achieved by deploying smaller synaptic capacitors. We measure the circuit synaptic response to input voltage spikes and present the circuit response properties using custom-made circuit simulations, which are in good agreement with the measured behavior.

034010
The following article is Open access

, and

Focus Issue on Photonic Neuromorphic Engineering and Neuron-Inspired Processing

We experimentally demonstrate the emulation of scaling of the semiconductor optical amplifier (SOA) based integrated all-optical neural network in terms of number of input channels and layer cascade, with chromatic input at the neuron and monochromatic output conversion, obtained by exploiting cross-gain-modulation effect. We propose a noise model for investigating the signal degradation on the signal processing after cascades of SOAs, and we validate it via experimental results. Both experiments and simulations claim that the all-optical neuron (AON), with wavelength conversion as non-linear function, is able to compress noise for noisy optical inputs. This suggests that the use of SOA-based AON with wavelength conversion may allow for building neural networks with arbitrary depth. In fact, an arbitrarily deep neural network, built out of seven-channel input AONs, is shown to guarantee an error minor than 0.1 when operating at input power levels of −20 dBm/channel and with a 6 dB input dynamic range. Then the simulations results, extended to an arbitrary number of input channels and layers, suggest that by cascading and interconnecting multiple of these monolithically integrated AONs, it is possible to build a neural network with 12-inputs/neuron 12 neurons/layer and arbitrary depth scaling, or an 18-inputs/neuron 18-neurons/layer for single layer implementation, to maintain an output error <0.1. Further improvement in height scalability can be obtained by optimizing the input power.

034011
The following article is Open access

, , , , and

Focus Issue on Quantum Materials for Neuromorphic Computing

Neuromorphic computing would benefit from the utilization of improved customized hardware. However, the translation of neuromorphic algorithms to hardware is not easily accomplished. In particular, building superconducting neuromorphic systems requires expertise in both superconducting physics and theoretical neuroscience, which makes such design particularly challenging. In this work, we aim to bridge this gap by presenting a tool and methodology to translate algorithmic parameters into circuit specifications. We first show the correspondence between theoretical neuroscience models and the dynamics of our circuit topologies. We then apply this tool to solve a linear system and implement Boolean logic gates by creating spiking neural networks with our superconducting nanowire-based hardware.

034012
The following article is Open access

, , , , , , , and

Focus Issue on Photonic Neuromorphic Engineering and Neuron-Inspired Processing

As computing resource demands continue to escalate in the face of big data, cloud-connectivity and the internet of things, it has become imperative to develop new low-power, scalable architectures. Neuromorphic photonics, or photonic neural networks, have become a feasible solution for the physical implementation of efficient algorithms directly on-chip. This application is primarily due to the linear nature of light and the scalability of silicon photonics, specifically leveraging the wide-scale complementary metal-oxide-semiconductor manufacturing infrastructure used to fabricate microelectronics chips. Current neuromorphic photonic implementations stem from two paradigms: wavelength coherent and incoherent. Here, we introduce a novel architecture that supports coherent and incoherent operation to increase the capability and capacity of photonic neural networks with a dramatic reduction in footprint compared to previous demonstrations. As a proof-of-principle, we experimentally demonstrate simple addition and subtraction operations on a foundry-fabricated silicon photonic chip. Additionally, we experimentally validate an on-chip network to predict the logical 2 bit gates AND, OR, and XOR to accuracies of 96.8%, 99%, and 98.5%, respectively. This architecture is compatible with highly wavelength parallel sources, enabling massively scalable photonic neural networks.

034013
The following article is Open access

, , , , , , and

Focus Issue on Algorithms for Neuromorphic Computing

Emerging usages for millimeter wave (mmWave) radar have drawn extensive attention and inspired the exploration of learning mmWave radar data. To be effective, instead of using conventional approaches, recent works have employed modern neural network models to process mmWave radar data. However, due to some inevitable obstacles, e.g., noise and sparsity issues in data, the existing approaches are generally customized for specific scenarios. In this paper, we propose a general neuromorphic framework, termed mm-SNN, to process mmWave radar data with spiking neural networks (SNNs), leveraging the intrinsic advantages of SNNs in processing noisy and sparse data. Specifically, we first present the overall design of mm-SNN, which is adaptive and easily expanded for multi-sensor systems. Second, we introduce general and straightforward attention-based improvements into the mm-SNN to enhance the data representation, helping promote performance. Moreover, we conduct explorative experiments to certify the robustness and effectiveness of the mm-SNN. To the best of our knowledge, mm-SNN is the first SNN-based framework that processes mmWave radar data without using extra modules to alleviate the noise and sparsity issues, and at the same time, achieve considerable performance in the task of trajectory estimation.