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Abstract
This manuscript serves a specific purpose: to give readers from fields such as material science,
chemistry, or electronics an overview of implementing a reservoir computing (RC) experiment
with her/his material system. Introductory literature on the topic is rare and the vast majority of
reviews puts forth the basics of RC taking for granted concepts that may be nontrivial to someone
unfamiliar with the machine learning field (see for example reference Lukoševičius (2012 Neural
Networks: Tricks of the Trade (Berlin: Springer) pp 659–686). This is unfortunate considering the
large pool of material systems that show nonlinear behavior and short-term memory that may be
harnessed to design novel computational paradigms. RC offers a framework for computing with
material systems that circumvents typical problems that arise when implementing traditional, fully
fledged feedforward neural networks on hardware, such as minimal device-to-device variability
and control over each unit/neuron and connection. Instead, one can use a random, untrained
reservoir where only the output layer is optimized, for example, with linear regression. In the
following, we will highlight the potential of RC for hardware-based neural networks, the
advantages over more traditional approaches, and the obstacles to overcome for their
implementation. Preparing a high-dimensional nonlinear system as a well-performing reservoir for
a specific task is not as easy as it seems at first sight. We hope this tutorial will lower the barrier for
scientists attempting to exploit their nonlinear systems for computational tasks typically carried
out in the fields of machine learning and artificial intelligence. A simulation tool to accompany this
paper is available online7.
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1. Motivation

Artificial intelligence (AI) permeates close to every technological and scientific discipline, as well as our every-
day lives. Considering (i) the enormous amount of data that next-generation communication technology
(e.g., 6G, internet-of-things, edge computing, etc) is expected to produce, and (ii) the commercial interest
in identifying patterns in unstructured data, the development of AI is foreseen to continue growing. Its rise in
the past 20 years was boosted thanks to the production of faster digital processing units alongside the devel-
opment of more efficient algorithms, the so-called artificial neural networks (ANNs) that, inspired by the
parallel architecture of neural connections in the human brain, are capable of learning and evolving over time
(see figures 1(a)–(c) for an overview on different neural network architectures). Meanwhile, digital computing
had decades to develop tools for aligning hardware with software, and to build sophisticated software tools to
implement ever more complex programs. This is possible because digital computing restricts the domain of its
applicability to systems with bi-stable dynamics (e.g., representing the logic states ‘true’ and ‘false’) and neg-
ligible transient states. Such meta-stability is crucial as it ensures close to perfect reproducibility of a program
considering hardware fabrication tolerances.

Considering these points, it becomes evident that the analogy with the brain is only superficial. Indeed, the
human nervous system carries out computation through elegant and sophisticated spatio-temporal dynamics,
where transients and noise are not only unavoidably present, but important. This allows our brain to pro-
cess analog signals with excellent precision and power efficiency (the brain drains 20% [2, 3] of the body’s
energy, which amounts to an overall power-consumption estimated at around 20 W). Such energy require-
ments are impressive compared to digital machines, which easily exceed 100 W during inference and several
kilowatts during the training of ANNs. In terms of speed, the brain is estimated to perform 100 teraflops per
second, while traditional computers lag by orders of magnitude, with their computational speed limited by the
serial communication between computing and memory units (the von Neumann bottleneck). Therefore, with
the goal of building general-purpose, autonomous machines capable of ‘human’ capabilities such as cognitive
learning and continuous adaptation, exploring unconventional computing paradigms as well as understanding
the fundamental computational principle of the brain and implementing them on artificial devices becomes
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Figure 1. Illustration of (a) a feedforward neural network (FNN) with its acyclic and trainable connections, (b) a recurrent
neural network featuring trainable feedback and cyclic connections, and (c) a reservoir made of untrained connections. For RC,
only the connection between readout layer and output layer is trained, typically with a linear regression.

essential. However, this should not be taken too literally. Indeed, it is an ongoing debate on what abstrac-
tion of brain dynamics is most helpful in building intelligent machines. What can be stated with certainty
is that the brain exploits its underlying physical substrate for computation, and we ought to do the same if
we want to reach similar levels of energy efficiency and performance. Continuing to exclusively impose digi-
tal computing’s symbolic nature on intrinsically dynamical and analog devices may be a wrong choice in the
ANN context. Therefore, a fundamental rethinking of computational machines must aim at maximizing the
direct use of the material as computing substrates, without sharp distinctions between computational unit and
memory unit.

Unconventional computers aim to harness generic physical systems for computation, along with a way
of ‘programming’ any such physical system. However, there exists a gap between descriptions at the physical
and the computational level. This is partly because we lack a general framework that unifies ‘computation’
in dynamical systems and computation in symbolic systems, as outlined in [4]. On the practical side, we also
lack methods of ‘programming’ physical systems, though recently, some advances have been made, e.g., using
back propagation through physical media [5] or more practical implementation scheme that does not require
to know the precise equations of physical reservoir [6–8]. For these reasons, exploring new computational
paradigms in hardware-based neural networks has been in the spotlight. For example, dense arrays of inter-
connected elements (artificial synapses) whose resistance can be accessed and programmed have been shown
[9]. Such elements must allow a reversible and energy-efficient mechanism to change their resistance (writing
phase). Moreover, minimal to no device mismatch often is a prerequisite for computational precision [10].
Hence, an ANN incapable of tweaking its connections with accuracy cannot provide a suitable substrate for
machine learning in its classical sense, and learning mechanisms that work in software-based ANNs may not
work well or are unrealistic in unconventional hardware.

In this framework, reservoir computing (RC) and random neural networks come into play, as they offer
power-efficient in-memory computing in random networks (see figure 2) with relaxed requirements on the
accurate tweaking of synaptic connections. Physical reservoir computing (PRC) takes advantage of machine
learning so that programs need not be fully specified and instead may be learned autonomously from data
and teacher signals. Moreover, it is also naturally formulated in a dynamical systems context, a formalism that
enables material scientists to map their physical systems onto the RC framework. This has led physical RC to
become one of the leading paradigms for exploiting high-dimensional, nonlinear, dynamical substrates for
computation. It is a simple, versatile, and efficient framework for physical computation.

However, simply applying the RC framework to physical systems often only serves as a proof of concept
that some substrate can be made to ‘compute’. One may also exploit the system for its physical properties that
are not directly connected to its computational purpose. As an example, optical reservoirs [11] can be used for
applications where extreme speed is desirable, while ionic or electrochemical reservoirs [12] could be used to
couple biological interfaces where high speed is not an essential requirement. One might go even further and
develop extensions or adaptations of RC for specific substrates that enable to take advantage not only of the
sheer presence of complex dynamics but also of the specific properties of such dynamics that are offered by a
specific physical substrate.

It has been argued that to fully domesticate the powers of such complex dynamics for computational
purposes, it is necessary to develop more complete theories of computation [4]. At the very least, a bet-
ter theoretical understanding of the connection between dynamics and computational function is required
for full-scale development of physical RC [13, 14]. One way to make progress towards such a frame-
work for general computation is through closer collaborations between material, dynamical systems and
computer scientists in order to better characterize the kinds of computation that are possible in complex
systems.

3
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Figure 2. The human brain, as well as a physical reservoir can be seen as a random neural network with directed connections,
fading memory, complex spatio-temporal dynamics. Memory and spatio-temporal dynamics are properties of the underlying
substrate/material (e.g., in the case of the brain it is an electrolytic environment in which complex, spatially non-uniform
electrochemical reactions occur. In a physical reservoir, different from the brain, training is done in the output layer, which is not
a part of the reservoir.

This paper is our contribution to enabling better communication and fostering collaborations across these
two fields to develop better physical implementations of intelligent computing machines. We organized this
tutorial as follows. First, we provide a detailed, conceptional introduction to the field of RC, discussing reser-
voir dynamics, the importance of a fading memory, training of reservoirs, and RC. Second, we discuss the
implementation of a RC experiment in hardware using a simple, hands-on example. The data of this hands-
on example is publicly available, allowing the readership to follow every step of the experiment in detail. The
material scientist eager to start an RC experiment with his/her system at hand might even consider skipping
the introductory theory chapter and directly start reading our ‘recipe’ for RC in chapter 3. Reading the intro-
ductory chapter after the practical experience might then offer an enriching and inspiring perspective on the
topic. To guide readers not coming from the AI community but still aiming to start with chapter 2, we sum-
marize the essential aspects of RC in bulleted lists. Furthermore, we mark sections and subsections in chapter
2 with an asterisk that are not strictly needed for an introduction to the field. Finally, after having said so much
about the implementation of physical reservoirs, we will summarize model systems and applications for phys-
ical reservoirs that have been discussed in the literature, including electronic, photonic, mechanical, chemical,
and liquid state reservoirs.

2. Introduction to reservoir computing

We start this section with a brief historical review of the development of RC. Then, to provide a broad per-
spective, we connect the idea of RC with other disciplines such as machine learning, ANNs, dynamic system
theory, and computational neuroscience. Finally, we clarify the term computation, which will be the starting
point for the practical introduction to RC in the following sections.

Most introductions to RC begin with echo state networks (ESNs) [15, 16], and liquid state machines (LSMs)
[17], but the ideas from RC can be traced back further into the past [18]. The principle behind RC was present
already in the context of reverberation subsystems by Kirby [19], who even pointed out the possibility of
hardware implementations for AI applications. Schomaker [20] described a reservoir-like system with spiking
neural oscillators. In the cognitive neurosciences, Dominey [21] used a reservoir as a simplified model of the
prefrontal cortex, which has led to fruitful research that continues to the present [22]. The idea behind RC
has been (re)discovered multiple times. This may be on account of the conceptual simplicity of computing
functions through a high-dimensional temporal expansion of the input (see section 2.1). The term RC can be
traced back to [23], in which the authors experimentally unified ESNs and LSMs into a general framework of
computation using a reservoir.

RC research flourished through collaborations between early pioneers. This resulted in powerful practical
demonstrations and the development of a mathematical theory to ground the field. One of the early moti-
vations for using RC as an effective training mechanism for recurrent ANNs has been largely superseded by
deep learning methods, which have mastered the difficulties of gradient-descent training that RC bypasses (see
section 2.2). Nevertheless, RC research is thriving [24] in a variety of fields, which reflects the many perspectives
that can be taken in the study of RC:

4
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• In machine learning, RC presents a straightforward-to-implement and efficient learning algorithm for
temporal input–output mappings by a nonlinear temporal expansion (see section 2.4).

• In research on ANNs, RC presents an efficient training mechanism. ESNs [15] were originally introduced
in the context of machine learning with ANNs.

• In dynamical systems theory, RC helps approximate potentially complex dynamical systems. In the field
of input-driven nonlinear dynamical systems, reservoir systems themselves provide an interesting topic
of investigation [25, 26].

• In computational neuroscience, RC offers a simple model of cortical computation. LSMs [17] were
introduced in this context.

• For materials and nonlinear systems scientists or device engineers, RC provides a simple method to har-
ness complex dynamics for computation or, simply, a way to program a physical system. This is often
referred to as PRC [13, 27] which has roots in RC as well as unconventional computing [28].

For the last point, it is instructive to clarify that computation is used here wider than in the clas-
sical theory of digital, i.e. symbolic, computation. In this general sense of computation, we may define
a computation as anything that happens inside a system that transforms input signals into output
signals. A more detailed discussion on such an extended meaning of computation can be found in
references [4, 29].

2.1. General principle of reservoir computing
Given this broad view of computation, the general principle of RC is intuitive. It allows the construction of
a dynamical system that implements a desired mapping from input signals to output signals. This includes
time series prediction, classification, and other tasks. To this end, a set of examples (training data set) that
demonstrates the desired relation between input signals and output signals is usually required. In machine
learning terminology, this is a temporal supervised learning task (see section 2.4).

In this setup, a training input signal utrain(t) ∈ R
Nu with a desired target output signal ytrain(t) ∈ R

Ny is
given, where Nu, Ny is the dimensionality of the input and output, respectively. In time series prediction, the
input signal may show a time series and the target output signal its continuation. In classification, the input
signal may present an auditory speech signal and then target output signal the corresponding phonemes that
are spoken. Note that if multiple of such input–output examples exist, they may simply be concatenated in
time. What is desired is a system that, when fed with input utrain(t) generates an output signal ŷtrain(t) ≈
ytrain(t).

We may assume that the examples are generated by a function Ψ(utrain)(t) = ytrain(t) + e where e is an
additive error term, e.g. noise, and utrain is the entire input time series. In signal processing, such a sys-
tem is called a filter. The reservoir system, denoted by Ψ̂θ (where θ is the vector of model parameters
that determine the reservoir system), then aims to approximate the true generating system Ψ as closely as
possible.

The solution of RC to this learning task comes in three steps.

(a) The reservoir is prepared as a high-dimensional, nonlinear dynamical system that can be driven by the
input signal utrain(t). For a well-performing system, the collective dynamics of the reservoir should satisfy
conditions summarized in sections 2.4 and 3.1. However, the individual components of the reservoir can
be random. The reservoir’s high-dimensional states are given byX(t) ∈ R

N , and many of its state variables
must be accessible to be read out as x(t) ∈ R

Nx , which consist of xi(t) for i = 1, . . . , Nx. Not all states of
the reservoir need to be observable, it is possible that Nx < N.

(b) The reservoir is driven with the input utrain(t) and the corresponding state variables of the reservoir in
response to this input are read out and stored as xtrain

i (t).

(c) Lastly, a readout function F, which maps all recorded state vectors xtrain
i (t) to an output ŷ(t) ≈ y(t) is

learned (estimated):
F(xtrain

1 (t), . . . , xtrain
N (t)) = ŷ(t) ≈ y(t) (1)

This is done by minimizing a chosen loss function L(y, ŷ), which evaluates the difference between the
reservoir’s output ŷ = Ψ̂θ(u) and the desired output y = Ψ(u). Specifically, we minimize the average loss
over the given training data:

L̄train(Ψ̂θ) =
1

NT

∑
t

L(ytrain(t), Ψ̂θ(utrain(t))) (2)

where NT is the number of time steps. The readout function F, which minimizes the average loss, is
typically obtained with a simple linear regression.

5
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After this procedure, the reservoir can be used for inference to make predictions. When feeding a new input
signal u(t) to the reservoir, the reservoir’s state vectors xi(t) are observed and used to compute the predicted
output signal ŷ(t) = F(x1(t), . . . , xN (t)).

We model the reservoir as a network of interacting elements or a neural network (see section 2.2). This is
not necessary, it is also possible to model the reservoir as a spatially continuously extended medium, but this
is outside of the scope of this tutorial.

2.1.1. Advantages of reservoir computing
A major advantage of RC is its versatility. Firstly, this scheme can be used for any temporal input–output task.
Secondly, many nonlinear, high-dimensional dynamical systems can be used as a reservoir (see section 3.1).
The reservoir itself does not need to be modified or trained, which allows the use of a wide variety of (physical)
systems, the dynamics of which need not be characterized (or even understood). Section 2.2 shows how RC is
applied to neural networks, and section 2.3 shows how RC is applied to harness arbitrary dynamical systems
for computation. Furthermore, the training procedure is also straightforward. Often the readout function can
be learned through simple linear regression, which is computationally inexpensive to implement on a digital
computer connected to the physical reservoir.

The simplicity originates from the random configuration of the reservoir itself, which does not need to
be learned, but instead can remain fixed. Additionally, a single reservoir can also be used to learn multiple
different mappings from the same input signal. Given, for example, an electrocardiogram signal (ECG), a
single reservoir can be used for, both anomaly detection in a single heartbeat and simultaneously for clas-
sification of the ECG signal as a whole. To do this, one simply trains one readout function for the anomaly
detection and another for the classification. In inference mode, the reservoir is driven by an ECG signal,
and both readout functions can be used simultaneously to obtain two different output signals from the same
reservoir.

This is especially suitable for physical implementations in materials because the reservoir itself does not
need to be modified during training. In RC, only the states of the neurons in the reservoir must be recorded
during training, while the weights can be left unchanged.

Beyond its simplicity, RC is also extensible. Many additions to the basic RC formulation have been pro-
posed, for example, the use of local learning rules inside the reservoir [30, 31], the use of multiple reservoirs
as part of a learning ensemble [32] or using a ‘deep’ architecture in which each layer is a reservoir [33]. Such
extensions to the basic RC setup are briefly outlined in section 3.5.4.

Reservoirs have been particularly successful in learning and predicting the dynamics of chaotic systems
[34, 35], so RC is a competitive approach for tasks that deal with chaotic signals.

2.2. Training the reservoir
Although any complex dynamical system can be used as a reservoir (see next section), the reservoir is often
modeled as a neural network due to its roots in ESNs and LSMs.

Neural network models are abstractions of biological neural networks in the brain. Investigated initially
to explain the mechanism and function of neural circuits in the brain [36], computer scientists have adopted
neural networks in technological applications. Such ANN models are used in machine learning as they are
driven mainly by technological applications and consequently trade off some of their biological plausibility.
The field of deep learning has become massively successful by combining large ANN models and training these
with machine learning techniques.

Before comparing the reservoir approach to training with the deep learning methods, some definitions are
needed. We categorize different types of ANNs based on their underlying neuron model and their intercon-
nections, or architecture.

2.2.1. Recurrent vs feedforward neural networks

An ANN can be represented as a directed graph, where nodes represent neurons and edges represent one-way
connections between neurons. We differentiate between feedforward neural networks (FNNs), which imple-
ment a directed acyclic graph (figure 1(a)), and recurrent neural networks (RNNs), which implement a directed
cyclic graph (figure 1(b)). In a FNN, the network can be organized in L layers, where neurons in layer i are con-
nected only to neurons in layer i + 1, through a weight connection matrix W i. By convention, the first layer
i = 0 is the input layer, the final layer i = L is the output layer, and in between are hidden layers. This leads to
the following transfer function from layer i to layer i + 1:

xi+1 = f
(
Wixi + bi

)
(3)
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where f is a nonlinear activation function, commonly f = tanh, xi is the state vector of neuron activations
in layer i, and bi is the bias vector for layer i. Each neuron in the neural network has a bias, which can be
interpreted as a scalar offset for its activation value.

A FNN is a stateless input–output map where neuron activations spread through the network from the
input layer through the hidden layers to the output layer. If the input layer is inactive, subsequent lay-
ers will also be inactive. In contrast, RNNs can sustain reverberations of activations after the input layer
becomes inactive, giving rise to temporal dynamic behavior which can be used as memory. This makes
RNNs particularly well-suited for temporal data processing. RNNs are more common in biological neural
networks, as even the simplest nervous systems in the animal brain feature high recurrence of the neural
sub-circuits.

RC exploits temporal dynamics. Therefore it is formulated for RNNs. However, an approach similar to
RC but without temporal dynamics can be implemented in FNNs. These are investigated under the name of
extreme learning machines [37].

2.2.2. Training artificial neural networks
As shown above, a FNN implements an input–output mapping, similar to a computer program written in,
say, Python. The important difference is that a human programmer must come up with the Python program,
which is easy enough for some programs, but time has shown that some programs are simply too complex to
be written manually. What makes ANNs relevant is that we do not have to manually program them, but that
we can set up a training procedure in which the ANN learns to improve its performance from a set of examples,
which we call the training data. We say that a network is trained if it has already learned to implement some
desired function. The network’s behavior is then frozen, such that it does not change anymore, and we say that
it is used only for inference, or evaluation.

The ANN’s transfer function Ψ̂θ(u), which maps its inputs to outputs, is parameterized by θ ∈ R
Nθ . In

general, the set of parameters can include any of the ANN’s properties, hence including its architecture.
The architecture of an ANN usually includes the connectivity graph and the choice of activation func-
tion. However, usually only the connection weights and biases are taken as parameters and the architecture
is fixed.

The standard way to train ANNs is by gradient descent, where the current parameters θ are updated
to θ

′
in the direction of the average loss function’s steepest descent: θ′ = θ − η∇θL̄(Ψ̂θ) where ∇θ is the

gradient with respect to the parameters θ and η is the learning rate, or step size. This update step is per-
formed iteratively, until the network converges to some minimum in the error function. In stochastic gradient
descent (SGD), the update step is performed after every k ∈ N data points while in batch gradient descent
the update is performed on the whole data set. In SGD with k > 1, one also speaks of mini-batch gradient
descent.

An ANN is a good solution to the learning task if it not only minimizes the error function on the train-
ing data, but is also able to generalize to unseen validation data with low error. This generalization ability
implies that it is not enough to simply memorize the training data. Such generalization is a hallmark of intel-
ligence, and a major challenge in machine learning. One standard way to ensure that a training procedure
optimizes an ANN to generalize well to unseen data is through cross-validation (CV), see e.g., chapter 5 in
reference [38].

The gradient of the empirical risk function with respect to the parameters is computed with the back-
propagation algorithm [39] during a forward pass and a backward pass. In the forward pass, the input
is propagated through the network to the output layer, where the average loss L̄(Ψ̂θ) is computed. In the
backward pass, this error is back-propagated through the network, and at each layer, the gradient of the

error with respect to the layers’ parameters ∇θi L̄(Ψ̂θ) is computed, effectively applying the chain rule of
differentiation.

In theory, this works for networks of any depth, but in practice the performance of gradient descent with
the standard backpropagation algorithm declines with larger networks. Training can take very long until it
converges, and the problem of exploding and vanishing gradients can prevent convergence altogether.

In RNNs, the training becomes even more challenging. The input and output are now time series
(utrain(t), ytrain(t)). In RNNs, the output of the model depends on the current input u(t) and also on the cur-
rent state of the network x(t) which can be seen as the network’s memory, encoding information about past
inputs and initial conditions. The backpropagation algorithm has been adapted for RNNs, under the name of
backpropagation through time (BPTT). BPTT essentially looks at the RNN as a deep FNN, by unrolling the
network in time.

Many of the challenges of backpropagation become amplified in BPTT and convergence is not generally
guaranteed in BPTT. RC provides an alternative hardware-friendly method to train RNNs.
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It should be pointed out that since the introduction of RC in the early 2000s, deep learning methods have
been developed to enable BPTT to work reliably for large RNNs. These methods have become the standard
way to train complex, large ANNs. However, RC still provides several advantages for training neural networks,
as will be pointed out next.

2.2.3. The reservoir approach to train neural networks
RC is a method to train neural networks that does not require the backpropagation of error information
through the network. Neither does RC require the computation of gradients inside the network. Both of
these make BPTT expensive in terms of time, memory, and energy required to train a neural network.
RC offers a cheaper alternative. Moreover, RC can also be used to train non-differentiable neural net-
works. This enables RC to train a neural network (or, in general, a reservoir) whose dynamics are not fully
described, as is often the case in physical systems, or simply not differentiable, as is the case for spiking neural
networks (SNNs).

The general setup for training a reservoir (or rather: the readout function) was already explained in
section 2.1. It is important to note that step (a), the preparation of the reservoir, is not trivial. As the present
section has shown, a reservoir ought to satisfy several conditions to perform well on a learning task. Section 3.5
will give more practical guidance for the tuning of a physical reservoir.

2.3. Physical reservoir computing
PRC merges the key ideas of ESNs and LSMs, which were both initially only implemented in software simula-
tions, into a general framework for computation in physical systems. Just as in simulations, a physical reservoir
applies a nonlinear temporal expansion to the input signal by mapping it into the high-dimensional reservoir,
in which different input signals are separable. The physical reservoir should have some short-term memory
and is typically required to have the echo state property (ESP) in order to wash out initial conditions (see
section 2.4). A task-specific readout mechanism then maps the reservoir state to an output state, effectively
implementing the desired input–output function with the help of the reservoir. This readout function can be
implemented directly in the material or through an interface to a digital computer.

As a framework for computation in physics, PRC brings computing and physics closer together. This
advances the development of next-generation neuro-inspired computers [40], and can enable the development
of computers using materials that have never been used for computation before [13, 41].

2.3.1. Physical artificial neural networks
The quest of finding materials and devices well suited for physical neural networks has been taken up by
material scientists, physicists, and engineers in the last decade, and the challenges are summarized in a recent
roadmap [10]. In these early strides of building artificial ‘brains’, it is not clear if information is processed
at the synaptic, neuronal, or network level. However, it is reasonable to begin with designing the smallest
and most numerous unit of the nervous system, the synapse. In this framework, many devices with tun-
able properties have been proposed as artificial synapses for neuromorphic computing and employed as
edges between nodes, where the tunable property (resistance, transparency, etc) is the weight. The vast sci-
entific interest in the development of such artificial synapses and research in this direction is mainly driven
by materials and device innovation [42–44]. In order to produce functional ANN, though, such artificial
synapses must be integrated into large and dense arrays of synaptic elements and connected to artificial
neurons. At this stage, two obstacles hamper the development of hardware-based ANNs. Firstly, there is
often a high barrier for scientists working on single-device artificial synapses to scale up and employ these
synapses for typical AI tasks. Secondly, basic concepts of machine learning (e.g., backpropagation, weight
tuning, etc), while being well suited to symbolic digital machines, may not work reliably on real systems
as these usually cannot meet requirements for device-to-device variability and/or precise control over each
individual unit/synapse [45]. The precise fine-tuning of ANNs could be circumvented by the employment
of random, semi-random, or unconsciously designed ANNs, which restrict optimization to an output layer.
Such a strategy is more appealing and suitable for physical systems and underlies several brain computing
principles.

2.3.2. Random artificial neural networks
ANN can recognize patterns by undergoing a phase in which edges (synapses) are tweaked, in order to enhance
or inhibit the activity of the connected nodes (neurons). Increasing the complexity of an ANN ensures high
computational power, but a larger amount of connections will require longer time to train. With this in mind,
two interesting questions arise at this stage.

(a) Considering the incredibly high synaptic density in our brain (higher than 1011cm−3 [46]), how can each
synapse be chemically targeted and adjusted in our nervous system with precision?
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(b) Can an ANN be used with a random value assigned to each edge?

Considering the human brain’s complexity, it appears almost impossible, and surely impractical, to target
single cells and individual synapses for each potentiation and depression event. While the biological and chem-
ical mechanisms behind the single-cell behavior have been laid down quite thoroughly, the dynamics behind
larger ensembles of neurons remain largely unexplained. This holds even for primitive systems e.g., the widely
studied worm Caenorhabditis elegans, with its tractable neural connections.

This brings us to the following question: if a network, biological or artificial, is hard or inefficient to cus-
tomize in each of its building blocks, how much accuracy and computational power would be lost? It turns out
that even randomly assembled neural networks (RaNNs), not only can compute precisely, but possess impor-
tant advantages over other types of fine-tuned neural networks [47, 48]. For one, using a RaNN makes the
configuration process cheap and simple because the network only needs to satisfy some constraints, but can
otherwise be random. Random neural networks are also more flexible as they can be implemented in many
physical substrates, including those that do not allow complete access to modify the network. Finally, random
neural networks are often more versatile in that the same random network can be used for multiple differ-
ent tasks—just as the same reservoir can be used to implement different functions by using different readout
layers.

‘Random’ means that connections are not trained. However, the rules that govern the communication
between neurons only allow for a certain probability distribution of the outcome, but an exact prediction
is impossible. Also, RaNNs have been shown to be universal approximators for bounded and continuous
functions.

The idea of a random computational machine is in fact paradoxical to our intuition, and contrasting
with the high-precision arrangement of the components within a circuit board paramount in nanoelectron-
ics. However, it can be imagined that small circuit units equipped with feedback loop responses may adjust
their behavior depending on their input, output and back-fed signal. Feedback loops are in fact a precious
circuit element in electronics, as well as a powerful chemical and neuronal mechanism harnessed by biology.
By doing this, we are moving towards a ‘learning’ approach that is carried out by a dynamic, semi-random
computational structure evolving over time. Also, it is worth noting that when we mention feedback loops, we
are referring to systems in which the information flow is not mono-directional, rather totally undefined, as it
happens in RNNs. On top of this, when imagining the implementation of a RaNN on hardware, the effort for
its training is substantially relieved.

2.4. Reservoir computing theory
The term RC pays tribute to the central importance of the reservoir in this framework. The reservoir acts, both,
as a memory and as a nonlinear temporal expansion of the input:

• The memory is realized through the recurrent connections of the reservoir, which make its current state
dependent on previous states with a fading memory, just as in recurrent neural networks (RNNs, see
figure 1(b)). However, as opposed to RNNs, a RC’s recurrent connections are not trained. As such, the
reservoir is often described as a ‘black box’ (figure 1).

• The reservoir realizes a nonlinear temporal expansion, mapping the input signal to a high-dimensional
reservoir state. Such a projection into high-dimensional space is commonly used by kernel meth-
ods in machine learning, or by random neural networks (which are not unlike RC). Through this,
different input signals can become more easily distinguishable. As schematically shown in figure 3,
a linearly inseparable data set in 2D can become linearly separable in 3D after a R

2 → R
3 map-

ping. The same principle applies to the expansion of the low-dimensional input signal into the high-
dimensional reservoir state space. Moreover, the dynamical (short-term) memory makes past inputs
interacts with the current input. The reservoir therefore also provides a temporal expansion of the
input: the reservoir’s response depends on the entire history of inputs (and the initial condition of the
reservoir), i.e. x(n) = f (. . . , u(n − 1), u(n), x(0)) in the discrete-time case, which is usually rewritten
into the recursive form x(n) = f(u(n), x(n)). If such memory of past inputs is not necessary for the
task at hand, non-temporal machine learning techniques, e.g. extreme learning machines [37], should
be used.

In-memory computing, referring to the co-location of memory and computation as in reservoirs, has
recently received much attention for its promise to avoid the von Neumann bottleneck, which limits certain
applications in conventional computers.

2.4.1. Reservoir dynamics
In this section, we will describe the mechanisms that influence reservoir dynamics from a theoretical perspec-
tive, while section 3.5 will explain how to tune a physical reservoir in practice. While RC requires less tuning
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Figure 3. (a) Example of a linearly separable data set, where pink and blue circles can be divided by a straight line. In this case, a
linear regression is sufficient for a successful classification task. (b) Example of a linearly inseparable data set in 2D. (c) Data
points from (b) are projected nonlinearly into a higher dimension (3D). This projection into 3D space can be used to obtain
linearly separable data (through the separating plane shown in yellow).

Figure 4. Shown are the response of five randomly selected neurons from two ESNs, one of which possesses the ESP (left)
whereas the other does not (right). Both reservoirs are driven by a sinusoidal input signal. The dashed and solid lines show
different initial conditions of the reservoir state at x(0). The ESN on the left has a spectral radius of ρ(W) = 1.25 and the plot
shows that neuron responses with different initial conditions converge, thus demonstrating the ESP. The ESN on the right has a
larger spectral radius of ρ(W) = 3.0 and the plot shows that neuron responses with different initial conditions do not converge,
showing the lack of the ESP. For further explanation, see text.

and configuring of a physical system compared to e.g. hardware-based ANNs, the truth is that not every reser-
voir will work well in practice. For example, it is possible that the reservoir’s internal dynamics are so strong
that it will disregard the influence of the input signal. This is clearly undesirable. A reservoir should depend
mainly on the current input, and wash out the effect of past inputs and initial conditions. Putting it another
way, the reservoir’s response x(t) at time t should be uniquely defined by the fading history of the input u(t),
and not on the initial conditions of the reservoir x(0). The importance of this property is illustrated visually
in figure 4 and explained in more detail in the following.

In the context of ESNs, the above-described condition is formalized as the ESP [15]. The ESP essentially
states that the effect of a previous state x(t) and a previous input u(t) on a future state x(t + T) should vanish
gradually as time passes, i.e. T →∞. In the context of LSMs, this condition is formalized as a fading memory.
A reservoir has fading memory if the most significant bits of its current response x(t) depend just on the most
significant bits of the values of its input u(·) in some finite time interval [t − T, t].

In ESNs, a sufficient condition for the ESP property is that the largest singular value of the internal weight
matrix W be below unity, σ̄(W) < 1. However, this condition is very restrictive and not commonly used in
practice because the input can potentially wash out too quickly [49]. A less restrictive, commonly used con-
dition is that the largest eigenvalue of the weight matrix W be below unity, ρ(W) < 1. The value ρ(W) is also
called the spectral radius of W. Although this does not guarantee the ESP in general [49], it tends to work well
in practice [1].

2.4.2. Reservoir memory∗

The memory of a reservoir is not straightforward to quantify, as it is generally not possible to state a reser-
voir can only ‘remember’ up to T time into the past, and, at least in principle, a reservoir has unbounded
memory length. However, a reservoir’s memory fades, and it will fundamentally not be able to perform
well in a task that requires longer memory. This implies that it is impossible to train a reservoir on tasks
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Figure 5. Comparison of neuron models. (a) Shows a biologically more plausible spiking neuron for SNNs (Jj and Θ denote the
integration and threshold function, respectively) and (b) shows an artificial neuron used in ANNs where f denotes the nonlinear
activation function of the neuron.

which require unbounded-time memory [50], and the depth of this fading memory is therefore essen-
tial information. Later in this section, we shall see that it is possible to equip a reservoir with an external
working memory, but for now we restrict the discussion to the standard formulation of RC. The mem-
ory capacity of a reservoir has been analyzed for linear neurons in discrete time with activation function
f (x) = x [51], and more recently also for continuous reservoirs [52] and nonlinear reservoirs in discrete
time [53].

To quantify the memory capacity C of a reservoir, one commonly trains a reservoir to predict, or memorize,
an input signal. Hence, for a given input signal utrain(t), the desired output signal is ytrain

T (t) = utrain(t − T).
The error in this learning task will tend to increase for larger values of T, i.e. for memorization further into the
past. For a discrete-time reservoir like an ESN, the memory capacity C is defined as C =

∑∞
T=1r2(utrain(t − T),

ytrain
T (t)), where r2 is the squared correlation coefficient [50].

Other memory mechanisms also exist in ANNs. Most notably are working memory and long-term mem-
ory. As per reference [54], working memory is ‘the ability (of a system) to transiently hold and manipulated
goal-related information to guide forthcoming actions’. As such, a working memory allows a reservoir to store
information for potentially unbounded time spans. This stands in direct conflict with the above-mentioned
fading memory, or echo state, property of reservoirs, thus standard reservoirs cannot implement working
memory. A working memory mechanism for ESNs was described in reference [55] by adding reservoir-external
working memory units. Long-term memory stores information for unbounded duration and has to have a
much larger, possibly even unbounded, storage capacity. The readout function of the reservoir can be con-
sidered a form of long-term memory. After training, the readout function contains task-specific information,
i.e. how to compute the output from the reservoir’s response to an input, and this information persists indef-
initely. It may be thought of as a type of procedural memory, which aids the performance of a particular
kind of task.

2.4.3. Neuron models: spiking vs rate-based∗

Biological neurons communicate through spike events when they are sufficiently excited through their input
signals. RC can work with either of two categories of neuron models: artificial neurons that are commonly
used in machine learning and spiking neurons that are commonly used in computational neuroscience and
neuromorphic computing.

In artificial neurons, the spiking activity is modeled by averaging the number of spikes per time interval
to yield a rate-based activity measure. They are described by difference equations in discrete time. In contrast,
spiking neurons model their activity with individual spike events rather than an average and they are described
by differential equations in continuous time.

Moreover, depending on how the information is represented (discrete spike events in continuous time as
in figure 5(a) or time-averaged activity in discrete time as in figure 5(b)), neuron models can be classified as
ANNs or SNNs. Both ANNs and SNNs have been used in RC: LSMs were introduced using spiking neuron
models while ESNs were introduced using rate-based neuron models.

For clarity, we restrict formal discussions to networks of rate-based neuron models. They are simpler and
more efficient to simulate on digital computers. For this reason they have become the standard neuron model
in machine learning, where performance is prioritized over biological plausibility. Rate-based neuron models
are also frequently used in hardware-based neural networks as they are easy to implement in digital hardware.
However, also hardware-integrated spiking neurons are gaining increasing interest in applications. In partic-
ular, leaky integrate-and-fire (LIF) models are frequently used due to their strikingly simple architecture and
high speed. Although more difficult to integrate in hardware, biomimetic spiking neuron models are preferred
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though due to their excellent energy efficiency and rich temporal dynamics, which is key for computational
power [56].

In ANNs, a neuron’s state, its activation x, represents its average firing rate. At each discrete time step n,
the input of a neuron i is the sum of every neuron j’s activation at the previous time step n − 1, weighted by
the strength of the synaptic connection from neuron j to neuron i, given by wji ∈ R. The neuron’s activation
xi(n) is then given as some nonlinear function f on this input:

xi(n) = f

⎛
⎝∑

j

wjixj(n − 1)

⎞
⎠. (4)

The equation can also be expressed in matrix form with the weight matrix W whose element at row i and
column j is given by wij

x(n) = f(Wx(n − 1)) (5)

where x(n) is the activation vector for all neurons at time step n and f is the vectorization of the function f.
Equation (5) shows that the dynamics at each time step can be computed as a matrix multiplica-

tion, or multiply-and-accumulate (MAC) operation, followed by a nonlinear function. Chaining these
two operations is all that is needed to build a hardware implementation of a static ANN. The fact
that GPUs can efficiently compute MAC operations shows why ANNs dominate the field of machine
learning.

In SNNs, a neuron’s state represents its momentary activation and the neuron will emit a spike event when
it is sufficiently activated. Such a spike event, or action potential, is modeled as an all-or-nothing, binary event.
The activation of the neuron models the membrane potential Vm, as in biological neurons. When the mem-
brane potential Vm reaches a critical threshold Vthr, the neuron emits a spike to all neurons to which it is
connected. This activates downstream neurons by raising their membrane potential. The details of this spike
transmittance depends on synaptic and dendritic dynamics. These are often neglected, for example in the
commonly used LIF model of a neuron, in which the membrane potential Vm(t) of the neuron is given by the
differential equation

dVm(t)

dt
= k1I(t) − k2Vm(t) (6)

where k1, k2 depend on the membrane’s resistance and conductance. I(t) is the input current to the neu-
ron which depends on the spike events of all those neurons that connect to the modeled neuron. When
the membrane potential reaches the threshold voltage, the neuron spikes and its membrane potential
is restored to its resting value. Given that these models use continuous time and analog values to rep-
resent the membrane potential, spiking neurons are naturally implemented in analog (or mixed-signal)
systems.

The realization of SNN is promising yet challenging. To realize a SNN in hardware, the neuron is imple-
mented as a leaky integrator of its input stimulus. Note that a leaky integrator is equivalent to a low-pass filter.
Additionally, there must be a spike-emitting mechanism that is triggered when the neuron’s state exceeds
some threshold value. The spike itself can then be transmitted to other neurons either as a digital event,
or as an analog value. For example, in the original vision of neuromorphic engineering [57], SNNs are
implemented in electronics using analog, subthreshold CMOS technology. This can be done through elec-
tronic circuits that mimic neural dynamics using standard circuit elements operated in the subthreshold
regime [56].

2.4.4. Time models: continuous vs discrete∗

Another choice to be made concerns the modeling of time in the RC setup. In ESNs, and machine learning in
general, time is usually modeled as discrete steps, with a natural number n ∈ N. In LSMs, computational neu-
roscience, and dynamical systems in general, time is commonly modeled as a continuum, with a real number
t ∈ R. Spiking neuron models use continuous time whereas rate-based artificial neurons are typically, though
not necessarily, expressed in discrete time. A dynamical system using discrete time is modeled as a difference
equation, or recurrence relation, of the form xn+1 = f (xn) whereas a dynamical system in continuous time is
modeled as a differential equation of the form ẋ = f (x) where ẋ represents the instantaneous change of the
state variable x(t).
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The representative example of a discrete-time reservoir is the ESN which is modeled as

x(n + 1) = f
(
Wx(n) +Winu(n + 1)

)
(7)

y(n) = g
(
Wout[x(n);u(n)]

)
(8)

where x ∈ R
Nx is the reservoir’s response, u ∈ R

Nu is the input signal, W ∈ R
Nx×Nx is the reservoir’s internal

weight matrix, Win ∈ R
Nx×Nu is the input weight matrix, Wout ∈ R

Ny×(Nx+Nu) is the output weight matrix,
f : RNx 	→ R

Nx is the nonlinear activation function inside the reservoir, g : RNy 	→ R
Ny is the activation func-

tion for the readout, and [x(n); u(n)] is the concatenation of the reservoir’s response and the input signal at
time n.

The representative example of a continuous-time reservoir is the LSM which models SNNs as

xM(t) = (LMu)(t) (9)

y(t) = fM(xM(t)) (10)

where xM(t) ∈ R
Nx is the liquid state (analogous to the reservoir’s response) at time t, u(t) ∈ R

Nu is the
input signal at time t, LM : (RR)Nx 	→ (RR)Nx is the liquid filter which transforms the input signal u(·) onto
the liquid state xM(t), y(t) ∈ R

Ny is the output at time t, and fM : RNx 	→ R
Ny is the memoryless readout

function. Note that the liquid filter maps the entire input function onto the liquid state and thus contains
memory.

How time is modeled generally depends on how the input/output interfaces with the reservoir and what
kind of task the reservoir computer aims to solve. If the task’s input and output are best modeled as signals
in continuous time, e.g. a raw ECG signal or neural spike events, the continuous-time description is most
natural. If, on the other hand, the input and output is best modeled as a discrete sequence of inputs, the
discrete-time description is most natural. An example would be a sequence of musical notes which is best
represented in discrete time because music is divided into discrete time quanta, also called tatum. Another
example is processed speech signal in the mel-frequency cepstral coefficient representation, which segments
the audio signal into discrete steps, commonly of length 20 ms.

Naturally, any continuous-time dynamical system can be discretized into a discrete-time system. If the
reservoir is modeled in continuous time, the theory of LSMs, dynamical systems, and signal processing pro-
vides guidance for implementation. If the reservoir is modeled in discrete time, the theory of ESNs and
machine learning provides guidance for implementation. In the following, we will describe a reservoir using
continuous-time formalisms and, wherever necessary, we will provide a separate treatment for discrete-time
and continuous-time models.

2.4.5. Mode of multiplexing: spatial vs temporal∗

A reservoir is a high-dimensional nonlinear dynamical system. We require that the reservoir’s state, i.e. its
response to an input signal, has many degrees of freedom, in order to ensure the separation property (see
section 2.4). As such, the reservoir is usually modeled by a high-dimensional state vector x(t) ∈ R

Nx where Nx

is the number of components in the state vector. Given an input signal u(t) ∈ R
Nu , we expect that Nx 
 Nu.

This is not strictly necessary, for example when the input is high-dimensional and the dimensions are highly
interdependent, but it is a useful heuristic in most cases.

When the reservoir is a neural network, we typically treat each neuron i as a single state variable xi(t) of
the reservoir’s state vector x(t). Therefore, to increase the dimensionality of the reservoir’s response, we can
simply increase the number of neurons in the reservoir, assuming that all neurons are connected. So far, we
have assumed that these neurons are spatially separated. In this scenario, we can see that each neuron’s response
is spatially multiplexed to yield the reservoir’s response. Each neuron provides a single degree of freedom to
the reservoir’s dynamics.

Beside spatial multiplexing, we can also use temporal multiplexing to create a high-dimensional reservoir.
This was first proposed for the implementation of a reservoir in photonics [58]. Instead of creating N spatially
separated neurons on a physical substrate, they multiplexed the response of the reservoir temporally, thereby
creating so-called virtual nodes which play an analogous role to neurons (see figure 6).

We will restrict the input and output to be one-dimensional signals. The input signal, which may be a
continuous-time signal u(t) ∈ R or a discrete-time signal u(n) ∈ R, is first processed with a sample-and-hold
operation which results in a pre-processed signal I(t) ∈ R which is constant during one delay of duration
τ ∈ R before it is updated to the next value. I(t) is essentially a discrete-time signal embedded in continuous
time. This input signal must be passed into the reservoir. In the standard RC setup, each input is weighted
through the random input weight matrix Win before being passed into the reservoir. In the time-multiplexed
setup, the pre-processed signal I(t) is passed through a random time mask M ∈ R

Nx (in our case this mask is a
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Figure 6. Strategies to improve the capacity of a reservoir. (a) RC in its standard formulation. The more degrees of freedom the
reservoir has, the higher its capacity to represent complex functions. (b) Feedback of the reservoir output to its input (directed
path) creating a temporally multiplexed or single-node reservoir. Note that the readout should access every virtual node (not
depicted in the figure).

vector because the input is one-dimensional), which transforms the constant value during each delay duration
τ into Nx different values, each held for a duration of θ = τ/N. This results in the signal J(t) = M × I(t) ∈
R

Nx , which is added to the delayed state of the reservoir x(t − τ) ∈ R
Nx to drive the nonlinear node of the

reservoir as
x(t) = f(x(t − τ) + γJ(t)) (11)

where γ ∈ R is an adjustable parameter, and f : RNx 	→ R
Nx is the nonlinear function. Finally, the output of

the reservoir y(t) ∈ R is given by a linear combination of the values of the N virtual nodes within a single delay
duration τ :

y(t) =
N∑

i=1

wout
i x

(
t − τ

N
(N − i)

)
(12)

where wout
i is the output weight for virtual neuron i. For a more detailed description of time-multiplexed RC,

see reference [58].

3. Recipe for physical reservoir computing

In the following, we go step by step through the process of implementing a PRC experiment with the material
system/device at hand. The general recipe for implementing a physical reservoir computer is as follows:

(a) Set up the physical reservoir, which is a material device or ensemble of such devices which respond to an
external stimulus. Such excitation, or input, can be of any nature, e.g. current, voltage, light, or pressure.
As such, the system of choice can be photonic, mechanical, electronic, chemical, etc. The response of the
system must be nonlinear with respect to the input, and high-dimensional, meaning that the reservoir’s
response to external stimuli must have many degrees of freedom. Note that, depending on its complexity,
a device can correspond either to a single element in the reservoir, i.e. a neuron, or to the reservoir as a
whole. A system with these properties is a reservoir. The system should offer some control parameters that
may be tuned to change the response of the reservoir. In this way, it can be set up in a way that shows the
echo-state property, as well as other measures relevant for the task at hand. The reservoir is often tuned
again together with the learning of the readout.

(b) Set up a method to inject external inputs into the reservoir. When injecting signals, the reservoir should
respond by changing its internal state.

(c) Set up a readout mechanism for the reservoir’s internal state. In the following, this mechanism will be
called readout layer or function. The readout should yield many channels that are not highly corre-
lated, so as to avoid redundancy. If the reservoir consists of many interconnected elements, then the
response of every element in the reservoir should be read out. During training, these reservoir states
need to be collected and stored, thus some mechanism for storing the states is required for the training
period.

(d) Train the readout mechanism, typically through linear regression as described in section 2.1. At this point,
the reservoir itself may also be tuned to increase performance of the overall system (cf section 3.5).

In the present section, we will describe each step of this recipe in detail and we will employ an example
system from our labs to illustrate this process. The data for this example PRC experiment are available to the
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Figure 7. (a) Photograph of the physical reservoir composed of conductive polymer fibers in an electrolytic solution. (b)
Example of data injection, (c) readout and (d) matrix multiplication taken from [12]. The full data set is publicly available at [69].

reader, allowing him/her to retrace every step of the implementation. Afterwards, section 3.5 will offer methods
for tuning the reservoir that go beyond the presented experimental setup. This can be used as reference, when
encountering physical systems that deviate from the described setup.

3.1. Setting up the reservoir
The first item on the list is the reservoir, the heart of the computational machine. In principle, any sys-
tem which can project the input signal nonlinearly into higher-dimensional space may be used as reservoir.
Nonlinearity is important because if the projection into the reservoir is linear, then the projection into high-
dimensional space will not enable the separation of signals that were inseparable in the lower-dimensional
input space, cf section 2.4. A simple system like a resistor, where the input signal is voltage and the output
signal is current, would be useless because of the linearity between the two. A transistor on the other hand,
represents a suitable system since the current flowing through the channel can be nonlinear with respect
to the drain-source or gate-source voltage, if operated in the right regime. Numerous physical nonlinear
effects have been exploited to produce reservoirs. From the nonlinear I–V curves of memristors [59, 60],
transistors [61], and laser cavities [62], or from spintronic effects [63–66], or the coupling of mechanical
waves [67].

To better illustrate the practical implementation of a RC experiment, throughout the following sections
an example taken from reference [12] is used for illustration. In this setup, a network made of conduc-
tive polymeric fibers (see figure 7) connects a set of input electrodes on the left, to a set of output elec-
trodes on the right. The resistance of each fiber, when immersed in an electrolytic solution, features a
complex, time-dependent and nonlinear dependence on the voltages of all the other fibers (more details
about the physics of this process in reference [68]). Most important for the function of this reservoir is
that the polymeric fibers (each acting as an organic electrochemical transistor) gate each other through
the electrolyte, which ultimately creates the recurrent and the ESP of the network. Therefore, the current
flowing through each fiber allows a nonlinear transformation of the input signals. Without the presence
of ions or even in a dry environment, each fiber would operate as a resistor and the reservoir function
is lost.

3.2. Input injection
For computation to occur, the system must be excited with input signals. For the example here, such exci-
tations can be mechanical (sound waves), optical (absorption of the polymeric fibers), chemical (injection
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of anions or cations), electronic (applying a voltage to the input), etc. In principle, they can be partly of
one type, and partly of another type. This is a strong point in favor of physical neural networks: their ana-
log and diverse interaction with the surrounding world can be exploited at once. Two examples may shine
light on this concept: photonic neural networks have the potential to solve low-latency computation opera-
tions within a digital hardware. As such, the inputs will be a number of electronic signals transformed into
optical signals, processed by the photonic reservoirs, and converted again in digital, electronic values. In
this framework, the system is ‘expected’ to interact merely with optical signals. A different scenario, which
is similar to our example system, can come from bioelectronic devices, where chemical signals could be
translated into electronic ones. This way, the reservoir is in direct communication with the environment,
opening up energy-efficient (analog) ways of sensing. Similarly, many changes in the environment (tem-
perature, pressure, pH, etc), usually undesirable in traditional computational systems, can be harnessed for
computation.

To demonstrate a recognition task with the polymeric fiber reservoir, we employ the so-called iris data set
[69], where each entry of the data set has five attributes (sepal length, sepal width, petal length, petal width,
species) and the PRC experiment is used to classify the species depending on the first four attributes. To carry
out this PRC experiment, input signals are injected into the input layer using a multichannel arbitrary func-
tion generator at 5000 samples per seconds for 3 s. To demonstrate a recognition task with a physical reservoir
using standardized data sets, preprocessing of the data is often needed in order to apply the signals to the
reservoir. For the example shown in figure 7, the data set entries are encoded into the frequency of the sinu-
soidal input signal (linear transformation). In principle, the information could also be encoded in the voltage
amplitude of the input signal, however, the values are spanning over a wide range which the reservoir cannot
tolerate (reducing the range would be possible but then the nonlinearity of the system would be reduced).
Overall, preprocessing of data is often needed and the ideal transformation needs to be found empirically for
a given physical reservoir. It is important to verify that the setup used to inject input signals (and to read-
out) does not introduce unwanted distorsions of the signals. This can happen if the time step chosen or the
signal frequency approach the limits of the setup itself. At the same time, a time step much smaller than the
frequency of the signals must be chosen to have smooth signals and to ensure the catching of small nonlinear
deformations.

Advanced data processing. When working with numerical data, it is important to pay attention to the
scaling of the data. All variables in the input should be at approximately the same scale. This ensures that
all input channels have the same ability to create reverberations in the reservoir. In contrast, if some input
channel always had very low values compared to others, it might fail to sufficiently stimulate the reservoir, and
information from this channel will be lost. The output scaling should also be consist but this is less important,
as long as the readout map can produce small values without zeroing out.

In contrast, categorical data requires some more processing. This is the case when the learning task is a
classification, e.g. distinguishing which of the ten digits was uttered in a speech signal. One may model the
output of such a digit classification system with a single number that represents the best guess of the spo-
ken digit. But this is not the best way to encode the output. Rather than outputting the digit, it is better
to output a probability distribution for the output by having one output signal per digit, each represent-
ing the probability for the signal belonging to this digit. If the readout map is a weight matrix, as in the
ESN formulation, this is analogous to training one readout per digit, each one predicting the probabil-
ity that the input signal is classified as this digit. Such an encoding of categorical data is called a one-hot
encoding.

3.3. Readout & output
Usually, depictions of networks for RC and ESNs shows an input layer and the output layer, with trainable
connections from the network to the output. In this paper, we differentiate to give a better picture of a hands-
on experiment: we first have a ‘readout’ layer i.e., the measured data, the harvested states. Then, from the
readout state one goes to the output layer with trainable connections.

The network/reservoir reacts to the input excitation evolving towards a new state. Such a state, in a well-
designed reservoir, is not merely the consequence of the just-injected signal, but it is also influenced by the
past, still reverberating in the network in the form of an echo, as explained above. The readout step consists in
harvesting the network states in a matrix S ∈ R

T×Nx where Nx is the number of output channels attached to
the reservoir, and T is the number of time steps for which the reservoir was run. If a readout of the complete
reservoir state is possible, then Nx = N where N is the degrees of freedom in the reservoir. As for the conduc-
tive fibers, as mentioned, the resistance of each connection changes depending on the applied voltages. The
current flowing is recorded at the readout layer: specifically, four readouts are carried out continuously using
a multichannel analog-to-digital converter at 5000 samples per second for 3 s. Note that the sampling rate and
the number of time steps should be the same for the readout and the input to allow easier data processing
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during the linear regression. As specified in the previous subsection, it is fundamental to ensure the quality
of the readout setup in those specific conditions to avoid the recording of nonlinear artifacts. Every nonlinear
contribution must come from the network. It is important that the information within the Nx channel is not
redundant, a problem that can quickly emerge in miniaturized systems. For example, in the electrochemical
networks used by Cucchi et al [12], there may be one input directly connected to two adjacent output channels,
effectively providing a short-circuit. As a result, those two channels can have the same readout, hence lowering
the effective dimensionality of the readout. Similarly, in photonic systems, two pixels very close may detect the
same signal. Such redundant information is not directly harmful, but it is inefficient and may be costly. It is
also worth noting that some readout channels may appear very similar in the time domain, however, essential
differences might be visible if observed in the frequency domain. In this particular example, one could avoid
similar readouts by exploiting the transistor nature of the device: inputs are used as gates, and different gate
voltages can be set to change the behavior of the outputs in a distinguishable way. Another way could be chang-
ing the geometry of a reservoir, apply the same inputs but having different distances between the gates and the
output layers. Again, such states can be harvested under different forms and physical units. If one wishes to
integrate the reservoir in a hierarchical multi-reservoir architecture, it is necessary for the input and output to
have the same physical unit, e.g., both voltages or both optical power. A similar argument applies when using
the time-multiplexed reservoir with delay lines (cf section 2.4.5). In order to exploit the kernel method (i.e.
the projection of the input signal onto a higher dimensional space), the number of outputs should be larger
than the number of inputs i.e. Nx > Nu (see figure 3). This condition is not fulfilled in the example in figure 7,
where the low complexity of the classification task (iris dataset) allowed for good results without increasing
the number of readout channels.

3.4. Training and evaluation
Train-validation split. Before starting the training procedure, the dataset is split into a training set and a
validation set. The training set is used to train the system, and the validation set to evaluate the trained system’s
performance. If the entire dataset is used for training, then there would be no way to evaluate the system’s
ability to generalize from the training data to new, unseen data. Instead, only the system’s performance on the
already seen training data would be evaluated, which would serve as a good measure for memorization, but
not for learning.

The standard split is to use 80% of the data for training and 20% of the data for validation. This splitting
should also be done mindfully. For example, if the dataset contains stock prices and the learning task is to
predict stock prices into the future, then the date range of the training data should precede the date range of
the validation data.

Training. The training proceeds in two phases. First, the input is injected and the reservoir states are
harvested. Then, the readout map is computed, usually using linear regression.

To harvest the reservoir states, the input signal from the training data utrain(t) (a subset of u(t), see above) is
injected into the reservoir, for a total of Ntrain time steps. Then, the reservoir states are read and saved at every
time step, yielding a time series xtrain(t) ∈ R

Nx , also of length Ntrain. Each component of this time series is a
nonlinear transformation of the input signal.

In order to compute the readout map, the harvested states are arranged into the state collection matrix
S = [xtrain(1), . . . ,xtrain(Ntrain)] ∈ R

Nx×Ntrain . The desired output states are collected from the training data
ytrain(n) into an output collection matrix D = [ytrain(1), . . . ,ytrain(Ntrain)] ∈ R

Ny×Ntrain .
In the following step, the optimal output weights are computed with linear regression. Linear regression

attempts to fit a linear function from the reservoir states to the desired output:

yj =
∑

i

wout
ij xi (13)

y = Woutx (14)

where, by convention, the last reservoir state is fixed to unity activation xNx = 1. This acts as a scalar in the
linear regression.

The linear regression is computed through a least squares approximation (mean square error, MSE), which
minimizes the sum of the squared error terms:

Wout = arg min
Wout′

N∑
i=1

(Wout′xi − yi)
2 (15)

The solution to this minimization problem is given by

Wout = (S†D)T (16)
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where S† is the pseudo-inverse of the state collection matrix, and T denotes the matrix transpose.
Instead, also regularization with ridge regression can be employed which minimizes the estimated risk with

an additive penalty term, i.e. Wout = arg minw

∑N
i=1(wxi − yi)2 + α2‖w‖2. This leads the learning algorithm

to prefer solutions for the output weights with smaller norms, which helps to prevent overfitting. The solution
of ridge regression is given by

Wout = (STS + α2I)−1STD (17)

where I is the identity matrix andα2 is the non-negative regularization coefficient. Note that STS is proportional
to the correlation matrix of the state collection matrix and STD is proportional to the cross-correlation matrix
of the states with the desired outputs.

The regularization coefficient α2 must be chosen manually. If α = 0, the ridge regression formula sim-
plifies to standard linear regression. A non-zero value for α2 warrants numerical stability. Because the
regularization parameter controls the model capacity of the linear regression, it controls how much the
readout function overfits (or underfits) the training data. This affects the generalization ability of the
readout.

For this reason, the regularization parameter is commonly found through a CV procedure (also called out-
of-sample testing) which optimizes the generalization ability of a learning algorithm. For details on CV, see
chapter 5 in reference [38].

Linear regression on hardware. As the linear regression is a mathematical problem that can be conve-
niently and efficiently solved on digital computers, the regression is usually not carried out in hardware in a
PRC experiment but rather in software. However, approaches to exploit Ohm’s law to solve matrix operations
have been successfully demonstrated (e.g. [70]) and may be useful in obtaining the full neural network on
hardware.

Evaluation. Once the output has been trained, the system’s performance can be evaluated. To do this,
the input signals from the validation data uval(n) are injected into the physical reservoir, and then read out the
corresponding output ŷval(n) from the physical system using the newly trained readout map. Then, this output
is compared to the desired output from the validation data yval(n). For regression tasks, a standard measure is
the above-mentioned MSE on the validation data.

For classification tasks, it is more common to report the accuracy, i.e. the ratio of classifications
that were done correctly. If the output is one-hot encoded (see above), then the output signal does
not directly give the chosen class, but instead only the estimated ‘probability’8 for each class. To con-
vert this into a classification, the maximum value is simply set to unity, and all other values to
zero (‘winner-takes-all’ approach). For example, if the output for a four-class classification problem is
[0.9, 0.7, 0.1, 0.4], then it is processes into [1, 0, 0, 0], which allows for an easy calculation of the classification
accuracy.

In our example (see figure 7), the mean squared error (MSE) has been used to minimize the loss function
between the desired output and the actual output. However, in some tasks it may be desirable to use different
loss functions. In classification tasks, when the output is a probability distribution over all classes that are
considered, one commonly uses the so-called cross-entropy loss [71].

3.5. Optimization
As outlined before, one of the advantages of RC lies in the ease with which a reservoir system can be trained,
by modifying only the readout map and keeping the main part of the physical system, the reservoir, fixed.
The readout maps is most commonly a weighted combination of the high-dimensional reservoir state and it
is trained using (regularized) linear regression.

Although it is possible to keep the reservoir fixed, it is often beneficial to tune the reservoir to make the
reservoir computer more effective. In a material system, the reservoir is usually not a black box that cannot be
modified in any way. Rather, one can grow the reservoir in different ways, or tune the reservoir’s dynamics in
different ways. These are additional degrees of freedom that can be exploited to improve the overall system’s
performance.

Allowing the reservoir to be optimized leads us to a nested optimization procedure, see figure 8, in which
the inner optimization loop is the readout training and the outer optimization loop is the reservoir tun-
ing. While training the readout map is usually called ‘learning’, the tuning of the reservoir can be called
‘meta-learning’ or ‘learning to learn’ [72] because it subsequently enables more effective learning of the
readout map.

In software simulations of reservoirs, the outer loop optimization can often be automated, but in physical
reservoirs the outer loop optimization usually modifies the physical reservoir and is therefore done manually.

8 The output values are not actually probabilities because they may not sum to unity.
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Figure 8. Nested optimization of a physical reservoir computer. In the inner loop only the readout map is trained, typically using
linear regression. In the outer loop, a suitable reservoir is chosen together with other parameters (e.g. the regularization
parameter α2), based on the performance of the reservoir with a trained readout map. Figure inspired from references [72, 73].

The only parameters that are optimized in the inner loop concern the readout map. In the outer loop of this
optimization, other parameters concerning the reservoir itself are optimized.

The previous section described the training procedure for the reservoir’s readout map which makes up the
core of the learning procedure in PRC, shown as the inner optimization loop in figure 8. The present section
will outline some common practices for tuning the reservoir itself. A single reservoir may be well-suited to
solve a wide variety of tasks. However, it will be observed that tuning the reservoir for some task (or set of
tasks, in a multi-task setting), can dramatically increase the system’s performance. A full understanding of the
computational expressiveness of a reservoir is still missing [74], therefore we will only outline some ‘tricks of
the trade’ that can be found across the literature of (physical) RC [1, 14, 75, 76].

We proceed by outlining some of the parameters that may be tuned in this outer optimization loop, inves-
tigating the effect of each parameter independently and giving some general advice for tuning each one. We
will then outline some of the more general trade-offs that must be made in designing a reservoir. For this, we
introduce some generic attributes that have been proposed to assess a reservoir’s performance, and borrow
some attributes from the machine learning literature. We point to section 2.4 for a more detailed treatment of
these generic attributes.

3.5.1. General setup
The reservoir is commonly tuned for a task-specific input while the output need not be specific to a sin-
gle task. In a multi-task setup, we want to optimize our reservoir for multiple functions, each of which is
approximated using the same reservoir but with different readout maps. In this case, we optimize the reservoir
jointly for the input of all such functions, and then train different readout maps for each task. For example,
the reservoir may be tuned on speech signal input and can then be used for speaker recognition, phoneme
classification or sentiment analysis. It may be noted that some sets of tasks are better suited for implementa-
tion in a single reservoir than others. In the above example, phoneme classification requires memory only on
short timescales of <1 s whereas language translation would require a longer memory timespan of multiple
seconds.

Generally, the tuning of the physical reservoir can be done either in the material directly, or in simulation.
Tuning the reservoir in simulation allows the use of automated optimization procedures in order to find a
well-suited reservoir for the task(s) at hand. However, in order to tune the reservoir in simulation, an accurate
model of the physical dynamics of this reservoir is required. This is not always easily obtained, therefore we
will focus on tuning the reservoir directly in the material.

If the tuning of the reservoir can be automated with a computer in the loop, one may use well-established
search procedures. In such an automated setting, one commonly defines the search space of all possi-
ble parameter settings, and then chooses some search procedure in order to find a good reservoir within
this search space. Such search procedures can be found in the literature on meta-learning [72], or neu-
ral architecture search [77]. Popular techniques that are easy to implement include grid search, random
search, evolutionary search, among many others. In grid search, the search space is divided into a grid and
one configuration in each cell of the grid is tested which ensures that the entire search space is explored.
In random search, the search space is explored randomly where each configuration is sampled indepen-
dently of previous runs. In evolutionary search, a population of configurations is explored and the best
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configurations are combined to explore similar configurations. Evolutionary search is an adaptive search
algorithm because it explores configurations that are similar to the best-performing configurations found
thus far.

If the tuning of the reservoir cannot be automated, it must be done manually in the material. The best
way to do this is to start with some initial configuration and change only one parameter at a time, to see
the effect of each change [1]. It is often helpful to take a look at the internal dynamics of reservoir states
to understand what is going on in the reservoir. For example, if different input signals always produce the
same constant output signal, it may be that the responses of the reservoir’s elements are saturating. The
cause may either be that the input is too large or that the reservoir dynamics are over-stimulated. By taking a
look into the response of the reservoirs’ elements for differently scaled input signals, the two cases are easily
distinguished.

3.5.2. What makes a good reservoir?
Evaluating a reservoir with the performance on some learning task is straightforward, but we may want to assess
a reservoir’s quality before having decided on a particular learning task. Several such task-agnostic evaluation
metrics have been proposed for RC, for example the memory capacity of a reservoir—both the linear memory
capacity [51] and the nonlinear information processing capacity [76].

First of all, we would like to ensure that the reservoir has the ESP so that its initial condition washes out and
it has a fading memory. This ensures that the reservoir is stable when it is driven by an input signal, and that
the reservoir will map the same input to the same outputs, regardless of the initial conditions. We can tune the
length of this fading memory through the memory capacity, or information processing capacity [51, 76, 78]
(see below). We also want to ensure that the reservoir has the separation property so that the high-dimensional
reservoir dynamics allow to differentiate different input signals. This is also referred to as the kernel quality.
The kernel quality describes how well the reservoir separates the input signals, i.e. whether sufficiently different
input signals become linearly separable in the reservoir’s state space. A linear reservoir does not provide better
separation of input signals. Reservoirs with higher nonlinearity or larger overall size have higher kernel quality.
As shown by Petrauskas et al [68] for an electrochemical reservoir similar to our example system (figure 7),
the nonlinearity of such a system can be quantified by the total harmonic distortion of the input signals and
its value can be tuned by the biasing conditions (operating the transistors e.g., in the linear or subthreshold
regime).

A general measure of the power of a machine learning model is its capacity (or complexity, or expressivity).
The higher a reservoir’s capacity, the larger the set of functions that it can approximate. In general, the model
capacity increases with the size and the amount of nonlinearity of a network, and also grows with larger
memory capacity.

Lastly, we may also want to evaluate our reservoir on its robustness to noise, or other measures.
Trade-offs and difficulties. As already outlined above, tuning a reservoir involves a number of trade-offs

such as between the memory capacity and kernel quality, which have opposing requirements on the nonlin-
earity of the reservoir. Furthermore, the capacity of a model tends to conflict with the model’s robustness to
noise.

Although the size of a reservoir generally improves its performance, this improvement does not always con-
tinue unboundedly. Instead, the reservoir may saturate in performance at some size. Many tricks and extensions
have been devised to further increase the performance of a reservoir: by using multiple reservoirs and aver-
aging their outputs, by using multiple reservoirs in some particular architecture, by using lesser-connected or
modular reservoirs, or by using heterogeneous units in the reservoir (see section 2.4).

Reservoir dimensionality. The first, and most obvious, adjustment of a physical reservoir is its size. In
a network-based reservoir, this is the number of neurons and in a delay-based reservoir it is the number of
virtual neurons. The size of a reservoir specifies how many degrees of freedom the reservoir’s response has.
The larger the reservoir, the higher its capacity (if the reservoir states are independent), as well as its memory
capacity and separation ability. Therefore the size is usually chosen to be as high as possible—at least as many
degrees of freedom as the number of independent real values that the reservoir must remember at any time
for the learning task [1]. Of course, there are other constraints on the size because a larger network is typically
more expensive, so a good trade-off needs to be found [79].

Fading memory. Some material systems feature intrinsic recurrence. These recurrent connections allow
responses to previous inputs to ‘reverberate’ in the reservoir. Once input signals are fed into the reservoir, the
signal keeps propagating within the networks even after the input excitation has been interrupted. If the signal
is internally amplified, the reservoir can remain active indefinitely. Without amplification, the signal is damped
and it will die off over time with a time-constant τ that depends on the system.
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Fading memory is given in every system that has at least two vastly different critical time constants, e.g.,

thermal and electronic conduction in thermistors, ionic and electronic conduction in organic electrochem-

ical transistors, etc. An example of a physical reservoir composes of organic electrochemical transistors is

shown in figure 7(a), where semiconducting polymer fibers (in an electrolytic environment) connect input

and output of the reservoir. In this regard, every physical system has a typical relaxation time constant i.e.,

the time needed for the system to evolve towards equilibrium, when the input is taken away. Therefore, the

response of a system to an external stimulus will strongly depend on the initial condition. If the system is

not at equilibrium because of a previously injected input from which it is still relaxing, the response will

be different. If this reverberation is long-lasting (much longer than the frequency f at which inputs are fed)

within the network, it is called an ‘echo’. In order to have powerful reservoirs long echos are desired and

the system must be operated at speeds faster than its relaxation time. i.e. τ 
 1
f . For example, a transistor

must be operated at frequencies faster than the charging time of its gate, in order to obtain a comparably

long echo.

Mode of multiplexing. From a practical standpoint, one uses a specific type of delay line based on the

combination of input–output used in the system. In a photonic system, the delay is quite easily realized

by employing an optical fiber that connects output and input layer. The length and material of the cable

can be adjusted to modulate the delay. An optical amplifier takes care of the losses. For a electronic-input

electronic-output reservoir, a delay line cannot consist solely of a conductive cable because it would allow

the signal to travel both ways. Rather, it can be made with a delay element, either digital or analog, and

an amplifier connected to the readout layer. The single-node RC architecture results in the superposition

of nonlinear transformations, which can in turn result in chaos. Computing in the chaotic regime is not

effective as, by definition of chaos, tiny differences in the input signals will be projected as two very differ-

ent data points on the readout layer. However, chaotic behavior proves sufficient complexity of the system

for RC as in this case, e.g. a sinusoidal input (δ-function in frequency space) would be transformed into

noise (containing an infinite number of frequency components), which can be seen as the ultimate nonlinear

transformation.

Memory capacity. Some tasks may require longer memory while others may require little to no memory at

all. Therefore, we ought to match the memory requirements of the task to the reservoir’s memory capacity. Or

reversely, we want to choose a suitable task given a physical reservoir’s (fixed) memory capacity. It is important

to note that a standard reservoir does not have any persistent memory, but it is possible to create attractor states

in the reservoir that correspond to persistent memory (see section 2.4 for a discussion). A reservoir’s memory

capacity generally increases with size. Dambre et al [76] have shown that the information processing capacity of

reservoirs with fading memory that have equal numbers of linearly independent internal variables are equal.

Although some such reservoirs may carry out more interesting computations than others, the ‘amount of

computation’, as defined by the information processing capacity, is equivalent. The memory capacity is also

connected to the stability regime of the reservoir.

Dynamical regime. It is important to note that a reservoir is an input-driven dynamical system and as

such, its stability depends not only on its dynamics in the absence of input but also on the input that drives the

reservoir, and its dynamics in this input-driven mode. A stable reservoir will quickly converge to zero without

an input, and it therefore has little memory. A ‘less stable’ reservoir will take longer to converge to zero when

the input is taken away, and therefore has longer memory. An unstable reservoir will not have the ESP, and

may not reach the zero state at all. This leads to longer memory, though such unstable reservoir dynamics are

not easily ‘tamed’.

For tasks that require long memory, it is often said that the reservoir should operate at the ‘edge of chaos’,

i.e. close to criticality, so that it has large memory capacity without becoming too unstable. It is often claimed

that a reservoir generally performs best at this ‘edge of chaos’. This is not generally correct—it depends on the

task. For some tasks, a reservoir far on the stable side performs better than one close to this edge [80]. One

way to tune the criticality of a physical reservoir is demonstrated in reference [68] where an electrochemical

reservoir with a delay line has been used to implement a single-node reservoir (cf figure 6(b)). In this case,

the amplification of the delay line can be employed to tune the criticality of the reservoir and ultimately reach

chaos.

Moreover, it is also possible for a reservoir on the other side of the ‘edge of chaos’ to perform well. A reservoir

that is chaotic in the absence of a driving input signal may perform better than a non-chaotic reservoir when

driven by a sufficiently strong input signal and/or by a feedback signal [81, 82]. These signals then suppress the

chaoticity of the reservoir dynamics and restore the ESP. The chaotic dynamics of a RNN can also be suppressed
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through recurrent plasticity [83] which the authors have used as a framework for robust neural computation
with dynamical attractors.

The dynamics of the internal reservoir may also be tuned in a physical system. Indeed, the stability regime of
an ESN is commonly tuned through the so-called spectral radius. The spectral radius ρW is the largest eigenvalue
of the internal weight matrix W, and therefore controls the stability of the autonomous reservoir (without
input). A spectral radius less than unity ensures that the system will converge to the zero state in the absence
of any input. If the spectral radius is larger than unity, then it is possible that the network will not converge to
the zero state. A reasonable starting value for the spectral radius is between 1.2 and 1.5, though this depends
on the desired stability regime as well as on the input signal. The spectral radius can be tuned rather easily by
simply scaling the weight matrix W: first divide the matrix by its current spectral radius, then multiply it by
the desired spectral radius.

Nonlinearity. In some physical reservoirs, it may be possible to change the kind of nonlinear activation
function that is used in the reservoir. In software simulations of ANNs, the tanh function is the most-used
nonlinear activation function. However, physical reservoirs typically have their own nonlinearity that may not
correspond perfectly to some analytical function like the hyperbolic tangent. In any case, it may be possible to
tune the amount of nonlinearity in a physical system.

As discussed before, the ‘amount’ of nonlinearity affects the memory capacity and kernel quality of the
reservoir. Generally, the linear memory capacity [51] decreases for increasingly nonlinear activation func-
tions. However, this does not directly imply that nonlinear reservoirs have bad memory capacity—information
is not lost through the nonlinearity, it is merely transformed in various nonlinear ways that cannot eas-
ily be read out again with a linear operation [76]. If the goal of the reservoir is to implement a nonlinear
function of the input signal, then this is even desirable and the linear memory capacity will not be a good
measure of performance. On the other hand, if the computational task for the reservoir requires storing
information about the input signal without nonlinearly transforming it, a linear reservoir will be better
suited.

In addition to simply tuning the activation function itself, it is also possible to tune the reservoir’s non-
linearity by adjusting the scaling of the input signal and the weights. Often, the nonlinear activation function
saturates and therefore becomes more nonlinear for higher values, while being almost linear for small val-
ues. Therefore, by driving the reservoir with larger input signals, or by increasing the connection weights, the
reservoir’s response will become more nonlinear.

It is also possible to work with a fully linear reservoir. While the kernel quality (and therefore separation
ability) of such a reservoir will be very low, it can be used for its high memory capacity. An example of this are
linear photonic reservoirs where the nonlinearity is implemented in the readout layer [84].

Input scaling. As already mentioned, the stability regime of the reservoir depends not only on the
reservoir’s internal dynamics but also on the input that drives the reservoir. Specifically, it is important to
match the input scaling to the reservoir’s internal dynamics. For example, while a reservoir with large spec-
tral radius may be unstable autonomously (i.e. without input), driving the reservoir with an input signal will
effectively stabilize the system dynamics because of the saturating nature of the hyperbolic tangent. It is usually
best to ensure the input to be bounded to some range, e.g. between 0 and 1 by preprocessing the input signal
with a hyperbolic tangent function. Naturally, the input scaling can also be adjusted by scaling the input weight
matrix.

Others. More opportunities for tuning the reservoir exist, for example the scaling of neuron biases (which
can also tune the nonlinearity of the reservoir, see above), the sparsity of the connection matrices (usually the
input matrix is full, the internal matrix is sparse, though the sparsity does not usually have a very large effect of
the performance [1]), or the distribution with which the weight matrices are initialized (usually a normal dis-
tribution with zero mean and unit variance is used, sometimes also a uniform distribution between−1 and 1).
When using a leaky reservoir, where the reservoir states are low-pass filtered, there exists another parameter
σ which controls the leaking at each time step, i.e. the neuron’s internal time constant. This allows for tuning
of the multiple time scales that are involved in the reservoir dynamics. When no prior knowledge about good
parameter ranges exists, it is best to set the values to those that can be found in the literature, or to optimize
them through a search procedure in order to find good values.

3.5.3. Tricks of the trade

We conclude by outlining some other common practices when working with (physical) reservoir systems.
Washout period. It is possible that the effects from (random) initial conditions of the reservoir affect the

initial time steps of the reservoir’s response, leading to a performance decline. To remedy this, one often dis-
cards initial time steps for a certain washout period Twashout. Whether or not this will be helpful can be tested
by passing the same input time series at two different initial conditions of the reservoir and comparing their
performance. If the performance difference is significant, a washout period may be helpful.
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Time averaging for classifications. In temporal classification tasks, the classification labels can be sparse
in that the label is not expected at every single timestep during the sequence. In some cases, the performance
of the reservoir can be improved by computing the time average of the activations for the classification.

Regression weighting. In some tasks, the errors at different timesteps are not all equally significant. In
the extreme case, only outputs at specific timesteps are significant and all others are ignored. In general, it
is possible, and often helpful, to weigh the error at some timesteps higher than at others. This can be done
directly in the linear regression, by simply using a multiplier for different time steps.

Online learning. In the standard RC setup, we train the readout function only once, and then use the
reservoir for inference with a ‘frozen’ readout function. However, for some tasks, it is required to train and
adapt the readout function continuously, or to learn online. This tends to decrease performance, compared to
a full retraining on all previously seen data, due to challenges connected to catastrophic forgetting. Therefore,
online learning should only be used when necessary and suitable.

3.5.4. Extensions
In addition to the three general flavors of physical reservoirs, the standard RC formulation has been extended
and modified in various ways to better exploit the physical systems at hand. Such extensions may be function-
ally motivated, in order to implement some particular computation, or they may be physically motivated, in
order to fit the constraints of the material.

While the readout function of the reservoir is most commonly a single fully-connected layer, or a matrix
multiplication, it is also possible to use more sophisticated readout functions, like support vector machines,
or Gaussian processes.

Although random connections are common in RC, they are not strictly necessary. It is possible that the
physical setup does not allow random all-to-all connections but rather constrains connections to nearest neigh-
bors only. This has been shown to work well [85]. Previous work has also used brain-inspired connectivity
for models of the neocortex [86]. In general, it is possible to have a reservoir with a specific, non-random
connectivity.

In the standard RC framework the reservoir itself is kept fixed, and only the readout map is trained—either
online or offline. But this is not strictly necessary. It may be beneficial to also optimize the reservoir
itself by tuning some of its parameters, as will be explained in section 3.5. Furthermore, it is some-
times difficult to keep the reservoir’s dynamics unchanged over time. RC has been applied to situations
in which the physical system underlying the reservoir may be evolving [87] or adapting to its environ-
ment or learning task [88]. Local learning rules have also been used to train the internal connections in the
reservoir [30, 31, 89].

In order to add some structure to a physical reservoir, and to increase its computational capacity, sev-
eral architecture have been proposed to combine multiple reservoirs together. One popular approach is
deep RC, in which several reservoirs are arranged in layers [33]. Another common line of research in
machine learning uses weak machine learning models (here: simple reservoir systems) in an ensemble to
create a stronger machine learning model [32], through bagging or boosting techniques (see chapter 8.2 in
reference [38]).

So far the reservoirs mentioned in this paper have always been driven by an input signal, but it is also
possible to use a reservoir as an autonomous dynamical system with no input. This can be done either by
removing the input signal entirely (effectively setting all input weights to zero), or in a closed-loop setting by
feeding back the reservoir’s output signal back as an input signal.

The closed-loop setting has been used to learn a dynamical systems and reconstruct the long-term dynamics
of its attractor [90]. This direction has received much attention recently, and the setting has been extended to
also learn parameterized dynamical systems through the use of control parameters that are passed as input
signals to the reservoir [91].

Autonomous reservoirs that do not receive any input are also used with conceptors [92]. Conceptors are
generic neuro-computational mechanisms that can be used in various ways, including for the autonomous
generation of patterns from a reservoir. This setup has been demonstrated for human motion pattern gen-
eration with a reservoir of 1000 artificial neurons [93]. Instead of using the input layer to feed the output
back into the reservoir, the input connections are removed completely. The reservoir is then loaded by mod-
ifying its internal connection weights. The conceptor matrix Ci is computed for each pattern pi that is to be
generated, and the reservoir is started autonomously with the conceptor matrix in the state update function.
Intuitively, the reservoir’s states are filtered through the conceptor matrix and thereby select and stabilize the
neural dynamics that correspond to the desired pattern.
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3.6. Summary
In the following, we provide a condensed summary of how to implement and train a physical reservoir com-
puter. We assume that a dataset of input signals and corresponding desired output signals is already given, and
stored on a digital computer which can be connected to the physical reservoir.

(a) Set up reservoir. First identify the suitable mode of multiplexing for the physical system (spatial or tem-
poral, see section 2.4.5). Then, identify all parameters that can be tuned in the physical reservoir, for
example:

1. the reservoir’s complexity, typically tuned by its size or number of interconnected elements,

2. the reservoir’s dynamical regime, typically tuned by the strength of internal dynamics within the
reservoir as well as the scaling of the input signal,

3. the nonlinear activation function that is used, typically tuned by the physical effect that is used to
implement this nonlinearity,

4. the timescale of the reservoir can sometimes be tuned (to a limited extent) and should be made to
match the timescale of the input and output signals, and

5. if the reservoir consists of interconnected elements, then the connectivity of these elements can also be
tuned which influences the dynamical regime of the reservoir.

The effect of these parameters on the reservoir’s final performance is explained in section 3.5.2.

(b) Prepare input and output signal. The input and output signals need to be pre-processed before they
are suitable for RC. First the data will be randomly split into a training set and a testing set, commonly
using 80% of the data as testing and the remaining data for testing. The training data is further split
into training and validation (see step (f)). The signals then need to be cleaned by the removal of miss-
ing values and outliers. One can define a data point at time t as an outlier if its Z-score is above a
certain cutoff value, e.g. Z = 3. The data is often normalized to (mostly) lie in the interval [−1,+1].
This can be done with the min-max scaling xi 	→ 2 · ui−min(u)

max(u) − 1 where min(u) (max(u)) is the min-

imum (maximum) value in the training data, or zero-mean unit-variance scaling ui 	→ ui−muu
σu

where
μu is the mean value of the training data and σu is the variance of the training data. The scaling of
the input may also be adjusted to affect the dynamical regime of the reservoir. If a signal is categor-
ical, rather than numerical, then it is often converted to its one-hot encoding. If the signal contains
one of k possible categorical values {vi}i∈[1,...,k], then each time step is encoded as a k-dimensional vec-
tor which is zero everywhere except at the index i which corresponds to the categorical value vi. If
the signal is fed into the reservoir by a digital computer, it will have to be discretized with some fre-
quency. The signal can be sub- or supersampled so that it best matches the timescale of the physical
reservoir.

(c) Analyze the reservoir (optional). Before the reservoir is actually trained on the learning task, it can be
instructive to analyze the reservoir upon feeding the input signal. Two kinds of analyses are particularly
helpful. Firstly, the length of the washout period can be assessed by feeding the same input signal into
the reservoir with different initial conditions. The two trajectories of reservoir states over time should
converge, and the time until convergence indicates a suitable duration of the washout period. Secondly,
the memory length of the reservoir can be assessed by training the reservoir’s output map on recall-
ing a delayed version of the input signal u(t − τ ). The performance of the reservoir on this task should
decrease when increasing the delay τ , and the speed of this decrease is indicative of the reservoir’s memory
length.

(d) Collect reservoir states. In order to train the reservoir, one first feeds in the training input signal and
collects the reservoir states for the entire duration of the input signal. If the training data contains multiple
input signals, they can be fed into the reservoir successively while keeping track of the time steps at which
each input signal ended (see washout period in the next step). The reservoir states are stored on a digital
computer and time must therefore be discretized with some fixed time step Δt which is typically chosen
to be equal to the time step in the input signal.

(e) Train readout map. The readout map from reservoir states to the output signal is typically found by
linear regression using the MSE loss, see section 3.4. However, other loss functions can be used. The cross-
entropy loss is a good choice for classification problems when the output of the reservoir is an estimate
of probabilities for each class. Furthermore, it is also possible to use more sophisticated functions as a
readout map, for example a FNN. This may be done if the reservoir itself is not powerful enough to separate
different input signals.

(f) Optimization and evaluation loop. Once the readout map is trained, the performance of the reservoir
system can be evaluated. We generally compute the performance on the training data as well as on the

24



Neuromorph. Comput. Eng. 2 (2022) 032002 Topical Review

testing (or validation) data. If the training performance is much better than the testing performance, the
reservoir may be overfitting on the training data and therefore not generalizing well to the testing data.
In this case, it is often useful to increase the regularization in the readout map, e.g., by increasing α in the
ridge regression. Generally, it is expected that the performance of the reservoir will not be ideal after the
first training procedure. Typically, the tuning parameters that were identified in step (a) (see above) must
be optimized to get a well-performing reservoir. In order to optimize these parameters, cross-validation
(CV, also called out-of-sample testing) is a powerful tool. In CV, one further divides the training data into
a training set and a validation set. The validation set now takes the role of the testing data, i.e., being used
to evaluate the performance on unseen data. In k-fold CV, the training data is divided into k ‘folds’ and the
training is done k times, each time using k − 1 folds for training and the remaining fold for validation. The
final performance is averaged over all folds. Evaluating all possible parameters is often intractable because
of the combinatorial explosion of possible configurations, especially if such tuning involves changing phys-
ical properties about the reservoir. Therefore one typically retreats to optimize parameters iteratively, one
by one. Such an optimization and evaluation loop is demonstrated in this paper’s accompanying GitHub
repository7.

4. Physical reservoirs and applications

A learning task can be either a classification or a regression, it can be temporal or static. It is in general quite
difficult to say what applications are well-suited to be tackled by any given physical reservoir. Even when
systems display chaotic behavior, a well-designed reservoir can easily handle them. In the past, researchers
have described the memory capacity of a reservoir to assess the timescales of its memory and decided which
learning tasks may be solved by this reservoir. In addition to the memory capacity, the kind of nonlinearity,
the size of the reservoir, and other attributes also indicate what tasks a reservoir is well-suited for. From an
application perspective, it may be desirable to use learning tasks that are relevant for a given domain. For
example, an optical reservoir may be useful for communication tasks like header recognition while a biochem-
ical reservoir may be more useful for the detection of ECG arrhythmia. For this reason, one could categorize
physical reservoirs based on the origin of the nonlinearity and type of signals that are injected/readout,
thus distinguishing between (opto)electronic, photonic, mechanical, chemical and physical LSMs
(cf e.g., figure 9).

4.1. Optoelectronic reservoirs
Since the early physical realization of reservoirs, researchers have taken advantage of nonlinear circuit ele-
ments or integrated systems as building blocks for efficient electronic reservoirs. For example, transistors have
been explored by Nako et al which realized a novel calculation scheme utilizing the nonlinearity and mem-
ory effect of ferroelectric MOSFETs [96]. Integrated solutions have been explored such as field-programmable
gate arrays (FPGAs), which can be exploited for computation thanks to their programmability and the ease
in reconfiguration of the reservoirs. Moreover, their compatibility with commonly employed silicon semicon-
ductor fabrication allows for implementation with conventional electronics. FPGA boards have been used
to perform time series prediction tasks [61, 97], and recently have been combined with optical elements
to boost their performances, taking advantage of the electro-optic nonlinear transformations and ease of
the delay logic implementation in FPGAs [98]. There is a increasing attention to electronic reservoirs based
on memristive devices, given their high degree of nonlinearity, which is based on the changes in resistance
with the history of the current flow [99]. A network of memristors can be used as a reservoir to map an
input signal into a higher dimensional space using nonlinear transformations. Kulkarni and Teuscher pro-
posed the first reservoir of this kind, which performed a wave pattern classification task and an associative
memory task on a genetic algorithm [59]. Later, several studies have more deeply demonstrated implemen-
tations of memristive reservoirs. Du et al revolutionized the concept of a network of dependent nonlinear
devices and proposed a reservoir made by a group of independent memristors [60]. A single input signal
was partitioned into the reservoir where each segment was independently transformed into an output signal
by the corresponding memristor. Using this approach, the reservoir produced good results in image recog-
nition and time series prediction tasks. Milano et al showed an interwoven net of nanow.res whose contact
points behavors [100] Pioneering work has been done on reconfigurable reservoirs by Zhang et al [101],
where they demonstrate adjustable neuron-like features in perovskite NdNiO3 devices with single-shot electric
pulses.

Usually, optimized electronic reservoirs are hardware-intensive neural networks, therefore in applica-
tions where minimal hardware are required, photonic reservoirs can be preferred over electronic reser-
voirs. Together with that, photonic reservoirs boast the advantages of very low power consumption and
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Figure 9. (a) Application of an OECT-based reservoir on biocompatible substrate. Reprinted from [12] with permission from the
AAAS. (b) Photonic reservoir integrated with FPGAs. Reprinted with permission from [94]. Credits for the picture go to Romain
Martinenghi. (c) Planetary rovers realized with mechanical reservoirs. Reprinted from [95] with permission from the Royal
Society of Chemistry. (d) Physically implemented LSM in a bucket. Reprinted from [67], with permission from Springer Nature.

extremely fast computation. The first architecture of a photonic reservoir computer was modeled as a chip-
integrated device with single-mode waveguides by Vandoorne et al [84]. The same authors later provided
the first physical realization of the model [102] to perform logical operations, header recognition, and
spoken digit classification. Another design strategy can make use of a platform in which the nodes are
nonlinear micro-ring resonators, as shown by Mesaritakis et al [103]. Vinckier et al reported a reservoir
made of a coherently-driven passive cavity able to perform speech recognition tasks, resulting in state-of-
the-art detection accuracy [104]. More recently, a system of multiple inputs and outputs was built using
photonic crystal cavities and it was shown to exhibit memory capacity up to six bits [105]. Approaches
featuring both photonic and electronic integrated boards have also been explored for cryptography appli-
cations [94]. A more exotic application was reported by Zhao et al, in which an optical system with two
feedback loops was used to perform simultaneous recognition of packet headers for two optical channels
[106]. Scalable optical approaches have been proposed lately to compute challenging operations at a very
high rate. Nakajima et al showed optimal time-series forecasting and image classifications with record-
high processing speed using coherent linear photonic processors, where the input signals and reservoir
weights are optically encoded in the spatiotemporal domain, enabling scalable integration on a compact
chip [107].

4.2. Electrochemical reservoirs
Chemical reservoirs can be exploited to produce autonomous computational systems that, although hav-
ing dynamics limited in speed by the reaction and diffusion rates, could be exploited for specific appli-
cations in liquid environments. Very recently, examples of chemical RCs that exploit redox reactions have
been proposed showing excellent performances and great potential for biosensing [108] as well as machine-
learning in vitro and in vivo. For examples, Kan et al exploited the nonlinear spatial and temporal dynam-
ics of an electrolytic solution containing polyoxometalate [109]. Such a compound can undergo multiple
oxidation and reduction states, producing Faraidic reactions with the metallic electrode upon the applica-
tion of a voltage. The authors showed that an electrolytic solution alone can be used a random network
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for periodic time-series predictions. The electrolyte usefulness in RC can be better leveraged, and bet-
ter interfaced to traditional electronics, if the ionic dynamics are converted into electronic signals using
OMIECs and OECTs. A first proof-of-concept was demonstrated by Pecquer et al [110], where a gate sig-
nal mediates the change in drain current in 16 channels. Key in this work is the demonstration that ionic-
to-electronic transduction using OECTs can be used for machine learning and that device-to-device vari-
ability, an ubiquitous factor in organic electronics, can be harnessed as a feature. Their work showed that
such a system can be used to distinguish different time-dependent signals, like square waves from triangu-
lar waves. This reservoir is still ‘consciously-designed’ and requires precise microfabrication of the transistor
channels.

Cucchi et al built upon this idea and produced reservoirs made of electropolymerized OECTs. The elec-
tropolymerization offers several advantages such as easy and cheap lithography-free fabrication as well as
dendritic topologies [111]. The latter emerges as an important feature when several fibers are operated
in global gate conditions. The voltage drops along a fiber between the two metal connections. However,
if a fiber branches out and terminates in the electrolyte, its potential will be constant as its resistance is
much lower than the one of the electrolyte. Therefore, the gating effect of such branch on a neighboring
fiber is stronger and builds up during the charging transient time. This grants rich nonlinear behaviors
[68]. Clever (although inherently random or semirandom) design of the networks allows for remarkable
results in machine learning tasks, such as flower recognition using the iris dataset. The networks worked
much better using time-varying signals, highlighting the usefulness of the ionic dynamics and the nonlin-
ear charging transient of the fibers. When a delay-line is added to the network, therefore implementing a
single-node RC architecture, complex tasks such as time-prediction and heartbeat recognition can be car-
ried out with excellent accuracy, 96% and 88%, respectively [12]. Another example is demonstrated by
Usami et al who covered a set of circular electrodes with a film of sulfonated polyaniline [112]. The film
is then immersed in an electrolytic solution. Such method can be advantageous as it does not require any
patterning and was shown to be successful for time-dependent classification such as spoken digits with an
accuracy of 70%.

4.3. Reservoirs outside the optoelectronic framework.
In order to easily achieve complex behaviors and nonlinear dynamics, mechanical systems can be outsourced
as physical reservoirs. Hauser et al proposed a body-spring reservoir model, where neighboring masses were
randomly connected via nonlinear springs [113]. The input signal is an external force that propagates through
the network, while the output signal is chosen to be a linear combination of the lengths of the springs. This
system finds its major applicability in generating patterns for robotic locomotion and the study of move-
ment in biological systems. This architecture later evolved in a tensegrity reservoir model by substituting
the springs with rigid bars. The control implementation in tensegrity reservoirs was then investigated and
implemented to create planetary rovers [95]. Most of the interest in reservoir computers based on mechan-
ical models has been shown towards soft robotics [41, 114], and in particular in generating different robot
motion and behaviors, as in the case of the pneumatically driven soft robot arm proposed by Eder et al [115],
and the dog-inspired quadruped robot developed by Wyffels et al [116]. Other efforts in establishing new
archetypes of computation have been made in the field of chemistry and fluid dynamics. Chemical networks
have been firstly investigated mainly to shine light on the secrets of the origins of life. Random chemical net-
works have been shown to produce self-replication properties [117] and oscillatory behaviors [118, 119]. One
of the first biochemical networks was assembled by exploiting a random distribution of peptides, which showed
self-organization for predicted network connectivity [120]. Randomness, which is a key feature for a compu-
tational system, has also been explored for chemical networks in the case of deoxyribozyme oscillators, shown
by Farfel and Stefanovic [121] and DNA strand displacement circuits, by Goudarzi et al [122] and Yahiro et al
[123]. As outlined in section 2.4.3, LSMs are considered as a computational model of SNNs with recurrent
connections in a reservoir. One of the first examples of LSM models has been demonstrated by Fernando and
Sojakka [67], where the authors used a bucket of water as an implementation of the LSM model. In this sce-
nario, the input layers were injected by motors in the bucket, and projections of the surface of the water were
used as liquid states to perform pattern recognition tasks. The full potential of LSMs is unlocked when this
approach is used to mimic the computation of biological neurons or regulatory genes, which are embedded
in a liquid environment. The strength of using equivalent models of spiking neurons (mimicking soma and
synaptic regions) is to carry out computationally demanding classification tasks in real-time. Maas et al first
demonstrated an LSM with sufficient depth and heterogeneity to serve as a fading memory [86]. Additionally,
Jones et al first demonstrated that genetics of Escherichia coli can be modeled assuming that time-dependent
inputs are external factors that produce transcription rates changes in genes, taken as the time-dependent
output signals [124]. Encouraging results have been obtained in the years regarding applications of LSMs
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in many disciplines, spanning from robotics [125], to music production [126]. Although the exciting per-
spectives advanced by the use of LSMs in the last years, geometrical and power constraints of the traditional
LSMs cannot easily deal with resource-intensive state-of-the-art algorithms. For this reason, other types of
computing have been generally preferred due to the lower demand for computational power and complex-
ity. As a solution for this, Soures and Kudithipudi showed a novel approach for performing high-demanding
spatio-temporal tasks: video activity recognition with their platform based on deep-LSMs outperformed state-
of-the-art algorithms in accuracy, consuming less memory storage and resources [127]. Last but not least,
nonlinear quantum effects, such as entanglement or coherence, can be harnessed for information processing
using the RC framework while easing the strict requirements and complex fabrication constraints of quan-
tum computing. The first formalization of quantum computing is relatively recent and goes back to 2017,
when Fujii and Nakajima showed that a few qubits have the computational power of RNNs of hundreds of
nodes [128]. Since then the field has been growing, also boosted by advances in hardware for quantum com-
puting. As a result, a number of interesting demonstration have been put forth leveraging spin dynamics
[129, 130], magnetic resonance [131], or superconductive systems [132]. It is important to note that many
quantum systems are linear. As such, they should not be suitable candidates for RC. However, as demonstrated
by Fujii and Nakajima, first-order linear systems feature second-order nonlinearities that can be harnessed
in RC networks [128].

5. Conclusions

Analog data processing using nonlinear material systems is a rapidly-growing field that is envisioned to
bring about novel computational substrates and paradigms where latency and power dissipation are mini-
mized. However, there is a considerable mismatch between the algorithmic implementation of AI on digital
machines and the physical realization of physical/hardware computing networks used in material science. Such
discrepancy limits the development of physical systems for AI, and it is exacerbated if particular machine
learning approaches are used. One of these, called RC, represents a promising route for hardware-based
RNNs. Despite its usefulness, the existing literature on RC for beginners in machine learning can be cum-
bersome. Therefore, we tried to bridge these two worlds and provide a guide on how to exploit a nonlinear
system, material, or device for information processing using the RC approach. With the aid of examples
and data, we highlighted the essential principles and requirements needed and outlined how to build an
experimental setup.
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