
Neuromorphic Computing and
Engineering

     

TOPICAL REVIEW • OPEN ACCESS

A review of non-cognitive applications for
neuromorphic computing
To cite this article: James B Aimone et al 2022 Neuromorph. Comput. Eng. 2 032003

 

View the article online for updates and enhancements.

You may also like
The impact of on-chip communication on
memory technologies for neuromorphic
systems
Saber Moradi and Rajit Manohar

-

CMOS-compatible neuromorphic devices
for neuromorphic perception and
computing: a review
Yixin Zhu, Huiwu Mao, Ying Zhu et al.

-

A system design perspective on
neuromorphic computer processors
Garrett S Rose, Mst Shamim Ara Shawkat,
Adam Z Foshie et al.

-

This content was downloaded from IP address 3.12.108.236 on 06/05/2024 at 18:17

https://doi.org/10.1088/2634-4386/ac889c
https://iopscience.iop.org/article/10.1088/1361-6463/aae641
https://iopscience.iop.org/article/10.1088/1361-6463/aae641
https://iopscience.iop.org/article/10.1088/1361-6463/aae641
https://iopscience.iop.org/article/10.1088/2631-7990/acef79
https://iopscience.iop.org/article/10.1088/2631-7990/acef79
https://iopscience.iop.org/article/10.1088/2631-7990/acef79
https://iopscience.iop.org/article/10.1088/2634-4386/ac24f5
https://iopscience.iop.org/article/10.1088/2634-4386/ac24f5


Neuromorph. Comput. Eng. 2 (2022) 032003 https://doi.org/10.1088/2634-4386/ac889c

OPEN ACCESS

RECEIVED

7 April 2022

REVISED

23 June 2022

ACCEPTED FOR PUBLICATION

10 August 2022

PUBLISHED

2 September 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

TOPICAL REVIEW

A review of non-cognitive applications
for neuromorphic computing

James B Aimone1 , Prasanna Date2, Gabriel A Fonseca-Guerra3 ,
Kathleen E Hamilton2, Kyle Henke4,5, Bill Kay6, Garrett T Kenyon4,
Shruti R Kulkarni2 , Susan M Mniszewski4 , Maryam Parsa7, Sumedh R Risbud3 ,
Catherine D Schuman8,∗ , William Severa1 and J Darby Smith1

1 Neural Exploration and Research Laboratory, Sandia National Laboratories, Albuquerque, NM, United States of America
2 Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
3 Intel Labs, Intel Corporation, Santa Clara, CA, United States of America
4 Los Alamos National Laboratory, Los Alamos, NM, United States of America
5 University of New Mexico, Albuquerque, NM, United States of America
6 Pacific Northwest National Laboratory, Richland, WA, United States of America
7 Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, United States of America
8 Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: cschuman@utk.edu

Keywords: graph algorithms, optimization, spiking neural networks, neuromorphic computing

Abstract
Though neuromorphic computers have typically targeted applications in machine learning and
neuroscience (‘cognitive’ applications), they have many computational characteristics that are
attractive for a wide variety of computational problems. In this work, we review the current
state-of-the-art for non-cognitive applications on neuromorphic computers, including simple
computational kernels for composition, graph algorithms, constrained optimization, and signal
processing. We discuss the advantages of using neuromorphic computers for these different
applications, as well as the challenges that still remain. The ultimate goal of this work is to bring
awareness to this class of problems for neuromorphic systems to the broader community,
particularly to encourage further work in this area and to make sure that these applications are
considered in the design of future neuromorphic systems.

1. Introduction

Neuromorphic computers are a non-von Neumann computing technology in which both the architecture and

the operation of the computer is inspired by biological brains. Rather than conventional computers, which

have processing and memory components, neuromorphic computers are composed of neurons and synapses,

both of which perform processing and store some form of data. In this work, we focus on spiking neuromorphic

computers, where the neural network type that is implemented in the hardware is a spiking neural network

(SNN). In SNNs, both the neurons and synapses include time in their operation. In particular, it takes time

for information to travel throughout these networks, and the timing of the arrival of events throughout the

network influences how the network performs computation. Programming a spiking neuromorphic computer

requires defining the appropriate SNN (structure and parameters), as well as how to communicate with the

network with spikes, to perform a particular task.

With the rise of the success of artificial intelligence, computing systems that natively implement neural

network-style computation such as neuromorphic computers have become increasingly attractive to academic,

industry, and government groups who are seeking to implement these operations faster or more efficiently

than can be realized in traditional computing systems. Additionally, the need to perform complex, large-scale

neuroscience simulations has also driven research into neuromorphic hardware implementations. As such,

much of the algorithmic and application work in neuromorphic computing over the last few decades has

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2634-4386/ac889c
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7361-253X
https://orcid.org/0000-0001-5403-4634
https://orcid.org/0000-0001-6894-9851
https://orcid.org/0000-0002-0077-0537
https://orcid.org/0000-0003-4777-1139
https://orcid.org/0000-0002-4264-8097
https://orcid.org/0000-0002-8740-220X
https://orcid.org/0000-0002-3646-0868
mailto:cschuman@utk.edu


Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

been centered around cognitive applications, either for machine learning or for computational neuroscience
purposes [1].

A growing area of interest, however, is the use of neuromorphic systems for a broader set of computational
tasks. In particular, there has been a recognition that there are a variety of characteristics of neuromorphic
computers that are attractive for a broader set of applications. Those characteristics include: inherent massively
parallel computation, native scalability, sparsity of activity, event-driven computation, stochastic operations,
collocated processing and memory, and very simple communication between components (usually in the
form of spikes). By leveraging these characteristics of neuromorphic systems, an array of different types of
computational tasks can be mapped onto these systems.

One significant catalyst in the growing attention towards non-cognitive applications of neuromorphic
hardware has been the arrival of large-scale spiking architectures, such as Intel Loihi [2, 3], IBM TrueNorth
[4, 5], SpiNNaker [6], and BrainScaleS [7]. These platforms not only provided the broader computing com-
munity with hardware suitable for algorithm exploration, but they also presented themselves as large-scale
parallel architectures that provide many thousands of generally programmable neurons. As we will show, many
algorithms can be represented as large graphs of neurons with spiking activity.

Another major catalyst in using neuromorphic systems for non-cognitive applications has been a focus on
benchmarking in neuromorphic systems [8]. As new hardware implementations have been developed, it is crit-
ical to have benchmark applications that can be used to evaluate how they perform. Non-cognitive applications
have been proposed as part of the benchmarking structure because they can evaluate different characteristics
of neuromorphic hardware platforms that traditional cognitive applications may not require.

Here, we provide a review of the current state of non-cognitive tasks on neuromorphic computers. For each
of these tasks, we provide a discussion of the importance of that particular computational task to the broader
field of computing, why neuromorphic computing has or will have an advantage over other types of compu-
tational systems on the task, and the challenges that remain to be addressed in mapping that task successfully
to neuromorphic systems. The goal of this work is to provide an understanding of the many different ways the
native computational power of neuromorphic systems can be leveraged across many tasks in computing. We
also hope to inspire others to consider mapping other non-cognitive applications to neuromorphic computers.

2. Graph algorithms

Many large-scale computing problems contain graphical elements or can be represented as connected net-
works. For example, analyzing and modeling connections in social networks is used to understand how
sentiment and information is disseminated throughout communities. Another example is power grids; under-
standing vulnerable structures is imperative in order to protect against catastrophic failures such as blackouts.
Neuromorphic architectures are readily modeled by (edge weighted) directed graphs, with vertices repre-
senting neurons, edges representing synapses, and edge weights representing synaptic delay. However, many
real world networks are large, containing thousands of vertices. They are not guaranteed to be sparse (in
that the number of connections may far exceed the number of vertices) and the connections may be time
dependent. Networks at scale, dense networks, and dynamic networks all serve as obstacles to neuromorphic
implementations of graph algorithms.

Neuromorphic platforms offer flexible, reprogrammable substrates that can be used for these kinds of anal-
ysis tasks. Neuromorphic computing uses spiking neurons and discrete pulses to execute algorithms. These
networks of spiking neurons can be generalized as directed graphs where vertices (spiking neurons) are con-
nected by weighted edges (synapses). In this section we discuss applications and algorithms designed to imple-
ment graph analysis via spiking neurons. These applications are set apart from the optimization applications
discussed in section 3. While optimization problems can be formulated as graphs, when discussing graphi-
cal analysis we are focused on computing metric and quantities related to graphical structure and dynamical
processes.

2.1. Neuromorphic co-processors for communication routing
One application of graph algorithms on neuromorphic systems is to provide co-processing units to future HPC
systems. While graph algorithms do provide some computational tools (such as neuromorphically simulating
walks in graphs to perform sparse matrix-vector multiplication [9]), it is unlikely that the ability of GPUs to
perform many linear algebraic operations quickly will be off-boarded to neuromorphic processors any time
soon. However, under the hood of high performance computing systems there are different network topologies
[10] connecting various compute nodes. Each time multiple compute nodes need to pass messages through
a network topology there is a bottleneck to parallelism. Optimal message passing protocols in the form of
graph routing algorithms can cut down the cost of communication [11]. A neuromorphic co-processor could
feasibly be used to compute the shortest path natively in parallel through a computer architecture based on

2



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

which nodes are actively being used, minimizing costly communication, or be used to offboard a number of
graph algorithmic/combinatorial tasking which occur in the background for high performance computers in
a low energy, massively parallel way.

2.2. Network dynamics and graph structure analysis
Neuromorphic platforms can emulate the spiking dynamics of neurons. This behavior can be adapted to ana-
lyze network dynamics and graph structure on simple and directed graphs, with weighted or unweighted edges
[3, 12–18]. Many graph algorithms have been adapted for neuromorphic platforms, utilizing standard neu-
ron models such as leaky-integrate and fire (LIF), and functionalities such as synaptic plasticity. With a small
number of parameters (e.g. firing threshold vth, refractory period tR, synaptic weights wij), spike patterns can
be generated, controlled and decoded in order to extract needed information about the underlying graphical
structure.

The types of graph algorithms and network dynamics simulations can be generally sorted into three appli-
cation groups: applications that characterize static graph properties (e.g. counting triangles, cycles, minimum
spanning trees), applications that are used to understand dynamical graph properties (e.g. modeling flows and
processes), and applications that are used to understand correlated structures on graphs (e.g. communities).
The generation of spike trains may be done by driving single neurons, or groups of neurons. When the external
stimulus is applied to a single neuron, the spike trains can be sorted according to a taxonomy that has been used
to characterize non-spiking network dynamics based on network flows [19, 20]: radial or directional spread
of spike patterns, and whether dynamics are allowed to revisit previously active neurons or synapses. The
radial spread of spikes from a driven neuron reaches neurons in a breadth-first search (BFS) manner making
neuromorphic architectures particularly useful in problems driven by greedy BFS search. When the external
stimulus is applied to multiple neurons, then the relevant spike dynamics can be characterized by correlations
and coherent behavior.

2.3. Graph algorithm implementations
Spiking neurons fire isotropically along all outward directed synapses but the synaptic weights will implement
radial or directional spread and can be implemented by setting the synaptic weights of all outgoing synapses.
If all synaptic connections are equally weighted, this creates radial spike pattern (flow), if certain synapses are
suppressed (or strengthened) then this creates a spike pattern along directional flows. The refractory period
of each neuron will determine if spikes can return to neurons which have previously fired. This can be useful
to create spike trains which only visit unique neurons (in graph parlance, the spike trains spread along non-
backtracking walks). Here, we describe some standard graph algorithms which have been implemented on
neuromorphic systems.

Given a graph, finding the shortest path between two nodes has many applications in natural language
processing, routing, and optimization. Shortest path algorithms have been simulated and deployed natively,
and efficiency has been observed both empirically (energy measurements and spike counts) as well as prov-
ably [3, 12–14]. Dynamic programming is a branch of computer science where problems are broken into
(overlapping) subproblems, and the subproblems are computed and chained together to find a solution to
the main problem. Such examples are finding the longest path in a directed, acyclic graph and finding the
longest monotonic subsequence. Dynamic programming has a broad spectrum of applications from optimiza-
tion and operations research. Neuromorphic use-cases for constrained maximization, constraint satisfaction,
number partitioning, and longest monotonic subsequence have seen neuromorphic implementations [21].
Given an edge weighted graph, finding a subgraph with no cycles which contains every vertex and has weights
as small as possible is known as finding a minimum spanning tree. Many industrial problems (distribution
of resources or utilities) can be framed as computing a minimum spanning tree where the edge weights are
often represented by physical distances. The Ford–Fulkerson/Edmonds–Karp algorithms implement a greedy,
BFS solution to the minimum spanning tree problem and have neuromorphic implementations [13]. Graph
coloring is a rich field with applications in scheduling and telecommunication. The questions of whether or
not a graph can be colored with two colors so that no adjacent pair receives the same color is closely connected
to the cycle structure of the graph. Algorithms that detect cycles, odd cycles, and three cycles all have neuro-
morphic implementations [15, 22]. Flow networks are directed graphs in which each edge has a capacity, and
some flow is assigned to each edge. The flow cannot exceed the capacity, and the flow into a node has to equal
the flow out. Liquid through a series of pipes is a classic example of a network flow where the size of the pipes
represents capacity and the quantity of liquid represents the flow. However, routing problems and communi-
cation among compute nodes are also readily modeled as a flow network. The standard algorithms for finding
optimal flows by using augmenting paths can be deployed neuromorphically [15]. Community detection and
graph clustering are ubiquitously used to identify similar nodes in large real world networks, and to partition
graphs into clusters of nodes that are all highly interconnected. The use cases range from data compression to

3



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Figure 1. Depiction of neuromorphic walks being used to perform matrix-vector multiplication. Figure adapted from [9].

HPC communication tasks, and neuromorphic systems which analyze common spike patterns amongst neu-
rons to identify communities based on the paradigm that neurons which are ‘wired together fire together’ have
been used [16, 17, 23]. Communities are one important substructure of a graph, but other structures such as
central or important vertices along with counts of specific subgraphs (triangles, notably) have neuromorphic
implementations [22], and are important in analysis of critical infrastructures and computational chemistry.
Neuromorphic (SEIR) models of disease spread have been used in conjunction with real life COVID data
[18]. Lastly, neuromorphic walks on graphs have been used as a tool to compute sparse binary matrix-vector
multiplication [9] (see figure 1).

2.4. Neuromorphic advantages and remaining challenges for graph algorithms
There has been some research to indicate that neuromorphic systems can offer a theoretical advantage over
conventional computers in certain cases. In particular, Aimone et al [14] showed that neuromorphic systems
provide a provable advantage over conventional algorithms on single-source shortest path problems. Davies
et al [3] demonstrated an experimental advantage over CPU implementations of Dijkstra’s algorithm on Loihi
for large graph sizes.

However, there are still some obstacles and challenges for implementing graph algorithms on real world
networks, which may contain millions of vertices. We identify two main challenges: embedding large networks
and graphs into neuromorphic processors, and reducing computational runtime. Both of these challenges
share a common challenge that they require low overhead for embedding graphs into SNN, driving the spike
dynamics, and recording and decoding spike trains.

Near-term neuromorphic platforms can contain millions of neurons [24], but due to the sparse synapse
network connectivity, implementing arbitrarily dense connections between neurons may not be possible. This
presents one obstacle for implementing graph algorithms at scale: analyzing graphs with sizes (number of
edges) that exceed the available number of synapses or analyzing graphs with orders (number of vertices) that
exceed the number of available neurons on the neuromorphic platform. To address the challenge of graph
sizes: one approach would be to use locally sparse implementation [17] or to use synaptic learning (STDP)
to learn sparser representations [23]. The challenge of large graph orders can be addressed using distributed
sub-routines on subgraphs, which are compiled into a single result using an approach similar to MapReduce
[25].

Another challenge is reducing the runtime associated with graph analysis. With the exception of clique
detection, the spike-based graph algorithms in [16–18, 22, 23] are implemented with single neuron driving:
external stimulus is applied to one neuron of the network in order to initiate spike trains, and these spike trains
may need to be generated for long times (e.g. until spike self-terminate). Serial execution of these routines (for
example to rank all vertices in a graph according to a given centrality measure) will be inefficient as graph
orders increase. The runtime can be reduced by running in parallel with multiple copies of the SNN. However,
can these dynamics generate unique spike signals without requiring multiple copies of a SNN—can we use
randomization to reduce embedding overhead?

Another obstacle is that analysis of neuromorphic algorithms is as-of-yet ill-defined. This is a particular
hurdle in the arena of graph algorithms where a runtime based on number of vertices and edges is the de facto
means by which algorithmic efficiency is compared [26]. Traditional algorithmic complexity is measured with
respect to how many steps a Turing machine (or machine with traditional von Neumann architecture) can
perform a task as a function of the input size [27]. For example, given the number of vertices and edges, how
many steps will a computer take to count the number of triangles in a graph? Standard complexity analysis
depends only on the size of the input problem and is agnostic to the size of the Turing machine/von Neumann
architecture, while the size of a neuromorphic architecture and the number of steps it takes to set up is intrin-
sically part of a neuromorphic graph algorithm. Some early attempts to formalize neuromorphic complexity
theory have been made [28, 29], but a comprehensive complexity analysis framework is still in the offing.

4



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Figure 2. (Performance and energy benchmark results reproduced from [3]. Results may vary.) Benchmark of Loihi 1 against
CPU for solving Latin squares of increased size up to 400 cells. (a) Top: problem encoding for a 9 × 9 Latin square. Every cell is
represented by a winner-takes-all population of neurons, each neuron corresponds to a possible value of the cell. All-different
constraints are encoded as inhibitory synapses among those populations according to the Latin squares uniqueness rules. Bottom:
illustration of how spiking dynamics prunes the neurons state space while the stochastic search proceeds. A single sequence of
events is shown for visualization purposes, in the solver multiple of these processes happen in parallel and compete to find the
lowest-energy state. Subfigures (b)–(d) show the energy, time, and energy-delay-product advantage of Loihi 1 over the CBC
solver on CPU. (d) Shows the break-down of time to solution into its components: steps to solution and time per time-step.

3. Constrained optimization

Constrained optimization problems are ubiquitous in real-world industry and academic settings, and despite
widespread adoption of deep learning algorithms, non-DL optimization remains at the core of applications as
diverse as warehouse logistics, molecular dynamics for drug discovery and robotic control.

Here, we present the state-of-the-art in integer and continuous neuromorphic optimization, expanding
on two fundamental derivations of SNN dynamics, one for solving constraint satisfaction problems (CSPs)
(neural sampling) and the other for solving a particular flavor of quadratic programming (spiking locally
competitive algorithm (LCA) via proximal operator). Principled derivations for solving other optimization
problems are desirable but still missing from the published literature. However, neural sampling and spiking
LCA offer a basis to believe convergence proofs are possible for a larger family of problems. Despite the value of
such formalisms, practical challenges usually follow when implementing and assessing the competitiveness of
the neuromorphic solution. We also describe neuromorphic implementations of optimal control theory and
Bayesian optimization (BO).

3.1. Optimization in integer domain—constraint satisfaction and QUBO problems
Neural approaches to integer optimization can be traced back as early as the 1980’s [30–32]. Here, we focus
on actual physical realizations of optimization solvers in event-driven neuromorphic hardware, the earliest of
which was, to our knowledge, the solution to a 4× 4 Sudoku in 2016 with an analog neuromorphic device [33].
Such implementations followed a theoretical framework for probabilistic sampling with networks of spiking
neurons [34], and a few hardware proposals for event-driven highly-parallel hardware architectures [35], both
of which were demonstrated to solve CSPs [34–36].

3.1.1. Constraint satisfaction
CSPs belong to the NP-complete class of computational complexity theory and are a crucial component of
many scientific fields and technological applications. The notorious difficulty of these problems often requires
approximation methods or heuristics as the best option for capturing ‘good’ solutions, because the existence
of exact efficient algorithms remains an open question.

All published neuromorphic implementations for solving CSPs use some source of stochasticity. Analog
hardware solvers, like those in DYNAP [37], BrainScales [38, 39] and other VLSI chips [33], harness the
inherent variability in neural dynamics from fabrication device mismatch and thermal noise affecting analog
circuits. Solvers in digital neuromorphic hardware like those in TrueNorth [40–43], SpiNNaker [44] and Loihi
[3, 37, 45, 46] use pseudo-random number generators (PRNGs). Despite the remarkable energy efficiency of
analog solvers, these struggle to scale up. Since 2016, the largest solved Sudoku remains of size 4 × 4 even when
using very large analog systems like BrainScales [47]. Other CSPs that have been solved in analog hardware are
the Tower of Hanoi task with three stacks and two discs, and the map coloring problem for the territories of
Austria (7 territories) and Germany (16 states) [39]. The first digital neuromorphic solver [44] already solved

5



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Table 1. Graph two-partitioning results.

Graph size(node count) TrueNorthenergy TrueNorthpart sizes D-Waveenergy D-Wavepart sizes

8 10 4/4 10 3/5

16 15 8/8 17 8/8
16 16 9/7
16 17 8/8

30 35 14/16 37 14/16
30 36 15/15

9 × 9 Sudokus, the world map coloring (193 countries) and 1000-spins systems with further scaling only lim-
ited by the unoptimized SpiNNaker compiler. Since then Davies et al. [3] demonstrated Loihi solving Latin
squares of up to 20 × 20 cells (see figure 2) and the same solver has been further scaled up to 32 × 32 Latin
squares (unpublished data) while retaining the gains in performance published in [3]. Besides scaling up, the
work in [3] demonstrated for the first time a competitive advantage of a neuromorphic solver over a classical
state-of-the-art algorithm running on a modern CPU (103–105 better energy-delay product (EDP)). All pre-
vious works did not benchmark against classical solvers and the reported times to solution were 2–4 orders of
magnitude worse than those on [3].

3.1.2. Neural sampling enables efficient state space exploration
Theoretical foundations provided by [36] demonstrated the noise and refractory periods in SNNs can be used
as a computation feature for solving difficult CSP problems by allowing the system to reliably sample the com-
plicated non-convex energy landscape by jumping into new random configuration and thus avoiding being
trapped in local minima. These findings showed exponential convergence to the underlying probability distri-
bution governing the energy landscape of CSPs and makes them drastically more effective at finding the global
minimum compared to Boltzmann machines which are sampling from the same complicated landscape.

3.1.3. Quadratic unconstrained binary optimization (QUBO)
Many NP-hard combinatorial optimization problems can be framed as quadratic unconstrained binary opti-
mization (QUBO) which can be solved classically or on specialized hardware such as the D-Wave quantum
annealer. The following QUBO objective function is minimized

O(Q,x) =
∑

i

Qiixi +
∑
i<j

Qijxixj. (1)

The Q matrix is symmetric with size n × n where Qii and Qij are the linear coefficients and quadratic coefficients
that encode the problem Hamiltonian matrix. The problem variables xi ∈ {0, 1} encode the result values. The
objective function can become a maximization problem by negating the Q matrix.

In [43], the QUBO formulation is mapped to the IBM TrueNorth neuromorphic hardware. The problem
variables are represented by three sets of neurons—working neurons with stochastic leak, spontaneous
stochastic neurons, and output neurons. Correspondingly, three sets of axons provide the inputs and weights
between neurons—the initial guess, reinforcement feedback from the working neurons, and the spontaneous
stochastic inputs. Driven by a simulated annealing (SA) metaheuristic, leakage or decay added to each neuron
and the integrate-and-fire dynamics are used to search the input sampling space till convergence. The firing
neurons provide feedback as input to neurons related by weights helping steer the search.

Spiking stochastic noise as a computational resource allowed for the exploration of the space of configu-
rations as shown in [36, 44] for solving CSPs. This noise is the mechanism for exploring the larger sampling
space (by adding or removing variables) which relies on the spontaneous stochastic leak neurons and stochas-
tic leak/decay. The probability of firing or leak represents the temperature element of SA. The temperature
initially starts out at a high value and is slowly reduced to a low value, based on an annealing schedule.

The same mathematical formulation developed for the D-Wave quantum annealing approach [48] is used
for the TrueNorth neuromorphic hardware [43]. Due to the spiking nature of the TrueNorth a negated version
of the QUBO matrix is used to solve for the highest energy solution (or maximization).

Graph partitioning is defined as splitting the vertices of a graph into k equal or near equal parts. The number
of cut edges between the parts is minimized. The graph two-partitioning example is demonstrated in [48]. The
QUBO includes penalty terms for creating balanced parts and minimizing the number of cut edges.

Results are shown in table 1, comparing partitioning of small graphs run on the TrueNorth and the D-wave,
with size 8, 16, and 30. Energies and part sizes produced by both architectures are comparable.

6



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Figure 3. Sparse coding of an input image x using a dictionary Φ of features φ j. The number of features in Φ is much bigger
than the dimensions of the input image. The sparse code is the linear combination of features with coefficients aj, most of which
are zeros (sparsity of vector a).

Future plans include implementation on other neuromorphic architectures, such as Intel Loihi. This QUBO
approach on neuromorphic hardware is not limited to graph algorithms, but opens the door to solving a
spectrum of NP-hard optimization problems.

New, unpublished work has made a similar comparison for solving QUBO problems with Loihi, classi-
cal and quantum annealing devices. Finding the lowest energy state of a QUBO is equivalent to settling into
the lowest energy state of a Hamiltonian which governs a system of particles in a quantum system, an impor-
tant scientific task. Preliminary results suggest SNNs can compete with current quantum annealing devices,
which are designed to explicitly solve these problems, in terms of solution quality, but do so with less energy
consumption and with the ability to scale up to larger problems than can fit on to existing quantum processors.

3.2. Optimization in continuous domain—sparse coding: neuromorphic solution of the LASSO
problem
3.2.1. Locally competitive algorithm
The problem of sparse coding is encountered in the context of compressed sensing inter alia [49, 50]. The
aim of sparse coding is to represent a dense input signal as a linear combination of a few features drawn from
a high dimensional dictionary of features (i.e., an over-complete dictionary, see figure 3). In other words,
sparse coding projects the input signal to a high dimensional space, such that very few coefficients in this high
dimensional representation are non-zero.

Suppose the dense input is represented by x, the over-complete dictionary is represented by Φ, and the
sparse coefficients are represented by a. In this notation, ‖x −Φ · a‖2 is the �2-norm of the reconstruction
error. Using the constraint that the reconstruction error should be zero, there are several ways in which sparse
coding is posed as an optimization problem. Enforcing sparsity in a by minimizing its number of non-zero
components translates to using the �0-norm to formulate the optimization problem [50]:

min ‖a‖0, such that‖x−Φ · a‖2 = 0.

It is known that the above optimization problem is NP-hard [51]. To make this problem tractable,
�1-norm is used to enforce sparsity in a:

min ‖a‖1, such that‖x−Φ · a‖2 = 0.

In the augmented Lagrangian form, the objective function for the above problem becomes the LASSO
objective [52]:

Ω(a) =
1

2
‖x−Φ · a‖2

2︸ ︷︷ ︸
f(a)

+ λ‖a‖1︸︷︷︸
g(a)

. (2)

Then the sparse code is a solution of the optimization problem:

a∗ = arg min
a

Ω(a).

Rozell et al [50] proposed LCA, the first neuromorphic algorithm to minimize the LASSO objective
(equation (2)) through temporal dynamics of a neural network:

7



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

u̇(t) =
1

τ

(
ΦTx− u(t) −

(
ΦTΦ− I

)
a(t)

)
, (3)

a(t) = T (u(t);λ).

In equation (3), vector u represents the state of neurons in the network (e.g., their membrane voltage), which
follows leaky integrator dynamics with a decay time-constant τ . The neurons are driven using a bias obtained
by linearly projecting the dense input to the feature space ΦTx. The neurons ‘fire’ with an activation a when
their states cross a threshold λ according to the soft thresholding function T (·). This activation is commu-
nicated between neurons through purely inhibitory weights given by

(
ΦTΦ− I

)
. At steady state, the neural

activity ass corresponds to the minimizer of the LASSO objective function in equation (2).

3.2.2. LCA and ISTA are the same
Conventionally, the LASSO problem is solved using homotopy methods like least angle regression [53] or
proximal gradient-based methods like iterative shrinkage thresholding algorithm (ISTA) [54], fast-ISTA/FISTA
[55], etc.

When minimizing LASSO objective (equation (2)), kth iteration of the ISTA is given by [54, 55],

a(k+1) = T
(
a(k) −∇f(a(k));λ

)
,

= T
(
ΦTx−

(
ΦTΦ− I

)
a(k);λ

)
. . . ∇f from equation (2).

If we define an auxiliary vector u(k+1) =
[
−ΦTx−

(
ΦTΦ− I

)
a(k)

]
, then we get,

u(k+1) − u(k) = −u(k) +ΦTx−
(
ΦTΦ− I

)
a(k), and (4)

a(k+1) = T
(
u(k+1);λ

)
.

The dynamics in equation (4) is just a time-discretized version of continuous dynamics in equation (3),
thus showing that neuromorphic LCA and ISTA are mathematically equivalent.

3.2.3. Spiking LCA
A spiking version of the locally competitive algorithm (spiking LCA) was derived by Tang et al [56]. In this
work, they showed that a network of LIF neurons with binary spiking activation can perform sparse coding
using LCA, such that the spiking rates of the LIF neurons are equivalent to the analog firing rates encoded by
the activation vector a in equation (3), in the long time limit. In particular, they showed that if spiking response
of pth LIF neuron in a network is modeled as a Dirac comb in time:

σp(t) =
∑

j

δ
(
t − tj

)
,

then the activation vector is

a(t) =
1

t − t0

∫ t

t0

dsσ(s).

Using the binary spiking formalism, the spiking LCA was implemented on Intel’s Loihi chip and it was
shown that the Loihi chip can generate a good approximate solution about an order of magnitude faster than
FISTA for small problems [2]. Extending this work further, spiking LCA has been thoroughly benchmarked
against FISTA for dimensionality of the sparse code spanning from a few hundred to ∼2 million in a recent
work by Davies et al [3] (see figure 4).

3.3. Optimal control theory
Another interesting set of optimization problems targeted with neuromorphic computing are ‘optimal con-
trol theory’. One approach is an iterative spiking adaptive dynamic programming (SADP) method to solve
optimal impulsive control problems [57]. In many dynamic systems such as mathematical biology, informa-
tion science, and engineering control, an impulsive behavior is observed where a sudden jump occurs at an
instant during the dynamic process. This sudden jump significantly influences the performance and stability
of the dynamic systems [58, 59]. In [58] a switching control strategy is used to analyze stability, and control-
lability of the system. In [59] a Hopfield neural network is used to define the global stability. For non-linear
systems, non-analytical and approximate solutions are required as the hybrid Bellman equation is generally
analytically unsolvable [60–62]. Adaptive dynamic programming (ADP) combines the advantages of dynamic
programming, reinforcement learning, and function approximation in order to solve optimal control problems
[63–65]. These traditional ADP approaches cannot solve impulse optimal control problems since they do not
consider the impulse interval and amplitude [57]. Modified ADP techniques are introduced in the literature

8



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Figure 4. (Performance and energy benchmark results reproduced from [3]. Results may vary.) Comparison between FISTA
algorithm running on CPU and spiking LCA running on Loihi: time-to-solution (top) and dynamic energy consumption
(bottom). The shaded regions correspond to different regimes of problem sizes: region I corresponds to small LASSO problems
(16 × 16 pixel input image, and dictionaries consisting of 32 to 1024 elements), regions II and III correspond to medium LASSO
problems (24 × 24 and 76 × 76 pixel inputs, respectively, and dictionaries of 50–180 elements), region IV corresponds to large
LASSO problems (input sizes between 130 × 130 and 300 × 300 pixels with dictionaries containing 120–250 elements). The
problem sizes analyzed in region IV span multiple Loihi chips and are too large to benchmark on a CPU (up to 2 million
unknowns).

to address this issue [66, 67]. An alternative approach for discrete-time nonlinear systems is to take inspira-
tion from biology and solve the optimal impulse control with spike train (SADP) [57]. This SADP method
is developed based on combining Poisson process and the maximum likelihood estimation and computing
the three-tuple of state, spiking interval, and probability of Poisson distribution. The two-step SADP iterative
process is summarized below.

Step 1. Compute the three-tuples (xk, τk, pτk
). For given input, data is traversed to a single channel of spike

trains with a fixed time interval of T. Interspike interval τ k, and the firing rate λk is then calculated. The average
firing rate is λ̄ = 1

n

∑n
k=1λk, and the probability pτk

in [kT, (k + 1)T is pτk
= ((λ̄T)τk/τk!) exp(−(λ̄T))

Step 2. SADP algorithm based on Poisson process. For an initial state x0, computation precision ε, and an
arbitrary positive semi-definite function Ψ(x), we obtain the three-tuple given in step 1, and compute iterative
spiking control law ν i(xk) as

νi(xk) = arg min
νk+τk

⎧⎨
⎩Uτk

(xk, νk+τk
) +

∑
j∈Ωx

p(j|xk, τk)Vi(j)

⎫⎬
⎭ (5)

Finally the iterative spiking value function Vi+1(xk) can be computed as

Vi+1(xk) = min
νk+τk

⎧⎨
⎩Uτk

(xk, νk+τk
) +

∑
j∈Ωx

p(j|xk, τk)Vi(j)

⎫⎬
⎭ (6)

If |Vi+1(xk) − Vi(xk) � ε, ∀ xk ∈ Ωx, then the optimal spiking control law is obtained, otherwise the itera-
tive process will be continued [57].

3.4. Bayesian optimization
BO has been used to optimize performance of neuromorphic systems in terms of accuracy, energy efficiency,
area efficiency, and latency [68, 69]. BO is well-suited for optimization problems where the objective function
is unknown and/or expensive to evaluate. Equation (7) shows a problem of finding a global optimizer for an
unknown objective function

x∗ = arg max
x∈X

f(x). (7)

9



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

In equation (7), X is the entire design space, and f is the black-box objective function without simple closed
form. As summarized by [70, 71], the best location xn+1 to observe yn+1 point is iteratively searched over X
(the entire design space) in order to estimate f . After N iterations, the algorithm suggests the best estimation
of the black-box function f . This sequential optimization is based on building a prior estimation over possible
performance metrics, f (such as accuracy, latency, . . . ), and then iteratively re-estimating the prior model using
the observations from updating the Bayesian posterior model. The posterior representations are the updated
belief on the objective function(s) f we are optimizing. The design space, X, is explored and exploited by lever-
aging the inherent uncertainty of the posterior model and mathematically calculating a surrogate model, called
the acquisition function αn. The maximum point of the acquisition function αn is the next candidate point to
observe (xn+1) and guides the search direction toward the true representation of the objective function f . The
efficiency of the BO to estimate the global optimizer for the f with fewer evaluations lies on the ability of the
Bayesian technique to learn from prior and posterior distributions on the problem and direct the observations
by trading off exploration and exploitation of the design space X.

Instead of using BO to optimize neuromorphic systems, a new and unpublished work is aiming at using
neuromorphic processors like Loihi to solve a BO problem. In this work, an event-driven acquisition function
αn is estimated iteratively enabling us to run BO on a neuromorphic processor efficiently with fewer evaluations
of unknown objective function f .

3.5. Neuromorphic advantages and remaining challenges for constraint satisfaction
When compared with conventional computing architectures solving constrained optimization, the neuromor-
phic approach has shown orders-of-magnitude gains in EDP required to find a solution [3]. For example,
Loihi neuromorphic platform has shown 103–106 EDP improvements over state-of-the-art conventional algo-
rithms [3] in both convex (e.g., quadratic programming) as well as combinatorial (e.g., integer program-
ming) problems. In the case of the latter (i.e., combinatorial problems), the EDP gains can be attributed
to NP-complete/NP-hard complexity of the problems, which constrains the scalability and improvement in
performance of von Neumann computing architectures. In the case of convex optimization problems like
quadratic programming, conventional algorithms sometimes face parallelization bottlenecks, which are mit-
igated in the neuromorphic approach by the built-in fine-grained parallelism. In both cases, chips like Loihi
have shown lower energy consumption compared to a CPU or GPU, when it is possible to run the same (or
equivalent) algorithm on these architectures. The two main components for this advantage are the matching
graph structure between problem encoding and the compute architecture and the temporal sparsity of the
event-driven spike-based computation implementing the search algorithms (most of the power consumption
in neuromorphic computers is due to spikes transfer across the communication interconnect).

The most relevant challenges to make neuromorphic optimization solvers broadly applicable in industry
and academic settings are:

• Accuracy of solvers in continuous domain (e.g., quadratic programming solvers) is limited by the low-
precision fixed-point architecture of digital neuromorphic hardware.

• Generalization of the current neuromorphic approach to solve combinatorial problems requires a rigor-
ous theoretical foundation, such that hyper-parameter tuning can be performed in a principled manner
for robustness of the solutions.

• Solving mixed integer problems presents algorithmic and theoretical challenges, especially when rigorous
convergence proofs are desirable.

Therefore, in the context of constrained optimization problems, neuromorphic computing has the poten-
tial to carve out a niche and solve problems that require low latency, low power while being tolerant to low
precision. For example, a control algorithm for a low-power robot interacting with the real-world through
discrete actuators might be a better fit for a neuromorphic substrate, whereas a conventional CPU could be
the ideal platform for a linear programming problem, where high precision representation is critical.

4. Random walks and partial differential equations solving

Stochastic spiking behavior is observed in biological neural systems, and neuromorphic computing hardware
often has corresponding stochastic components. As examples, SpiNNaker allows for user-defined random
draws; Intel Loihi and IBM TrueNorth both have PRNGs distributed throughout their chip layouts. The abun-
dance of PRNGs allow for stochastic neuron updates, usually either within the membrane potential or in the
integration of new spikes.

The massively parallel computation afforded by spiking neuromorphic systems combined with the avail-
ability of PRNGs has motivated research into neuromorphic random walk algorithms [72, 73]. Random walks,
in this context, can be thought of as a time-series process where a point/walker moves among nodes on a

10



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

grid or graph, changing locations between discrete time steps with the probability of the next location of the
point/walker depending only on the current location. This is also known as a discrete-time Markov chain.
These neuromorphic random walk algorithms implement a random walk process by configuring neurons’
stochastic behavior to reflect the intended distribution of transition between states.

Random walks can approximate a wide variety of stochastic processes, including those used in model-
ing neuronal activity [74], molecular motor protein motion [75], mathematical epidemiology [76], finance
[77, 78], and Boltzmann transport [79]. Additionally, these random walks are useful in other Markov chain
algorithms, including algorithms in industrial systems engineering [80] and recent work in modeling the
spread of COVID-19 [81]. Regardless of the specific application, random walk algorithms on traditional pro-
cessors are most commonly used to estimate integrals. However, challenging branching conditions in some
domains (e.g. Boltzmann transport) lead to difficulties in parallelization. These challenges may be effectively
overcome by implementing a massively parallel random walk on a neuromorphic platform.

4.1. Density-based random walks
For a random walk on a graph, a density-based random walk neuromorphic algorithm represents a graph
node (rather than a walker) with a sub-circuit of neurons. With this method, walkers are represented by cer-
tain neurons’ potential, and walkers transition from node to node by updating the corresponding potential.
Functionally, the graph nodes represent various states or locations for a walker to assume. Spikes are treated as
walkers and transition among the various nodes by means of a mutually exclusive probability draw [72]. This
approach highlights the benefits of bespoke neuromorphic approaches as it exemplifies an algorithm that is
uncharacteristic for traditional processors but efficient for neuromorphic processors.

4.2. Markov chains and PIDE solutions
Consider the initial value problem

∂

∂t
u(t, x) =

1

2
a2(t, x)

∂2

∂x2
u(t, x) + b(t, x)

∂

∂x
u(t, x)

+ λ(t, x)

∫ (
u
(
t, x + h

(
t, x, q

))
− u(t, x)

)
φQ

(
q; t, x

)
dq + c(t, x)u(t, x) + f(t, x),

u(0, x) = g(x).

(8)

With some mild conditions on the functions a, b, h,φQ,λ, c, f , and g, if a solution to the initial value problem
exists, then the solution may be written as

u(t, x) = E

[
exp

(∫ t

0
c(s, X(s))ds

)
g(X(t))

∣∣∣∣X(0) = x

]

+ E

[∫ t

0
f(s, X(s)) exp

(∫ s

0
c(�, X(�))d�

)
ds

∣∣∣∣X(0) = x

]
,

(9)

where
dX(t) = b(t, X(t))dt + a(t, X(t))dW(t) + h

(
t, X(t), q

)
dP(t;Q, X(t), t). (10)

Equation (10) is a stochastic differential equation describing the position of X over time. The process X has a
drift term given by b and a diffusion term given by a. The process W(t) is a mean-zero random process with vari-
ance t, called a Wiener process. X also may experience a non-local diffusion. This yields a diffusion increment
according to h and occurs according to a Poisson process P with rateλ (that is,E

[
dP(t;Q, X(t), t)|X(0) = x

]
=

λ(t, x)dt). The jump-amplitude mark random variable for the Poisson process is Q and its probability density
function (pdf) is given by φQ. Equation (9) is a probabilistic representation of the solution to the initial value
problem, written as an expectation of this stochastic process X. The top line of the equation states that parti-
cles must start at the location x and contribute to the overall solution whenever they enter the support of the
function g and that contribution is weighted according to some function c. If c < 0, then the exponential term
could be interpreted as the survival probability of a particle reaching the support of g by time t. The second
line allows the particles to contribute at a rate of f for the amount of time they remain in the support of f ,
again weighted by some function of c. These results are derived from such tools as Dynkin’s formula and the
Feynman–Kac formula. They can be extended to higher dimensional PDEs and boundary value problems, see
[78, 82, 83].

A Markov chain approximating the process (10) can be created by first discretizing the equation using
an appropriate scheme, such as Euler–Maruyama. This provides a pdf over a series of time bins. Then, the
discrete states of the chain can be chosen by discretizing space. A transition matrix can be created by integrating
the pdfs over these space bins (see [84]). In general, (10) translates nicely to such an interpretation. There is

11



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Figure 5. A possible way to determine the spectral components in the incoming analog signal with neuromorphic computing.
Here, the light green colored circles represent the output neurons, and each correspond to different frequencies. The spike rate
can be thought of as a representation of the power spectral density of each component in the signal.

some deterministic movement, given by the drift b. This is altered by some diffusion b. Finally, there is some
probability aligning with a Poisson process P that an additional non-local jump h is added.

These Markov chains are well suited for the neuromorphic random walk implementation. As previously
described, each spike is treated as a random walker, and the mutually exclusive probability draw is designed
to reflect the transition matrix of the Markov chain. Samples drawn on neuromorphic can then be averaged
according to (9) to obtain a solution to the PDE (8). Applications solved in this manner using neuromorphic
samples include steady-state and time-dependent equations, and Boltzmann transport problems [85, 86].

4.3. Neuromorphic advantages and remaining challenges for random walks
Neuromorphic technologies are still new and it is reasonable to ask whether or not the stochastic process
sampling accomplished by the graph embedded DTMC provides statistically reasonable data. In [84], it is
shown that Loihi approximates a solution to a heat equation on a sphere as if it were sampling the underlying
Markov chain with seven-bit limited transition probabilities. This suggests that in addition to approximation
and application specific error accrued when constructing a DTMC from a stochastic process, there may be
additional hardware and algorithmic specific error introduced.

Addressing whether or not the samples gathered from the density algorithm deployed on Loihi are sta-
tistically accurate [85], develops a methodology for comparing samples to the expected distribution by using
measures of relative entropy as a hypothesis test. Using a common stochastic process as a test case, they find
that even with the approximations needed in the algorithm and the hardware limited transition probabilities,
that the samples generated sufficiently approximate the expected distribution.

5. Signal processing

Signal processing techniques are widely used in various sensory and signal acquisition devices and play an
important role in several application domains such as audio, video and/or image, biomedical signal analysis,
etc. These techniques rely on domain knowledge and are essential in extracting the relevant features from the
input that would be used in the decision making process either via a machine learning based inference engine
or to train a system to make the correct predictions. Signal processing computations, especially those involving
spectral feature extractions are typically carried out on a dedicated digital signal processor (DSP), FPGAs, or
a traditional CPU. Several neuromorphic solutions involving audio or image processing use a pre-processed
input from acquired sensory signals and employ SNNs to generate the relevant output through neuromorphic
machine learning algorithms.

5.1. Current neuromorphic approaches for signal processing
Several groups have proposed the idea of carrying out signal filtering based on its spectral information, a
key aspect in most digital signal processing algorithms, using binary spikes. Various filters such as low pass,
high pass and band-pass filters have been constructed and demonstrated in SNNs using spike rate encoding
schemes [87–91]. Grzesiack and Meganck, have developed a mathematical formulation for carrying out spike
signal processing and employ it in control systems and linear dynamical systems [89]. Some of the core signal
processing algorithms such as Fourier transforms, have been demonstrated with SNN, and have been employed
as a pre-processing step in object detection applications [92]. Orchard et al, have demonstrated performing
equivalent of short time Fourier transforms, with resonate and fire (RF) neuron models, where different output
neurons become active for different frequency components in the input signal [93]. Figure 5 shows a possible
way to identify different spectral components in the incoming analog signal with spikes.

12



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

5.2. Signal processing application domains and opportunities
Different application domains have demonstrated spike based signal processing approaches. In the biomedical
field, detection of different frequency components is an essential step in diagnosing various disorders. Sharif-
shazileh et al, designed an SNN on a low power neuromorphic hardware DYNAP-SE to detect high frequency
oscillations in the brain to identify epileptic seizures [94]. Few works have also explored spike signal processing
from the point of view of novel materials’ research, e.g., Ganguly et al, have explored the use of a stochastic
analog neuron based on spintronic materials in signal processing tasks such as channel equalization [95]. Neu-
romorphic approaches are also increasingly being used in assisted and autonomous driving applications to
pre-process signals acquired from RADAR and LiDAR sensors [92, 96–98]. A great opportunity exists to take
inspiration from the signal processing mechanisms in biology such as echolocation to design neuromorphic
systems that are highly performant and accurate. Shalumov et al, have employed different bio-inspired models
of spiking neurons [98]. Vogginger et al, have successfully employed RF neurons with temporal coding to carry
out the Fourier transform of the radar signal to discern the location and speed of the target object [96]. SNNs
have also been applied in processing the LiDAR data in real-time for object detection and collision avoidance
in autonomous driving applications [97, 98]. Wang et al, achieved superior performance with SNNs for object
detection task compared to deep learning models on the KITTI dataset (laser scanned real-world images taken
while driving), transformed to an equivalent version of LiDAR sensor data [97, 99].

5.3. Neuromorphic advantages and remaining challenges for signal processing
The field of signal processing is often tied with the underlying hardware and sensory circuits, right from sam-
pling the analog signal to encoding and computing the relevant features for a particular application. Such edge
scenarios have low power budget and memory availability, and neuromorphic computing with its sparse event-
driven computation and energy efficient hardware shows a promising way to design signal processing systems.
Several research groups have also developed efficient sensory signal acquisition hardware systems mimicking
the human cochlea, visual, tactile, and olfactory mechanisms as detailed in this review [100–102].

One of the key applications where neuromorphic signal processing can show benefits is in audio processing
at the edge. There have been several demonstrations ranging from keyword spotting on Loihi and SpiNNaker
platforms, on pre-processed audio signals using mel frequency cepstral coefficients [103, 104]. Some demon-
strations have made use of the output from neuromorphic auditory sensor to carry out speech recognition
with SNNs [87]. With an exponentially increasing number of smart devices being commercialised, designing
an end-to-end neuromorphic audio processing system presents with unique opportunities. For example, using
digital hardware for different stages of processing, employing hardware platforms which use the underlying
physics of the materials (e.g. memristive technology-based platforms [95]), etc, are some of the key research
areas in the field of neuromorphic computing. With the use of neuromorphic computing to realize some of
these commonly used signal processing techniques there would be a significant reduction in the data com-
munication costs between pre-processing on a DSP hardware and cognitive processing on a neuromorphic
hardware. Hence, there is a great opportunity to explore neuromorphic computing for signal processing both
from the perspective of building energy-efficient edge hardware and discovering novel computing motifs for
processing temporal data with SNNs.

6. Composite algorithms through utility and numerical kernels

Functional programming and more recently computational graph methods have shown strong benefits for
compositional approaches. In many ways mirroring traditional computing, there exists a new body of work
investigating the composition of neuromorphic-compatible algorithms. However there are a wide range of
approaches used in the neuromorphic field and linking any two arbitrary algorithms may be difficult. Many of
the existing approaches have adopted specific conventions designed to be interoperable, but identifying more
generally supported composite techniques is still an open question. Current demonstrations focus on simple
logic operations (e.g., AND, OR, NOT) and numerical operations (e.g., maximum), which are critical to allow
for composition of output to perform more complex algorithm operations. Though the extension to more
sophisticated algorithms is certainly possible.

Unlike some other of the areas discussed, composite algorithms are not motivated by a single factor. Though
common motivations include:

• Smaller, basic operations are easier to define, build and interpret.

• A composition of algorithms may avoid costly off-chip communication.

• Composable algorithms help contribute to a community of capability.

13



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

6.1. Binary operations, arithmetic, and encoding for composition
Plank et al [105] has demonstrated a variety of hand-constructed networks to perform binary operations such
as AND, OR, and NOT using a variety of encoding schemes, including direct, population coding, rate coding,
and temporal coding, as well as a variety of decoding schemes, including voting, rate coding, and temporal
decoding. They constructed small networks that would perform conversions from one encoding scheme to
another. With simple kernels such as these, multiple different networks performing a variety of tasks can be
composed together onto a single neuromorphic chip, without relying on external, non-neuromorphic sys-
tems to perform conversions or compositions of outputs. Aimone et al [106] showed how to perform binary
arithmetic using spiking neuromorphic implementations. The operations that they demonstrated included
streaming adders, inversion, inequality, minimum and maximum, and subtraction, and scalar multiplication.
Moreover, several of these operations were demonstrated on both Loihi and TrueNorth.

6.2. Numerical kernels
Lagorce and Benosman demonstrated that by leveraging precising spike timing, synaptic diversity, and tem-
poral delay in neuromorphic systems, a complete computation framework could be realized [107]. They
specifically realized values through the times between subsequent spikes, and they demonstrated networks
that could realize different numerical calculations, including minimum, maximum, subtraction, linear com-
bination, logarithm, exponential, multiplication, and integration. They demonstrated that using compositions
of these approaches, they could implement linear and non-linear differential equations.

6.3. Neuromorphic advantages and remaining challenges for utility and numerical kernels
Traditional processors are very performant at these types of operations, and it is unlikely that a neuromor-
phic implementation would improve like-for-like. However, these operations may become critical in avoiding
expensive off-chip communication. That is, if a neuromorphic process can perform these operations on
chip, then less communication overhead is required to send results off of the neuromorphic chip for these
calculations.

These small circuits tend to be easy to build, but it is difficult to know which functions will be useful and
efficient. Modifications may be required for neuromorphic hardware deployment. Moreover, there remain
challenges in deciding the correct level of granularity. Lastly, these circuits tend to be highly dependent on how
values are represented. For example, the same function will require different implementations if using spike
interval times versus binary representations.

7. Software and tools for numerical neuromorphic algorithms

Despite the growing theoretical evidence that neuromorphic computing can be used for non-cognitive appli-
cations, the mere existence of algorithms and hardware is not enough for such applications to proliferate in
the community. A significant barrier is the availability of user-friendly programming paradigms and software
to unlock the potential of neuromorphic computing for non-cognitive applications. Neural machine learning
methods, such as deep learning, have been able to develop a broad user-base in large part due to the availabil-
ity of a high quality software ecosystem to develop and deploy solutions. While these tools have continued to
evolve (Caffe, Theano, Tensorflow, Keras, PyTorch, etc.), their presence has allowed a separation of algorithm
development from hardware-specific optimizations.

While we can envision that these deep learning software tools can eventually compile onto neuromor-
phic hardware (see for example [108, 109]), most likely other tools will be required to develop the algorithms
described here. What would constitute an effective framework for such applications remains an open research
question on which the developers of a neuromorphic software framework like Lava are actively working (see
below) [110].

The Fugu [111] is a software framework proposed to enable the progamming of complex numerical spiking
neural algorithms. Fugu treats spiking algorithms as composable graphs of neurons. The graph algorithms
outlined in section 2 and the mesh-based algorithms from section 4 benefit greatly from such graph-based
circuit construction.

While Fugu generates intricate circuits from the bottom-up, other tools are likely more effective for circuits
which are not as precisely defined, such as using populations of spiking neurons to provide statistical inference.
These approaches to spiking neural algorithms are likely more naturally a fit to programming models originally
developed for computational neuroscience. For instance, the PyNN programming model which is the entry-
point to BrainScaleS and SpiNNaker originated as a tool for modeling biological neural circuits and can be
readily used to define algorithms comprised of populations of spiking neurons. Similarly, tools such as Brian
and GeNN offer similar population programmability.

14



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Figure 6. (Performance and energy benchmark results reproduced from [3]. Results may vary.) A comparison of variety of
algorithms running on Loihi 1 vs classical state-of-the-art algorithms running on von Neumann architectures. These results
demonstrate that neuromorphic graph and optimization algorithms based on recurrent SNNs offer the greatest energy-delay
advantage, while several feed-forward DL applications perform equally or worse in Loihi 1. Modified from [3].

Another notable example is the neuromorphic simulator ‘Nengo’, which provides a software ecosystem
that allows for the development of neural network solutions (both neuromorphic and conventional) inspired
by the cognitive models in the brain, using Python [112]. At the core of Nengo is the neural engineering frame-
work, which maps computational models needed for integrators, oscillators, etc. onto neuronal motifs [113].
Nengo ecosystem provides a convenient graphical front-end to a suite of different applications and supports
various hardware platforms ranging from neuromorphic hardware (TrueNorth, Loihi, SpiNNaker) to GPUs
[109, 114, 115]. There have been a few non-cognitive applications demonstrated with the use of Nengo, such
as sparse distributed memory based on associative memory models [116], and bio-plausible solutions to the
problem of semantic associations of ontology and inference [117].

Finally, Lava is a community-developed software framework launched by Intel Corporation in 2021 to
address several of the limitations of current neuromorphic programming models [118]. Lava is inspired by
the formal programming paradigm of communicating sequential processes, which considers computing primi-
tives called processes that communicate with event-based message passing via interconnecting channels. Such
a paradigm is compatible with the event-driven and finely-granular, parallel architectures of spiking neuro-
morphic hardware, while satisfying the locality constraint of their computing units (i.e., neurons). In Lava,
the processes are fully generic and decoupled from their behavioural models [110]. A process is defined by its
internal state variables as well as input and output ports allowing it to connect with other processes. In addi-
tion, the processes can be hierarchical, composed of other interconnected processes contained within them.
A behavioural model for a process dictates how its internal states (or sub-processes within) are updated as
function of time, how it consumes the asynchronous inputs received on the ports, and what messages, if any,
are generated and communicated through its output ports. The decoupling of the behavioural model from the
definition of the process enables Lava’s processes to be executable on several hardware platforms, through a sep-
arate behavioural model written for each platform. This addresses one of the most important issues of software
development for neuromorphic hardware, because it enables all components of the system to be programmed
from a single coherent framework. Any algorithm defined through the time-dependent dynamics of nodes
and communication between them via message passing, can be supported by Lava. Due to features like python
interface, modular design, reusable behavioural models for processes, etc. we expect Lava’s user experience to
enable faster learning and diverse levels of programming across multiple platforms (CPUs, GPUs, neuromor-
phic chips). Although the framework is not confined to a particular hardware architecture or platform, the
communicating sequential processes paradigm makes it inherently better suited for neuromorphic platforms.
Intel’s Loihi chips (Loihi 1 and Loihi 2) comprise the first of such neuromorphic platforms to be supported with
Lava. As an open-source framework, the developers of non-cognitive applications for neuromorphic hardware
will shape Lava in the future to meet their needs.

In the context of non-cognitive applications, the lava-optimization library is especially noteworthy. It is
being developed as a suite of optimization solvers (linear and quadratic programming, constraint satisfaction,
QUBO, etc), which can be used in a variety of applications.

15



Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

8. Discussion and conclusion

Here, we have provided an overview of the current state of the art with respect to non-cognitive applications
of neuromorphic systems. It is clear from these works that in many cases, there are clear advantages to using a
neuromorphic system for certain tasks. For example, neuromorphic systems have been shown to outperform
CPU implementations on tasks such as Dijkstra’s algorithm and optimization (see figure 6). However, it is
also clear that there are still a wide array of challenges in realizing these types of applications on neuromorphic
systems.

It is important to note that spiking neuromorphic computers are often compared against neural hardware
systems (i.e., those that realize traditional artificial neural network computation), particularly for cognitive
applications. In this work, however, we demonstrate that there are a wide array of potential applications for
spiking neuromorphic systems beyond just cognitive applications. Therefore, in a future compute landscape,
particularly where a neuromorphic or neural processor may be included in a future heterogeneous compute
system, this work demonstrates that neuromorphic implementations can potentially have utility across a wide
array of applications.

It is also worth noting that for many of these applications, there are likely custom or application-specific
hardware implementations that can outperform neuromorphic systems on these tasks. That is to say, neu-
romorphic systems are likely not the most performant of all possible computer architectures for these tasks.
However, it is clear that in a compute environment where a diversity of applications are required, neuromor-
phic systems can take on a variety of roles, from cognitive applications to the many applications that have been
described here.

One of the goals of this work is to inspire others to consider non-cognitive applications when they consider
how neuromorphic systems will be used in the future. In particular, the design of future neuromorphic systems,
from hardware to software, should take into account that neuromorphic systems are not likely to be used in a
singular, cognitive way. Instead, we should allow these new types of applications to inform the design of our
future neuromorphic systems alongside cognitive applications.

Acknowledgments

This material is based upon work supported in part by the US Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Robinson Pino, program manager, under Contract Number
DE-AC05-00OR22725. This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Robinson Pino, program manager, under
Award Number DE-SC0022566. This material is based upon work supported in part by the US Department
of Energy Advanced Simulation and Computing program. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under Contract DE-NA0003525. Los Alamos National Laboratory is operated by Triad
National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy
(Contract No. 89233218NCA000001). This paper describes objective technical results and analysis. Any sub-
jective views or opinions that might be expressed in the paper do not necessarily represent the view of the
U.S. Department of Energy or the United States Government. This manuscript has been partially authored
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This
report was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommen-
dation, or favoring by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

16

http://energy.gov/downloads/doe-public-access-plan


Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

James B Aimone https://orcid.org/0000-0002-7361-253X
Gabriel A Fonseca-Guerra https://orcid.org/0000-0001-5403-4634
Shruti R Kulkarni https://orcid.org/0000-0001-6894-9851
Susan M Mniszewski https://orcid.org/0000-0002-0077-0537
Sumedh R Risbud https://orcid.org/0000-0003-4777-1139
Catherine D Schuman https://orcid.org/0000-0002-4264-8097
William Severa https://orcid.org/0000-0002-8740-220X
J Darby Smith https://orcid.org/0000-0002-3646-0868

References

[1] Schuman C D, Potok T E, Patton R M, Birdwell J D, Dean M E, Rose G S and Plank J S 2017 A survey of neuromorphic
computing and neural networks in hardware (arXiv:1705.06963)

[2] Davies M et al 2018 Loihi: a neuromorphic manycore processor with on-chip learning IEEE Micro 38 82–99
[3] Davies M, Wild A, Orchard G, Sandamirskaya Y, Guerra G A F, Joshi P, Plank P and Risbud S R 2021 Advancing neuromorphic

computing with Loihi: a survey of results and outlook Proc. IEEE 109 911–34
[4] Merolla P, Arthur J, Filipp A, Imam N, Manohar R and Modha D S 2011 A digital neurosynaptic core using embedded crossbar

memory with 45 pJ per spike in 45 nm Proc. 2011 IEEE Custom Integrated Circuits Conf. (CICC)
[5] DeBole M V et al 2019 TrueNorth: accelerating from zero to 64 million neurons in 10 years Computer 52 20–9
[6] Sugiarto I, Liu G, Davidson S, Plana L A and Furber S B 2016 High performance computing on SpiNNaker neuromorphic

platform: a case study for energy efficient image processing 2016 IEEE 35th Int. Performance Computing and Communications
Conf. (IPCCC) pp 1–8

[7] Grübl A, Billaudelle S, Cramer B, Karasenko V and Schemmel J 2020 Verification and design methods for the BrainScaleS
neuromorphic hardware system J. Signal Process. Syst. 92 1277–92

[8] Davies M 2019 Benchmarks for progress in neuromorphic computing Nat. Mach. Intell. 1 386–8
[9] Schuman C D, Kay B, Date P, Kannan R, Sao P and Potok T E 2021 Sparse binary matrix-vector multiplication on neuromorphic

computers 2021 IEEE Int. Parallel and Distributed Processing Symp. Workshops (IPDPSW) (IEEE) pp 308–11
[10] Meador B 2008 A Survey of Computer Network Topology and Analysis Examples Washington University
[11] Gropp W, Gropp W D, Lusk E, Skjellum A and Lusk A D F E E 1999 Using MPI: Portable Parallel Programming with the

Message-Passing Interface vol 1 (Cambridge, MA: MIT Press)
[12] Schuman C D, Hamilton K, Mintz T, Adnan M M, Ku B W, Lim S-K and Rose G S 2019 Shortest path and neighborhood

subgraph extraction on a spiking memristive neuromorphic implementation Proc. 7th Annual Neuro-Inspired Computational
Elements Workshop pp 1–6

[13] Kay B, Date P and Schuman C 2020 Neuromorphic graph algorithms: extracting longest shortest paths and minimum spanning
trees Proc. Neuro-Inspired Computational Elements Workshop pp 1–6

[14] Aimone J B, Ho Y, Parekh O, Phillips C A, Pinar A, Severa W and Wang Y 2020 Provable neuromorphic advantages for
computing shortest paths Proc. 32nd ACM Symp. Parallelism in Algorithms and Architectures pp 497–9

[15] Kay B, Schuman C, O’Connor J, Date P and Potok T 2021 Neuromorphic graph algorithms: cycle detection, odd cycle detection,
and max flow 2021 Int. Conf. Neuromorphic Systems pp 1–7

[16] Hamilton K E, Imam N and Humble T S 2017 Community detection with spiking neural networks for neuromorphic hardware
Proc. Neuromorphic Computing Symp. pp 1–8

[17] Hamilton K E, Imam N and Humble T S 2018 Sparse hardware embedding of spiking neuron systems for community detection
ACM J. Emerg. Technol. Comput. Syst. 14 1–13

[18] Hamilton K, Date P, Kay B and Schuman C D 2020 Modeling epidemic spread with spike-based models 2020 Int. Conf.
Neuromorphic Systems pp 1–5

[19] Borgatti S P 2005 Centrality and network flow Soc. Netw. 27 55–71
[20] Borgatti S P and Everett M G 2006 A graph-theoretic perspective on centrality Soc. Netw. 28 466–84
[21] Aimone J B, Parekh O, Phillips C A, Pinar A, Severa W and Xu H 2019 Dynamic programming with spiking neural computing

Proc. Int. Conf. Neuromorphic Systems pp 1–9
[22] Hamilton K, Mintz T, Date P and Schuman C D 2020 Spike-based graph centrality measures 2020 Int. Conf. Neuromorphic

Systems pp 1–8
[23] Hamilton K E and Schuman C D 2018 Towards adaptive spiking label propagation Proc. Int. Conf. Neuromorphic Systems pp 1–8
[24] Merolla P A et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science

345 668–73
[25] Dean J and Ghemawat S 2008 MapReduce: simplified data processing on large clusters Commun. ACM 51 107–13
[26] Even S 2011 Graph Algorithms (Cambridge: Cambridge University Press)
[27] Arora S and Barak B 2009 Computational Complexity: A Modern Approach (Cambridge: Cambridge University Press)
[28] Date P, Kay B, Schuman C, Patton R and Potok T 2021 Computational complexity of neuromorphic algorithms 2021 Int. Conf.

Neuromorphic Systems pp 1–7
[29] Date P, Schuman C, Kay B and Potok T 2021 Neuromorphic computing is turing-complete (arXiv:2104.13983)
[30] Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl Acad. Sci.

USA 79 2554–8

17

https://orcid.org/0000-0002-7361-253X
https://orcid.org/0000-0002-7361-253X
https://orcid.org/0000-0001-5403-4634
https://orcid.org/0000-0001-5403-4634
https://orcid.org/0000-0001-6894-9851
https://orcid.org/0000-0001-6894-9851
https://orcid.org/0000-0002-0077-0537
https://orcid.org/0000-0002-0077-0537
https://orcid.org/0000-0003-4777-1139
https://orcid.org/0000-0003-4777-1139
https://orcid.org/0000-0002-4264-8097
https://orcid.org/0000-0002-4264-8097
https://orcid.org/0000-0002-8740-220X
https://orcid.org/0000-0002-8740-220X
https://orcid.org/0000-0002-3646-0868
https://orcid.org/0000-0002-3646-0868
https://arxiv.org/abs/1705.06963
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/mm.2018.112130359
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/jproc.2021.3067593
https://doi.org/10.1109/mc.2019.2903009
https://doi.org/10.1109/mc.2019.2903009
https://doi.org/10.1109/mc.2019.2903009
https://doi.org/10.1109/mc.2019.2903009
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1145/3223048
https://doi.org/10.1145/3223048
https://doi.org/10.1145/3223048
https://doi.org/10.1145/3223048
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://arxiv.org/abs/2104.13983
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554


Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

[31] Hinton G E and Sejnowski T J 1983 Optimal perceptual inference Proc. IEEE Conf. Computer Vision and Pattern Recognition
vol 448 (Citeseer) pp 448–53

[32] Hopfield J J and Tank D W 1985 ‘Neural’ computation of decisions in optimization problems Biol. Cybern. 52 141–52
[33] Binas J, Indiveri G and Pfeiffer M 2016 Spiking analog VLSI neuron assemblies as constraint satisfaction problem solvers 2016

IEEE Int. Symp. Circuits and Systems (ISCAS) (IEEE) pp 2094–7
[34] Habenschuss S, Jonke Z and Maass W 2013 Stochastic computations in cortical microcircuit models PLoS Comput. Biol. 9

e1003311
[35] Mostafa H, Müller L K and Indiveri G 2015 An event-based architecture for solving constraint satisfaction problems Nat.

Commun. 6 8941
[36] Jonke Z, Habenschuss S and Maass W 2016 Solving constraint satisfaction problems with networks of spiking neurons Front.

Neurosci. 10 118
[37] Yakopcic C, Rahman N, Atahary T, Taha T M, Beigh A and Douglass S 2019 High speed cognitive domain ontologies for

asset allocation using Loihi spiking neurons 2019 Int. Joint Conf. Neural Networks (IJCNN) (IEEE) pp 1–8
[38] Kugele A and Meier K 2018 Solving the constraint satisfaction problem Sudoku on neuromorphic hardware Masters Thesis

Heidelberg University
[39] Steidel J 2018 Solving map coloring problems on analog neuromorphic hardware Bachelor Thesis Kirchoff Institute for Physics,

Heidelberg University
[40] Alom M Z, Van Essen B, Moody A T, Widemann D P and Taha T M 2017 Quadratic unconstrained binary optimization (QUBO)

on neuromorphic computing system 2017 Int. Joint Conf. Neural Networks (IJCNN) (IEEE) pp 3922–9
[41] Rahman N, Atahary T, Taha T and Douglass S 2017 A pattern matching approach to map cognitive domain ontologies to the IBM

TrueNorth neurosynaptic system 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA) (IEEE) pp 1–4
[42] Corder K, Monaco J V and Vindiola M M 2018 Solving vertex cover via Ising model on a neuromorphic processor 2018 IEEE Int.

Symp. Circuits and Systems (ISCAS) (IEEE) pp 1–5
[43] Mniszewski S M 2019 Graph partitioning as quadratic unconstrained binary optimization (QUBO) on spiking neuromorphic

hardware Proc Int. Conf. Neuromorphic Systems (ICONS ’19) (ACM) pp 1–5
[44] Fonseca Guerra G A and Furber S B 2017 Using stochastic spiking neural networks on spinnaker to solve constraint satisfaction

problems Front. Neurosci. 11 714
[45] Yakopcic C, Rahman N, Atahary T, Taha T M and Douglass S 2020 Leveraging the manycore architecture of the Loihi spiking

processor to perform quasi-complete constraint satisfaction 2020 Int. Joint Conf. Neural Networks (IJCNN) (IEEE) pp 1–8
[46] Yakopcic C, Rahman N, Atahary T, Taha T M and Douglass S 2020 Solving constraint satisfaction problems using the Loihi

spiking neuromorphic processor 2020 Design, Automation & Test in Europe Conf. & Exhibition (DATE) (IEEE) pp 1079–84
[47] Ostrau C, Klarhorst C, Thies M and Rückert U 2019 Comparing neuromorphic systems by solving Sudoku problems 2019 Int.

Conf. High Performance Computing & Simulation (HPCS) (IEEE) pp 521–7
[48] Ushijima H, Negre C F A and Mniszewski S M 2017 Graph partitioning using quantum annealing on the D-wave system Proc.

2nd Int. Workshop Post-Moore’s Era Supercomputing (PMES) (ACM) pp 22–9
[49] Elad M 2010 Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing vol 2 (Berlin:

Springer)
[50] Rozell C J, Johnson D H, Baraniuk R G and Olshausen B A 2008 Sparse coding via thresholding and local competition in neural

circuits Neural Comput. 20 2526–63
[51] Natarajan B K 1995 Sparse approximate solutions to linear systems SIAM J. Comput. 24 227–34
[52] Tibshirani R 1996 Regression shrinkage and selection via the LASSO J. R. Stat. Soc. B 58 267–88
[53] Efron B, Hastie T, Johnstone I and Tibshirani R 2004 Least angle regression Ann. Stat. 32 407–99
[54] Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity

constraint Commun. Pure Appl. Math. 57 1413–57
[55] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci. 2

183–202
[56] Tang P T P, Lin T-H and Davies M 2017 Sparse coding by spiking neural networks: convergence theory and computational

results (arXiv:1705.05475)
[57] Wei Q, Han L and Zhang T 2021 Spiking adaptive dynamic programming based on Poisson process for discrete-time nonlinear

systems IEEE Trans. Neural Netw. Learn. Syst. 33 1846–56
[58] Yao J, Guan Z-H, Chen G and Ho D W C 2006 Stability, robust stabilization and control of singular-impulsive systems via

switching control Syst. Control Lett. 55 879–86
[59] Zhang X, Li C and Huang T 2017 Hybrid impulsive and switching Hopfield neural networks with state-dependent impulses

Neural Netw. 93 176–84
[60] Fan B, Yang Q, Tang X and Sun Y 2018 Robust ADP design for continuous-time nonlinear systems with output constraints IEEE

Trans. Neural Netw. Learn. Syst. 29 2127–38
[61] Huang X, Khalil H K and Song Y 2018 Regulation of nonminimum-phase nonlinear systems using slow integrators and

high-gain feedback IEEE Trans. Autom. Control 64 640–53
[62] Zhao K, Song Y and Shen Z 2016 Neuroadaptive fault-tolerant control of nonlinear systems under output constraints and

actuation faults IEEE Trans. Neural Netw. Learn. Syst. 29 286–98
[63] Wei Q, Li H, Yang X and He H 2020 Continuous-time distributed policy iteration for multicontroller nonlinear systems IEEE

Trans. Cybern. 51 2372–83
[64] Wei Q, Wang L, Liu Y and Polycarpou M M 2020 Optimal elevator group control via deep asynchronous actor–critic learning

IEEE Trans. Neural Netw. Learn. Syst. 31 5245–56
[65] Chen C, Modares H, Xie K, Lewis F L, Wan Y and Xie S 2019 Reinforcement learning-based adaptive optimal exponential

tracking control of linear systems with unknown dynamics IEEE Trans. Autom. Control 64 4423–38
[66] Heydari A 2020 Optimal impulsive control using adaptive dynamic programming and its application in spacecraft rendezvous

IEEE Trans. Neural Netw. Learn. Syst. 32 4544–52
[67] Wang D, Ha M and Qiao J 2019 Self-learning optimal regulation for discrete-time nonlinear systems under event-driven

formulation IEEE Trans. Autom. Control 65 1272–9
[68] Parsa M, Mitchell J P, Schuman C D, Patton R M, Potok T E and Roy K 2020 Bayesian multi-objective hyperparameter

optimization for accurate, fast, and efficient neural network accelerator design Front. Neurosci. 14 667

18

https://doi.org/10.1007/bf00339943
https://doi.org/10.1007/bf00339943
https://doi.org/10.1007/bf00339943
https://doi.org/10.1007/bf00339943
https://doi.org/10.1371/journal.pcbi.1003311
https://doi.org/10.1371/journal.pcbi.1003311
https://doi.org/10.1038/ncomms9941
https://doi.org/10.1038/ncomms9941
https://doi.org/10.3389/fnins.2016.00118
https://doi.org/10.3389/fnins.2016.00118
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1137/s0097539792240406
https://doi.org/10.1137/s0097539792240406
https://doi.org/10.1137/s0097539792240406
https://doi.org/10.1137/s0097539792240406
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080716542
https://arxiv.org/abs/1705.05475
https://doi.org/10.1109/TNNLS.2021.3085781
https://doi.org/10.1109/TNNLS.2021.3085781
https://doi.org/10.1109/TNNLS.2021.3085781
https://doi.org/10.1109/TNNLS.2021.3085781
https://doi.org/10.1016/j.sysconle.2006.05.002
https://doi.org/10.1016/j.sysconle.2006.05.002
https://doi.org/10.1016/j.sysconle.2006.05.002
https://doi.org/10.1016/j.sysconle.2006.05.002
https://doi.org/10.1016/j.neunet.2017.04.009
https://doi.org/10.1016/j.neunet.2017.04.009
https://doi.org/10.1016/j.neunet.2017.04.009
https://doi.org/10.1016/j.neunet.2017.04.009
https://doi.org/10.1109/tnnls.2018.2806347
https://doi.org/10.1109/tnnls.2018.2806347
https://doi.org/10.1109/tnnls.2018.2806347
https://doi.org/10.1109/tnnls.2018.2806347
https://doi.org/10.1109/tac.2018.2839532
https://doi.org/10.1109/tac.2018.2839532
https://doi.org/10.1109/tac.2018.2839532
https://doi.org/10.1109/tac.2018.2839532
https://doi.org/10.1109/TNNLS.2016.2619914
https://doi.org/10.1109/TNNLS.2016.2619914
https://doi.org/10.1109/TNNLS.2016.2619914
https://doi.org/10.1109/TNNLS.2016.2619914
https://doi.org/10.1109/TCYB.2020.2979614
https://doi.org/10.1109/TCYB.2020.2979614
https://doi.org/10.1109/TCYB.2020.2979614
https://doi.org/10.1109/TCYB.2020.2979614
https://doi.org/10.1109/tnnls.2020.2965208
https://doi.org/10.1109/tnnls.2020.2965208
https://doi.org/10.1109/tnnls.2020.2965208
https://doi.org/10.1109/tnnls.2020.2965208
https://doi.org/10.1109/tac.2019.2905215
https://doi.org/10.1109/tac.2019.2905215
https://doi.org/10.1109/tac.2019.2905215
https://doi.org/10.1109/tac.2019.2905215
https://doi.org/10.1109/TNNLS.2020.3021037
https://doi.org/10.1109/TNNLS.2020.3021037
https://doi.org/10.1109/TNNLS.2020.3021037
https://doi.org/10.1109/TNNLS.2020.3021037
https://doi.org/10.1109/TAC.2019.2926167
https://doi.org/10.1109/TAC.2019.2926167
https://doi.org/10.1109/TAC.2019.2926167
https://doi.org/10.1109/TAC.2019.2926167
https://doi.org/10.3389/fnins.2020.00667
https://doi.org/10.3389/fnins.2020.00667


Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

[69] Parsa M et al 2021 Accurate and accelerated neuromorphic network design leveraging a Bayesian hyperparameter pareto
optimization approach 2021 Int. Conf. Neuromorphic Systems pp 1–8

[70] Shahriari B, Swersky K, Wang Z, Adams R P and De Freitas N 2015 Taking the human out of the loop: a review of Bayesian
optimization Proc. IEEE 104 148–75

[71] Parsa M, Ankit A, Ziabari A and Roy K 2019 PABO: pseudo agent-based multi-objective Bayesian hyperparameter optimization
for efficient neural accelerator design 2019 IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD) pp 1–8

[72] Severa W, Lehoucq R, Parekh O and Aimone J B 2018 Spiking neural algorithms for Markov process random walk 2018 Int. Joint
Conf. Neural Networks (IJCNN) (IEEE) pp 1–8

[73] Iaroshenko O and Sornborger A T 2021 Binary operations on neuromorphic hardware with application to linear algebraic
operations and stochastic equations (arXiv:2103.09198)

[74] Ricciardi L M and Sacerdote L 1979 The Ornstein–Uhlenbeck process as a model for neuronal activity Biol. Cybern. 35 1–9
[75] Smith J D and McKinley S A 2018 Assessing the impact of electrostatic drag on processive molecular motor transport Bull. Math.

Biol. 80 2088–123
[76] Wang W, Cai Y, Ding Z and Gui Z 2018 A stochastic differential equation SIS epidemic model incorporating

Ornstein–Uhlenbeck process Physica A 509 921–36
[77] Nicolato E and Venardos E 2003 Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type Math. Finance 13

445–66
[78] Bossy M and Champagnat N 2010 Markov processes and parabolic partial differential equations Encyclopedia of Quantitative

Finance (New York: Wiley) pp 1142–59
[79] Dupree S A and Fraley S K 2002 A Monte Carlo Primer: A Practical Approach to Radiation Transport (Berlin: Springer)
[80] Jensen P A and Bard J F 2003 Operations Research Models and Methods (New York: Wiley)
[81] Saez M, Tobias A, Varga D and Barceló M A 2020 Effectiveness of the measures to flatten the epidemic curve of COVID-19. The

case of Spain Sci. Total Environ. 727 138761
[82] Grigoriu M 2013 Stochastic Calculus: Applications in Science and Engineering (Berlin: Springer)
[83] Hanson F B 2007 Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation (Philadelphia,

PA: SIAM)
[84] Smith J D, Hill A J, Reeder L E, Franke B C, Lehoucq R B, Parekh O, Severa W and Aimone J B 2022 Neuromorphic scaling

advantages for energy-efficient random walk computations Nat. Electron. 5 102–12
[85] Aimone J B, Lehoucq R, Severa W and Smith J D 2021 Assessing a neuromorphic platform for use in scientific stochastic

sampling 2021 Int. Conf. Rebooting Computing (ICRC) (IEEE)
[86] Smith J D, Severa W, Hill A J, Reeder L, Franke B, Lehoucq R B, Parekh O D and Aimone J B 2020 Solving a steady-state PDE

using spiking networks and neuromorphic hardware 2020 Int. Conf. Neuromorphic Systems 2020 pp 1–8
[87] Dominguez-Morales J P, Liu Q, James R, Gutierrez-Galan D, Jimenez-Fernandez A, Davidson S and Furber S 2018 Deep spiking

neural network model for time-variant signals classification: a real-time speech recognition approach 2018 Int. Joint Conf. Neural
Networks (IJCNN) (IEEE) pp 1–8

[88] Jiménez-Fernández A, Cerezuela-Escudero E, Miró-Amarante L, Domı́nguez-Morales M J, de Ası́s Gómez-Rodrı́guez F,
Linares-Barranco A and Jiménez-Moreno G 2016 A binaural neuromorphic auditory sensor for FPGA: a spike signal processing
approach IEEE Trans. Neural Networks Learn. Syst. 28 804–18

[89] Grzesiak L M and Meganck V 2018 Spiking signal processing: principle and applications in control system Neurocomputing 308
31–48

[90] Domı́nguez-Morales M, Jimenez-Fernandez A, Cerezuela-Escudero E, Paz-Vicente R, Linares-Barranco A and Jimenez G 2011
On the designing of spikes band-pass filters for FPGA Int. Conf. Artificial Neural Networks (Springer) pp 389–96

[91] Severa W, Parekh O, Carlson K D, James C D and Aimone J B 2016 Spiking network algorithms for scientific computing 2016
IEEE Int. Conf. Rebooting Computing (ICRC) (IEEE) pp 1–8

[92] López-Randulfe J, Duswald T, Bing Z and Knoll A 2021 Spiking neural network for Fourier transform and object detection for
automotive radar Front. Neurorob. 15 69

[93] Orchard G, Frady E P, Rubin D B D, Sanborn S, Shrestha S B, Sommer F T and Davies M 2021 Efficient neuromorphic signal
processing with Loihi 2 2021 IEEE Workshop Signal Processing Systems (SiPS) (IEEE) pp 254–9

[94] Sharifshazileh M, Burelo K, Sarnthein J and Indiveri G 2021 An electronic neuromorphic system for real-time detection of high
frequency oscillations (HFO) in intracranial EEG Nat. Commun. 12 3095

[95] Ganguly S, Camsari K Y and Ghosh A W 2021 Analog signal processing using stochastic magnets IEEE Access 9 92640–50
[96] Vogginger B et al 2022 Automotive radar processing with spiking neural networks: concepts and challenges Front. Neurosci. 16

851774
[97] Wang W, Zhou S, Li J, Li X, Yuan J and Jin Z 2020 Temporal pulses driven spiking neural network for fast object recognition in

autonomous driving (arXiv:2001.09220)
[98] Shalumov A, Halaly R and Tsur E E 2021 LiDAR-driven spiking neural network for collision avoidance in autonomous driving

Bioinsp. Biomim. 16 066016
[99] Geiger A, Lenz P and Urtasun R 2012 Are we ready for autonomous driving? The KITTI vision benchmark suite 2012 IEEE Conf.

Computer Vision and Pattern Recognition (IEEE) pp 3354–61
[100] Vanarse A, Osseiran A and Rassau A 2016 A review of current neuromorphic approaches for vision, auditory, and olfactory

sensors Front. Neurosci. 10 115
[101] Wu C, Kim T W, Park J H, Koo B, Sung S, Shao J, Zhang C and Wang Z L 2019 Self-powered tactile sensor with learning and

memory ACS Nano 14 1390–8
[102] Etienne-Cummings R and Van der Spiegel J 1996 Neuromorphic vision sensors Sensors Actuators A 56 19–29
[103] Blouw P, Choo X, Hunsberger E and Eliasmith C 2019 Benchmarking keyword spotting efficiency on neuromorphic hardware

Proc. 7th Annual Neuro-Inspired Computational Elements Workshop pp 1–8
[104] Yan Y et al 2021 Comparing loihi with a spinnaker 2 prototype on low-latency keyword spotting and adaptive robotic control

Neuromorphic Comput. Eng. 1 014002
[105] Plank J, Zheng C, Schuman C and Dean C 2021 Spiking neuromorphic networks for binary tasks 2021 Int. Conf. Neuromorphic

Systems pp 1–9
[106] Aimone J B, Hill A J, Severa W M and Vineyard C M 2021 Spiking neural streaming binary arthimetic IEEE Int. Conf. Rebooting

Computing

19

https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/2103.09198
https://doi.org/10.1007/bf01845839
https://doi.org/10.1007/bf01845839
https://doi.org/10.1007/bf01845839
https://doi.org/10.1007/bf01845839
https://doi.org/10.1007/s11538-018-0448-9
https://doi.org/10.1007/s11538-018-0448-9
https://doi.org/10.1007/s11538-018-0448-9
https://doi.org/10.1007/s11538-018-0448-9
https://doi.org/10.1016/j.physa.2018.06.099
https://doi.org/10.1016/j.physa.2018.06.099
https://doi.org/10.1016/j.physa.2018.06.099
https://doi.org/10.1016/j.physa.2018.06.099
https://doi.org/10.1111/1467-9965.t01-1-00175
https://doi.org/10.1111/1467-9965.t01-1-00175
https://doi.org/10.1111/1467-9965.t01-1-00175
https://doi.org/10.1111/1467-9965.t01-1-00175
https://doi.org/10.1016/j.scitotenv.2020.138761
https://doi.org/10.1016/j.scitotenv.2020.138761
https://doi.org/10.1038/s41928-021-00705-7
https://doi.org/10.1038/s41928-021-00705-7
https://doi.org/10.1038/s41928-021-00705-7
https://doi.org/10.1038/s41928-021-00705-7
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1109/TNNLS.2016.2583223
https://doi.org/10.1016/j.neucom.2018.03.054
https://doi.org/10.1016/j.neucom.2018.03.054
https://doi.org/10.1016/j.neucom.2018.03.054
https://doi.org/10.1016/j.neucom.2018.03.054
https://doi.org/10.3389/fnbot.2021.688344
https://doi.org/10.3389/fnbot.2021.688344
https://doi.org/10.1038/s41467-021-23342-2
https://doi.org/10.1038/s41467-021-23342-2
https://doi.org/10.1109/access.2021.3075839
https://doi.org/10.1109/access.2021.3075839
https://doi.org/10.1109/access.2021.3075839
https://doi.org/10.1109/access.2021.3075839
https://doi.org/10.3389/fnins.2022.851774
https://doi.org/10.3389/fnins.2022.851774
https://arxiv.org/abs/2001.09220
https://doi.org/10.1088/1748-3190/ac290c
https://doi.org/10.1088/1748-3190/ac290c
https://doi.org/10.3389/fnins.2016.00115
https://doi.org/10.3389/fnins.2016.00115
https://doi.org/10.1021/acsnano.9b07165
https://doi.org/10.1021/acsnano.9b07165
https://doi.org/10.1021/acsnano.9b07165
https://doi.org/10.1021/acsnano.9b07165
https://doi.org/10.1016/0924-4247(96)01277-0
https://doi.org/10.1016/0924-4247(96)01277-0
https://doi.org/10.1016/0924-4247(96)01277-0
https://doi.org/10.1016/0924-4247(96)01277-0
https://doi.org/10.1145/3320288.3320304
https://doi.org/10.1145/3320288.3320304
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1088/2634-4386/abf150


Neuromorph. Comput. Eng. 2 (2022) 032003 Topical Review

[107] Lagorce X and Benosman R 2015 Stick: spike time interval computational kernel, a framework for general purpose computation
using neurons, precise timing, delays, and synchrony Neural Comput. 27 2261–317

[108] Rueckauer B, Bybee C, Goettsche R, Singh Y, Mishra J and Wild A 2022 NXTF: an api and compiler for deep spiking neural
networks on Intel Loihi ACM J. Emerg. Technol. Comput. Syst. 18 1–22

[109] DeWolf T, Jaworski P and Eliasmith C 2020 Nengo and low-power AI hardware for robust, embedded neurorobotics Front.
Neurorob. 73 568359

[110] Lava 2021 A software framework for neuromorphic computing https://lava-nc.org/
[111] Aimone J B, Severa W and Vineyard C M 2019 Composing neural algorithms with FUGU Proc. Int. Conf. Neuromorphic Systems

pp 1–8
[112] Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart T C, Rasmussen D, Choo X, Voelker A R and Eliasmith C 2014 Nengo: a

Python tool for building large-scale functional brain models Front. Neuroinf. 7 48
[113] Stewart T C 2012 A technical overview of the neural engineering framework vol 110 University of Waterloo
[114] Fischl K D, Andreou A G, Stewart T C and Fair K 2018 Implementation of the neural engineering framework on the TrueNorth

neurosynaptic system 2018 IEEE Biomedical Circuits and Systems Conf. (BioCAS) (IEEE) pp 1–4
[115] Mundy A, Knight J, Stewart T C and Furber S 2015 An efficient SpiNNaker implementation of the neural engineering framework

2015 Int. Joint Conf.Neural Networks (IJCNN) (IEEE) pp 1–8
[116] Ajwani R D, Lalan A, Bhattacharya B S and Bose J 2021 Sparse distributed memory using spiking neural networks on Nengo

(arXiv:2109.03111)
[117] Mercier C, Chateau-Laurent H, Alexandre F and Víeville T 2021 Ontology as neuronal-space manifold: towards symbolic and

numerical artificial embedding KRHCAI 2021 Workshop on Knowledge Representation for Hybrid & Compositional AI@ KR2021
[118] Intel Corporation 2021 Taking Neuromorphic Computing to the Next Level with Loihi 2

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

20

https://doi.org/10.1162/neco_a_00783
https://doi.org/10.1162/neco_a_00783
https://doi.org/10.1162/neco_a_00783
https://doi.org/10.1162/neco_a_00783
https://doi.org/10.1145/3501770
https://doi.org/10.1145/3501770
https://doi.org/10.1145/3501770
https://doi.org/10.1145/3501770
https://doi.org/10.3389/fnbot.2020.568359
https://doi.org/10.3389/fnbot.2020.568359
https://lava-nc.org/
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.3389/fninf.2013.00048
https://arxiv.org/abs/2109.03111
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

	A review of non-cognitive applications for neuromorphic computing
	1.  Introduction
	2.  Graph algorithms
	2.1.  Neuromorphic co-processors for communication routing
	2.2.  Network dynamics and graph structure analysis
	2.3.  Graph algorithm implementations
	2.4.  Neuromorphic advantages and remaining challenges for graph algorithms

	3.  Constrained optimization
	3.1.  Optimization in integer domain—constraint satisfaction and QUBO problems
	3.1.1.  Constraint satisfaction
	3.1.2.  Neural sampling enables efficient state space exploration
	3.1.3.  Quadratic unconstrained binary optimization (QUBO)

	3.2.  Optimization in continuous domain—sparse coding: neuromorphic solution of the LASSO problem
	3.2.1.  Locally competitive algorithm
	3.2.2.  LCA and ISTA are the same
	3.2.3.  Spiking LCA

	3.3.  Optimal control theory
	3.4.  Bayesian optimization
	3.5.  Neuromorphic advantages and remaining challenges for constraint satisfaction

	4.  Random walks and partial differential equations solving
	4.1.  Density-based random walks
	4.2.  Markov chains and PIDE solutions
	4.3.  Neuromorphic advantages and remaining challenges for random walks

	5.  Signal processing
	5.1.  Current neuromorphic approaches for signal processing
	5.2.  Signal processing application domains and opportunities
	5.3.  Neuromorphic advantages and remaining challenges for signal processing

	6.  Composite algorithms through utility and numerical kernels
	6.1.  Binary operations, arithmetic, and encoding for composition
	6.2.  Numerical kernels
	6.3.  Neuromorphic advantages and remaining challenges for utility and numerical kernels

	7.  Software and tools for numerical neuromorphic algorithms
	8.  Discussion and conclusion
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


