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Abstract
In principle, sparse neural networks should be significantly more efficient than traditional dense
networks. Neurons in the brain exhibit two types of sparsity; they are sparsely interconnected and
sparsely active. These two types of sparsity, called weight sparsity and activation sparsity, when
combined, offer the potential to reduce the computational cost of neural networks by two orders of
magnitude. Despite this potential, today’s neural networks deliver only modest performance
benefits using just weight sparsity, because traditional computing hardware cannot efficiently
process sparse networks. In this article we introduce Complementary Sparsity, a novel technique
that significantly improves the performance of dual sparse networks on existing hardware. We
demonstrate that we can achieve high performance running weight-sparse networks, and we can
multiply those speedups by incorporating activation sparsity. Using Complementary Sparsity, we
show up to 100× improvement in throughput and energy efficiency performing inference on
FPGAs. We analyze scalability and resource tradeoffs for a variety of kernels typical of commercial
convolutional networks such as ResNet-50 and MobileNetV2. Our results with Complementary
Sparsity suggest that weight plus activation sparsity can be a potent combination for efficiently
scaling future AI models.

1. Introduction

In recent years, larger and more complex deep neural networks (DNNs) have led to significant advances in arti-
ficial intelligence (AI). However, the exponential growth of these models threatens forward progress. Training
requires large numbers of GPUs or TPUs, and can take days or even weeks, resulting in large carbon footprints
and spiraling cloud costs [69, 72]. Taking inspiration from neuroscience, sparsity has been proposed as a solu-
tion to this rapid growth in model size. In this article we demonstrate how to exploit sparsity to achieve two
orders of magnitude performance improvements in deep learning systems.

Sparse networks either constrain the connectivity (weight sparsity) or activity (activation sparsity) of their
neurons, significantly reducing both the size and computational complexity of the model. Typically, these
techniques are applied in isolation to create sparse–dense networks. However, weight and activation sparsity are
synergistic, and when deployed in combination, the computational savings are multiplicative. Consequently,
sparse–sparse networks have the potential to reduce the computational complexity of the model by over two-
orders of magnitude. For example, as illustrated in figure 1, when a network is 90% weight sparse, only one
out of every ten weights is non-zero, facilitating a ten-fold reduction in compute. When a network is 90%
activation sparse, only one out of every ten inputs is non-zero, similarly delivering a ten-fold reduction in
compute. When applied in concert, the zero-values interplay, such that on average only one out of every 100
results will be non-zero, delivering a theoretical 100-fold savings.

However, with current implementations, the resulting speedups only represent a small fraction of these
theoretical computational savings [21]. The irregular patterns of neuron interconnections and activity intro-
duced by sparsity have proved difficult to exploit on modern hardware and impedes the implementation of
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Figure 1. An illustration of the potential speedups that can be achieved with sparse networks (compared to their dense
equivalents). When weight and activation sparsity are leveraged simultaneously (a sparse–sparse network), the benefits are
multiplicative, enabling speedups that exceed two orders of magnitude.

efficient sparse–sparse networks. Hardware platforms with dedicated logic for exploiting sparsity have begun
to appear [62], but the performance gains remain modest [52].

In this article we discuss Complementary Sparsity, a novel solution that inverts the sparsity problem. Rather
than creating hardware to support unstructured sparse networks, we illustrate how sparsity can be struc-
tured to match the requirements of the target hardware. We demonstrate that this solution both creates highly
efficient weight-sparse networks, and establishes viable sparse–sparse networks, yielding large multiplicative
benefits.

We investigate the potential of Complementary Sparsity and sparse–sparse networks on FPGAs, due to their
flexible architecture. This flexibility provides an ideal laboratory for investigating the trade-offs associated with
different implementation approaches, and enables us to refine our understanding of sparse–sparse resource
requirements. The resulting implementations not only provide a path to highly efficient sparse–sparse network
inference on FPGAs, but also provide insights that can be leveraged as IP blocks in other architectures or ASICs,
or adapted to fit a wide range of other compute architectures.

In this paper, we make four main contributions:

(a) We introduce Complementary Sparsity, a novel form of structured sparsity.

(b) We establish how Complementary Sparsity can enable the construction of efficient sparse–sparse
networks.

(c) We discuss our sparse–sparse network implementation on a FPGA, demonstrating a 110× speedup over
an optimized dense implementation.

(d) We demonstrate that leveraging activation sparsity reduces the hardware resource utilization associated
with the core components of convolutional networks.

2. Sparsity in the brain, in deep learning, and in hardware

2.1. Sparsity in the brain
It is well known that the brain, specifically the neocortex, is highly sparse. This sparsity is instantiated a few
different ways. First, the interconnectivity between neurons is sparse. Detailed anatomical studies show that
cortical pyramidal neurons receive relatively few excitatory inputs from surrounding neurons [28, 50]. The
percentage of local area connections appears to be less than 5% [28] compared to a fully connected dense
network.
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Figure 2. We focus on sparse networks with both sparse connectivity and sparse activations. Zeroes in the weight matrices
enforce sparse connectivity. A k-WTA activation function ensures activations with fixed sparsity.

In addition to sparse connectivity, numerous studies show that only a small percentage of neurons become
active in response to sensory stimuli [3, 6, 81]. On average less than 2% of neurons fire for any given input.
This is true for all sensory modalities as well as areas that deal with language, abstract thought, planning, etc.

Recent experimental evidence suggests that local cortical networks are structured via specific networks of
excitatory and inhibitory neurons [88, 93]. Inhibitory neurons are recurrently connected to excitatory neurons,
encouraging competition that allows the most active neurons to ‘win’ [93]. These winner-take-all circuits are
thought to give rise to sparse activations and are directly linked to the formation of sparse codes that match
observed properties of V1 cells [37].

Sparsity leads to a number of useful properties. The brain is incredibly power efficient, a fact that has
been directly linked to both activation sparsity [3, 43] and connection sparsity [60]. Sparsity has also been
linked to the brain’s ability to form useful representations [56, 57], make predictions [25, 51, 75], as well as
detect surprise and anomalies. It seems evident that sparsity is ubiquitous in the neocortex and fundamental
to its efficiency and functionality. Taking inspiration from these findings and their links to efficiency, in our
implementation we employ both connection sparsity as well as activation sparsity through a competitive k-
winner-take-all (k-WTA) circuit.

2.2. Sparsity in deep learning
The prevalence of sparsity in the brain stands in contrast to standard DNNs where sparsity is still a research
area. The output of each layer in a DNN can be computed as a simple matrix multiplication; the inputs
to the layer form either an activation vector (in the case of a single input), or a matrix (when a batch
of inputs are being processed). In standard DNNs both the weight matrices and the activation vectors are
dense.

Analogous to the neurology, it is possible to create two forms of sparsity in DNNs: sparse connections and
sparse activations (figure 2). Absent connections are represented by 0’s in the weight matrices, while inactive
neurons are represented by 0’s in the inputs to each layer. Recently, there has been an increase in research
focused on creating networks that are both sparse and accurate. A variety of techniques have been proposed in
the literature to achieve either form of sparsity, as summarized in the following sections. Note however that,
unlike biology, it is rare for DNNs to combine both types of sparsity in the same network.

2.2.1. Weight sparsity
Research has shown that many DNNs are heavily overparameterized, and sparsity can be successfully applied
to these networks [12, 42]. This technique of limiting neuron interconnectivity is referred to as weight
sparsity.

As the sparsity of the weight matrices is increased the overall accuracy can drop. A variety of tech-
niques have been developed to create networks that are both sparse and accurate [27, 53]. Most research
has focused on the creation of: (a) sparse models by direct training; or, (b) sparse models from exist-
ing dense networks by removing (or ‘pruning’) the least important weights [27]. Within these two broad
approaches exist a variety of different techniques, with varying degrees of sophistication and dynamism.
Most simplistic are single-shot pruning algorithms [27], that remove all of the weights necessary to achieve
the desired sparsity in one event. Iterative algorithms gradually increase the sparsity over the span of a
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Figure 3. An illustration illustrating the simplification of matrix multiplication operations when both activations and weights are
sparse. It is only necessary to compute a product if it contains a non-zero element in both the input activation and the weight
matrix.

number of steps until the desired sparsity is achieved [27]. In addition to undertaking iterative pruning,
algorithms can iteratively grow connections, working to ensure that the optimal set of interconnections is
retained [17].

Pruning techniques primarily focused on reducing computational overheads are also in use [17, 53]. Dif-
ferent levels of sparsity in each layer allows sparsity to be focused in components of the model to deliver the
most significant speedups, while smaller layers that only contribute minimally to the overall computational
costs and parameter counts are protected. Novel pruning techniques and sparsity patterns that are tailored to
hardware requirements have also focused on convolutional layers, where the multiplicity of channels provides
opportunity for a variety of hardware friendly sparsity patterns [9].

2.2.2. Activation sparsity
In DNNs the outputs (activations) of each layer are generally dense, with between 50% to 100% of the neurons
having non-zero activations. While less commonly discussed, activation sparsity can also be applied to DNNs
[1, 40, 48, 59]. For activation sparsity, the determination of neurons to activate is typically performed by either
explicitly selecting the top-k activations (frequently termed k-WTA) [1, 48] or by computing dataset specific
activation thresholds for the neurons that, on average, reduce the number of activated neurons to the desired
level [40]. It is also possible to compute sparse activations that are optimal from an information theoretic per-
spective by introducing regularizers or cost functions that penalize large values [42, 56, 67] and by performing
locally iterative computations during inference [59, 64].

In this article we focus on networks using k-WTA [14, 46]. In these networks the ReLU activation
function is replaced by an activation function where the output of each layer is constrained such that
only the K most active neurons are allowed to be non-zero [1, 48]. Whereas ReLU allows all activations
above 0 to propagate, k-WTA allows exactly the top K activations to propagate. From a hardware per-
spective, this is attractive because k-WTA can guarantee the exact sparsity level at each timestep. Although
not optimal from a coding perspective, networks using k-WTA are surprisingly powerful and can provably
approximate arbitrary non-linear functions [45]. In practice they are known to perform well on complex
datasets [1, 47, 48].

2.3. Challenges of accelerating sparse networks
Removing weights and curtailing activations introduces zero-valued elements into the weight and activa-
tion matrices respectively. This reduces the number of multiply-accumulate (MAC) operations required
for the matrix multiplication, as MAC operations can be eliminated if either the corresponding input
or the corresponding weight is zero (figure 3). Accordingly, the theoretical computational savings associ-
ated with either weight sparsity or activation sparsity are directly proportional to the fraction of zeros.
When both forms of sparsity are combined there is potential to yield significant multiplicative benefits
(figure 1).

In practice it has proved extremely difficult to realize these performance benefits on current hardware archi-
tectures. Even for DNNs with high-degrees of weight sparsity, the performance gains observed are small. For
example, on CPUs, even for weight sparse networks in which 95% of the neuron weights have been eliminated,
the performance improvements observed are typically less than 4× [55]. In addition, there are almost no tech-
niques that simultaneously exploit both weight and activation sparsity. In part due to these difficulties, sparse
networks have not been widely deployed in commercial settings.

4



Neuromorph. Comput. Eng. 2 (2022) 034004 K Hunter et al

Modern hardware architectures thrive on processing dense, regular data structures, making the effi-
cient processing of sparse matrices challenging. Sparse matrices are typically represented in a compressed
form, where only the non-zero elements are retained, along with sufficient indexing information to locate
the elements within the matrix. Given the processing overheads associated with these formats, they work
best for extremely sparse matrices, 99% sparse or greater, such as the matrices used in high performance
computing [5].

In DNNs, where the level of weight sparsity is lower, the overheads associated with these compressed
formats significantly curtail the observed performance benefits. In addition, there are also overheads asso-
ciated with determining which elements should be non-zero. For sparse activations, the non-zero ele-
ments are input dependent, and must be repeatedly recomputed during inference. There are overheads
for generating an appropriate representation of the sparse activations. These overheads are not incurred
when activations are dense, and represent a significant obstacle to achieving speedups from activation
sparsity.

These challenges, and current hardware friendly solutions such as block and partitioned sparsity, are further
discussed in supplementary section 1 (https://stacks.iop.org/NCE/2/034004/mmedia).

3. Complementary Sparsity

Directly processing a native representation of a sparse matrix is inefficient because of the presence of the zero-
valued elements. Techniques such as block and partitioned sparsity (see supplementary material) help align
the patterns of non-zero elements with hardware requirements, but are fundamentally at odds with creating
highly sparse and accurate networks. Optimal performance requires large blocks and reduced partition sizes
but this limits both the obtainable sparsity and the accuracy [41]. This in turn compromises these approaches
from achieving the theoretical performance benefits of highly sparse networks.

We propose an alternate approach that inverts the sparsity problem by structuring sparse matrices such that
they are almost indistinguishable from dense matrices. We achieve this by overlaying multiple sparse matrices
to form a single dense structure. An optimal packing can be readily achieved if no two sparse matrices contain
a non-zero element at precisely the same location. Given incoming activations, we perform an element-wise
product with the incoming activations (a dense operation) and then recreate each individual sum.

We term this technique Complementary Sparsity. Complementary Sparsity introduces constraints upon the
locations of non-zero elements but it does not dictate the relative positions of the non-zero elements, nor does
it dictate the permissible sparsity levels. The technique can be applied to convolutional kernels by overlaying
multiple 3D sparse tensors from a layer’s 4D sparse weight tensor. Importantly, the technique provides a path
to linear performance improvements as the number of non-zero elements decreases, even for very high levels
of sparsity.

Figure 4(a) illustrates the use of Complementary Sparsity for convolutional kernels. In this example, each
kernel is 80% sparse, and a set of five kernels with non-overlapping patterns is overlaid to form a single dense
kernel. The number of sparse kernels that can be combined scales proportionally with their sparsity. The pri-
mary constraint is that the non-zero elements in each set should not collide with each other. Note that it
is not necessary that all the weights in a layer are non-overlapping—the restriction applies only to each set
being combined. Using our 80% example, if a convolutional layer contains 20 channels, there are four dense
sets each containing five sparse kernels. The elements must be complementary within a set, but there are no
restrictions across the four sets. Given this flexibility, in practice we have found that networks trained with
the restrictions imposed by Complementary Sparsity do not compromise on accuracy when compared with
unstructured sparsity.

Another important advantage of Complementary Sparsity is that it provides a path to facilitate both
sparse weights and sparse activations. In the following subsections, we first describe the architecture of
sparse–dense networks (i.e. networks with sparse weights and dense activations) and then describe the exten-
sion to sparse–sparse networks. Finally, we describe how these concepts can be implemented in an FPGA1.

3.1. Complementary Sparsity and sparse–dense networks
The basic technique described above combines multiple sparse weight structures into a single dense entity,
and natively supports sparse–dense networks, i.e. networks with dense activations and sparse weights. Par-
tial results from each sparse entity must be kept separate and independently accumulated for final results. In
sparse–dense networks processing is comprised of four distinct steps (figure 4(b)):

1 Although the general notion of sparse weights is inspired by neuroscience, our specific pattern of complementary weights is primarily
designed for efficiency on hardware.

5

https://stacks.iop.org/NCE/2/034004/mmedia


Neuromorph. Comput. Eng. 2 (2022) 034004 K Hunter et al

Figure 4. (a) Complementary Sparsity packs multiple sparse convolutional kernels into a single dense kernel for processing. A
routing network then computes each individual sum. (b) An explicit worked out example of Complementary Sparsity, where the
colors denote how weights for each kernel flow through the system. With 66% sparsity, three sparse kernels are combined into a
single dense kernel. Each activation is then multiplied by a single weight value using a dense Hadamard product. This ensures
there are no collisions between the product terms in the final convolution results.

(a) Combine: multiple sparse weight structures are overlaid to form a single dense entity. This is done offline
as a preprocessing step.

(b) Multiply: each element of the activation is multiplied by the corresponding weight elements in the dense
entity (Hadamard product).

(c) Route: the appropriate element-wise products are routed separately for each output.

(d) Sum: routed products are aggregated and summed to form a separate result for each sparse entity.

The optimal techniques for implementing each component are dictated by the specifics of the target hard-
ware. For example, in some cases, instead of routing the element-wise products, it may prove preferential to
reorder the incoming activations.

Given that Complementary Sparsity reduces N sparse convolutions into a single dense operation, there is
the potential for a linear N-fold performance improvement. The key challenge is to reduce the cost associated
with routing and accumulating the packed results. Accordingly, of particular interest are techniques focused
on minimizing the overheads associated with the routing of the Hadamard product terms. Implementation of
arbitrary routing usually involves resource hungry crossbar modules, where footprint increases as the square
of the number of inputs. However, for DNN inference operations, the locations of the non-zero elements
have been determined during training, and remain static throughout inference. The required routing is both
fixed and predetermined, ensuring efficiency by tailoring implementations to the specific requirements of the
network.

To further minimize the overheads associated with the routing of the product terms, Complementary Spar-
sity can be combined with the other forms of structural sparsity. For example, in figure 4(a), each column in
the kernel is a partition, with one non-zero element permitted per column. Similarly, complementary patterns
with blocks of non-zero elements are also possible. Section 3.3.2 below describes our FPGA implementation
of routing in more detail, and section 5 analyzes resource tradeoffs.

3.2. Complementary Sparsity and sparse–sparse networks
The above sparse–dense Complementary Sparsity technique can be extended to handle sparse–sparse net-
works, i.e. networks comprised of both sparse activations and sparse weights. As discussed in section 2.3,
significant inefficiencies are traditionally associated with sparse–sparse computations due to the changing
locations of non-zero elements in the activations. The overheads associated with pairing these non-zero acti-
vations with their respective non-zero weights degrades any performance gains associated with processing the
mutually non-zero subset of elements.
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Using Complementary Sparsity, the sparse–sparse problem is simplified to a problem with sparse activa-
tions and dense weights, eliminating the above overheads. As illustrated in figure 5(a), when the sparse weights
are represented in a dense format, the incoming sparse activations are paired with the relevant weights. For
each non-zero activation there exists a corresponding column of non-zero weight elements at a predefined
location in the dense weight structure. Processing is comprised of the following five steps:

(a) Combine: multiple sparse weight structures are overlaid to form a single dense structure. This is done
offline as a preprocessing step.

(b) Select: a k-WTA component is used to determine the top-k activations and their indices.

(c) Multiply: each non-zero activation is multiplied by the corresponding weight elements in the dense
structure (Hadamard product).

(d) Route: the appropriate element-wise products are routed separately for each output.

(e) Sum: routed products are aggregated and summed to form a separate result for each sparse matrix.

Compared to sparse–dense, the extensions are in the second and third steps. The computation in the third
step is reduced in proportion to the sparsity of the incoming activations. As before there is additional overhead
imposed by routing. For sparse–sparse there is also additional overhead imposed by the k-WTA block. An
efficient implementation of these components is critical to realizing an overall benefit, and are detailed below
in sections 3.3.2 and 3.3.3.

3.3. Complementary Sparsity on FPGAs
In this section, we discuss our implementation of Complementary Sparsity on FPGAs, before presenting both
performance and resource utilization results in sections 4 and 5. We focus our discussion on the sparse–sparse
implementation of convolutional kernels, specifically the individual components of figure 5(a). The imple-
mentations are focused on inference operations. As discussed, the flexible architecture of FPGAs represents a
model platform for exploring idealized circuit structures for Complementary Sparsity.

3.3.1. Sparse–sparse Hadamard product computation
For each of the K non-zero activations, its index is used to extract the relevant weights (figure 5(a)) which are
then multiplied in an element-wise fashion (the ‘multiply’ step in section 3.2). The individual terms of the
Hadamard products are then routed separately to compute the sums for each output channel.

The key to computing this efficiently is an offline preprocessing step that combines sets of sparse weight
kernels into smaller sets of augmented dense structures, denoted as AWTs (i.e. the ‘combine’ step in section 3.2).
We combine each complementary sparse kernels into a smaller number (L) of dense complementary sparse
filter blocks (CSFB), as denoted in the middle of figure 5(b). These 3D tensors are then flattened into 1D
columns and concatenated together horizontally into an AWT. In addition, in the AWT each non-zero weight
value has a sparse kernel ID (KID) co-located with it. The KID flows through to each of the resulting product
terms and is used for subsequent routing (described below in section 3.3.2).

Given this structure, one approach to computing the Hadamard product would be to serially access the
AWT, once for each of the K non-zero activations. Instead, in our implementation we pre-load K instances of
the AWT into a set of separate memories on the FPGA. The output port of the memory delivers one element
from each of the L CSFBs in each AWT in parallel. All activation aligned weights can now be read out in parallel
from this now multi-ported AWT. As a result, the Hadamard products for each column of the CFSB can be
computed in a single cycle. (Figure 4 in the supplementary material describes the computation in detail.) The
construction of the multi-ported AWT is illustrated in figure 5(b). Note that this is an offline process done
once for each convolutional layer.

At inference time, the following formula generates the lookup address for the AWT, where (Wx, Wy) are
the coordinates of columns in the CSFB, Ij is the index associated with jth non-zero activation value, and Cin

is the number of channels in the input image to the layer:

Address = Ij + Wx ∗ Cin + Wy ∗ Cin ∗ W (1)

A key scaling issue with this scheme is the amount of memory consumed by the complete AWT structure. The
total number of bits for the multi-ported AWT is:

BM = Cin ∗ W2 ∗ K ∗ L ∗ BE (2)

Here BE is the size of each element and is the sum of the bit size of the weight element value, BW, plus the bit size
of the associated KID, BID. In our implementation we use eight-bit weights so BW = 8. To determine BID, we
need to calculate the number of sparse kernels, F, that can fit into a single CSFB. The non-zeros weights in each
sparse kernel are distributed using partitioned weight sparsity along the Cin dimension (see supplementary
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Figure 5. (a) High level architecture for handling sparse–sparse layers. Sparse activations are computed dynamically using
k-WTA. The index of each non-zero activation is used to pair weights with each activation value for computing the final results.
(b) The figure shows how the augmented weight tensor (AWT) structure is constructed offline. See text in section 3.3.1 for details.

material for an explanation of partitioned sparsity). With N non-zeros in each column of the sparse filter
kernel, F = Cin/N. Therefore BID = � log2(F)�. If Cout is the number of output channels produced by the layer,
the number of CSFBs, L, is equal to Cout/F. Plugging this into equation (2) yields:

BM = W2 ∗ Cout ∗ N ∗ K ∗ BE (3)

Note that the required memory decreases as activation sparsity is increased (decreasing K). Similarly the
required memory decreases as the weight sparsity is increased (decreasing N). Therefore the memory savings
with weight and activation sparsity are multiplicative. Overall we found that with sparse–sparse networks,
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Figure 6. Sparse–sparse product term routing: (a) product terms serially routed to the appropriate accumulator, (b) product
terms routed in parallel to the appropriate adder-tree. See text for details.

this approach of replicating weights enables far higher throughput with very favorable memory scaling (see
section 5 for an in-depth study of resource scaling).

3.3.2. Sparse–sparse Hadamard product routing
A second critical component is the efficient routing of the products terms from the Hadamard operation. Once
an activation has been multiplied by the retrieved weights, to complete the computation of the convolution,
each resulting product term must be combined with the other product terms from the same kernel. The rel-
evant products are identified using their sparse KID tag, which are copied from the sparse KID field of the
associated augmented weight.

For K non-zero activation vectors, the retrieved weights may belong to a single sparse filter kernel (identical
sparse KIDs), or might be distributed across several sparse filter kernels. Each of the K activations can be
processed serially, in which case the results for each of the products can be simply routed via a multiplexor
network to an designated accumulator, based upon its sparse KID. This is diagrammed in figure 6(a). The Pi

represent the product terms along with their associated sparse KIDs, KIDj. The KIDj are used to successively
index a single multiplexer to route the product term to the relevant accumulator Accumj to be summed. The
black arrow indicates the selection process. This operation is performed serially K times.

For greater performance, the products from all the activations can be processed in parallel. In this case, the
product terms must be routed simultaneously to adder trees for summing, rather than to a single accumulator
(figure 6(b)). Note that the active routes, marked by the black arrows, indicated that three product terms, P0,
P1, and P2 have identical sparse KIDs of 1, which lands them on ATree1. All the adder trees need capacity to
handle the possibility of all K product terms being routed to a single adder tree.

Routing of multiple product terms to non-conflicting inputs in an adder tree introduces additional com-
plexity. Not only is it necessary to route based upon the sparse KID, but additional destination address bits
are required to designate the specific input port of the adder in which the product term should land. This is
resolved with an arbitration module, which supplies these additional address bits before the product is passed
to a larger multiplexer network. This is indicated in figure 6(b) by a blue dotted line terminating on the Arbiter
block.

The arbitration module generates the low order address bits from the set of sparse KIDs. The gen-
erated low order bits are concatenated to the sparse KIDs, represented by the yellow dotted line leaving
the Arbiter and passing through the dark blue multiplexer blocks. The fine-grained fan-out to individual
ports of the adder tree is not illustrated. Further arbitration module details can be found in supplementary
section 5.

Sparsity partitioned in the channel dimension, as reflected in the range of sparse KIDs, reduces the bit size
of these indices since we only need sufficient bits to identify the sparse kernel within the channel dimension,
not the location within the W2 ∗ Cin locations of a dense filter kernel. Small values for K , reflecting high
activation sparsity, reduces the number of low order bits needed for adder tree input port assignment in the
parallel implementation. Small values of N, reflecting high weight sparsity, also reduce the number of low
order bits needed, since the number of product terms which can be directed towards a single adder tree is
min(K, N).

9
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Figure 7. Parallel global k-WTA: performs a histogram based search of entire activation to determine the threshold yielding K
non-zero elements. In this example, the 1500-element activation is stored as 300 five-element blocks in memory AMem. Each
block is read out and the element values are used to address and increment counts in five separate memories, A–E. The counts are
then cumulatively summed together into variable Accum, starting with the largest value location, until Accum reaches a total
count of K , establishing a thresholding value. Values in AMem are then compared to thresh, and sent through to the next layer if
they are greater than or equal to thresh, along with their indices in the original 1500 element vector.

3.3.3. Activation sparsity using k-WTA
For k-WTA, activation sparsity is induced by explicitly restricting the number of non-zero elements to the K
largest values produced by a layer. Determining these top K values efficiently can represent a significant obstacle
to the effective use of activation sparsity. The time and resources expended performing the sort operation
erodes the performance benefits associated with leveraging the resulting sparsity in subsequent processing.
Accordingly, an optimized k-WTA implementation is central to our FPGA implementation. We divide k-WTA
implementations into two broad categories:

• Global: all elements of an activation are examined to determine the K largest. We use global k-WTA
following linear layers.

• Local: the activation is partitioned into smaller units, and only the elements belonging to a partition are
compared to each other. We use local k-WTA following convolutional layers, where the winner take all
competition happens along the channel dimension.

For eight-bit activation values, our implementation of global k-WTA leverages a histogram-based
approach. In our implementation, a 256-element array in memory is used to build the histogram, with each
activation value being used to increment a count at a location addressed by that value. Once all of the activa-
tion values have been processed, the histogram array represents the distribution of the activation values. For
a specified value of K, the histogram values can be read, largest first, to determine the appropriate minimum
value cutoff; values above this threshold should be retained as part of the top-k and the remainder discarded.
As a final step, the activation values are compared against the threshold and the winners passed to the next
layer.

For improved performance, an implementation may process multiple activation elements in parallel. In this
scenario, multiple histograms are built in parallel and then combined to determine the overall cutoff value.
An example of this implementation is illustrated in figure 7, for 1500-activations, five-way parallelism, and
activation sparsity of 85%.

For convolutional layers, activations have a natural partitioning in the channel dimension. We exploit that
partitioning by applying local k-WTA to each channel independently. This partitioning provides efficiency
benefits by reducing the number of elements that must be sorted. As in global k-WTA, the position of each
result value produced by the convolutional layer must be tracked through the sorting process. This is achieved
by appending an index to each data value entering the sorting function.

Sorting is performed in several stages, and we optimized the implementation based on the key observation
that it is only necessary to find the top K values in each vector. The ordering of the low valued elements is
immaterial, and, as K decreases with increasing activation sparsity, the cost of the sorting implementation
falls accordingly. Note that activations of the preceding weight layer may arrive serially in parallel bursts or as
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Figure 8. Structure of k-WTA when serially processing sparse convolutions. The input consists of M bursts, each consisting of N
values (and indices). In this example, both M and N are eight. The sorting network is comprised of 19 comparators, arranged into
depth six layers. The depth of the comparator tree to find the maximum of eight values is 3 (log2(8)).

Figure 9. Structure of k-WTA when parallel processing complementary sparse convolutions.

a single parallel vector depending on how they are computed. To avoid bottlenecks, the performance of the
k-WTA implementation should be matched to the performance of the convolutional operator.

In the serial burst implementation (figure 8), the input consists of M bursts, each consisting of N values
(and indices). Each burst is first sent through a sorting network [38], which orders the burst by value, largest
value first. The sorted burst is then loaded into one of a set of M FIFOs via a multiplexor. Once all the FIFOs
have been loaded, a vector composed from the M top-of-FIFO values is then passed through a log2(M) stage
comparator tree, in order to determine the maximum value in the vector. The maximum value is retained, and
its associated indexing information (which indicates in which FIFO the value was located) is used to pop that
element from the appropriate FIFO, exposing the FIFO’s next largest element. This process is repeated K times;
at which point the output vector has been filled with the top K elements and is passed to the next processing
layer.

If the input from the convolutional layer arrives in parallel instead of in bursts, higher performance can be
achieved by removing the demultiplexer (DMux8) shown in figure 8 and replicating the sorting network to
directly feed each FIFO, as shown in figure 9.

In summary, there are a number of ways to implement k-WTA efficiently. With an appropriate implemen-
tation choice, we find that overall the k-WTA is a relatively small percentage of overall resource usage (see
section 5.3).

4. Results on an end to end speech network

In this section we discuss the application of Complementary Sparsity to an end to end speech recognition
system. We trained a convolutional network [61] to recognize one-word speech commands using the Google
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Table 1. Architecture of the CNN network trained on GSC data.

Layer Channels Kernel size Stride Output shape

Input — — — 32 × 32× 1
Conv-1 64 5 × 5× 1 1 28 × 28× 64
MaxPool-1 — 2 × 2× 1 2 14 × 14× 64
Conv-2 64 5 × 5× 64 1 10 × 10× 64
MaxPool-2 — 2 × 2× 1 2 5 × 5× 64
Flatten — — — 1600 × 1
Linear-1 1500 1600 × 1 — 1500 × 1
Output 12 1500 × 1 — 12 × 1

Speech Commands (GSC) dataset [79]. We implemented dense and sparse versions of the network on both
large and small FPGA platforms. Our goal was to study the impact of Complementary Sparsity on full system
throughput (the number of words processed per second) and understand trade-offs in resources, memory
consumption and energy usage.

GSC consists of 65 000 one-second long utterances of keywords spoken by thousands of individuals. The
task, to recognize the spoken word from the audio signal, is designed for embedded smart home applications
that respond to speech commands. State of the art convolutional networks on this dataset achieve accuracies
(before quantization) of 96%–97% using ten categories [65, 70].

Our base dense GSC network is a standard convolutional network composed of two convolutional layers, a
linear hidden layer plus an output layer, as described in table 1. We also trained a sparse network with identical
layer sizes but with both sparse weights and sparse activations. Our sparse network follows the structure and
training described in [1]. To enforce sparse weights we used a static binary mask that dictates the locations
of the non-zero elements and meets requirements of Complementary Sparsity. The ReLU activation function
was replaced by a (k-WTA) [1, 47] activation function (see section 2.2.2 and figure 2).

The baseline dense version of the network contained 2522 128 parameters, while the sparse network con-
tained 127 696 non-zero weights, or about 95% sparse. The activations in the sparse network range from 88%
to 90% sparsity (i.e. 10%–12% of the neurons are ‘winners’), depending on the layer. Both dense and sparse
models were trained on the GSC data set, achieving comparable accuracies (see [1] for details). In our imple-
mentation, the accuracies of the sparse and dense networks are between 96.4% and 96.9%. Both activations
and weights are quantized to eight-bits.

4.1. FPGA implementation
We implemented the baseline dense GSC network using the XilinxTM software ‘Vitis AI’ [86]. Vitis AI is the pre-
ferred solution for deploying deep learning networks on Xilinx FPGA platforms. Convolution and linear layers
in Vitis AI invoke hand-optimized processing elements (PEs) implemented using RTL. A software compiler
converts a given network, including parameters and weights, into schedules of calls to these PEs.

We implemented our sparse GSC networks using the Xilinx Vivado HLS toolset [83, 84]. Although HLS
uses a C++ compiler (with Xilinx specific pragmas) and does not produce hand-optimized designs, it repre-
sents a faster design path. There was sufficient flexibility in the toolset to implement our sparse designs. We
note however that the results for our sparse networks below would likely be improved using hand-optimized
designs.

We created two pipelined implementations of our sparse network using HLS. The sparse–dense implemen-
tation leveraged weight sparsity in Conv-2 and the linear layer, ignoring sparse activations. The sparse–sparse
implementation leveraged both sparse activations and sparse weights (as described in section 3.3). In the
sparse–dense implementation, the Conv-1 layer was left as fully dense as its profile was small relative to the
other pipeline stages. In the sparse–sparse implementation the other stages became faster and Conv-1 became
a bottleneck. As such we implemented Conv-1 using a sparse–dense strategy (the input to the network is dense,
hence sparse–sparse is not an option for Conv-1).

4.2. Benchmark description
The performance of the three different CNN implementations were tested on two different Xilinx FPGA plat-
forms. The first, the Alveo™ U250 [85], is a high-end card targeted at data centers, while the second, the
UtraScale+™ ZU3EG [87], is a smaller system targeted at embedded applications. Compared to the ZU3EG,
the U250 has 11× the number of system logic cells, about 56× the internal memory, and consumes 9× more
power.

For each CNN network on each FPGA two different experiments were undertaken:
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Table 2. Throughput of single sparse and dense networks on the U250 and
ZU3EG platforms, measured in words processed per second. The dense
network did not fit on the ZU3EG due to its limited resources. All sparse
implementations, regardless of platform, were significantly faster than the
dense network running on the U250. The sparse–sparse implementation was
consistently 2× to 3× faster than the sparse–dense implementation.

FPGA Network
Throughput Speedupplatform implementation

U250 Dense 3049 1.0
Sparse–dense 35 714 11.71
Sparse–sparse 102 564 33.63

ZU3EG Dense 0 —
Sparse–dense 21 053 N/A
Sparse–sparse 45 455 N/A

Figure 10. Performance comparisons between sparse and dense networks: (a) sparse network performance on the U250 relative
to dense, (b) sparse–sparse network performance, relative to sparse–dense, on the U250, (c) sparse–dense network performance
on CPUs using common inference runtimes (relative to a dense network on the same runtime), (d) sparse network performance
on CPUs and FPGAs.

(a) Single network performance: a single network is a pipelined implementation of one GSC network, pro-
cessing a single stream of speech commands.

(b) Full chip performance: multiple network instances are placed on the FPGA until the entire FPGA’s
resources are exhausted, or the design cannot be routed by the software. Multiple input streams are
distributed across the instances, and the inference throughput delivered by the entire chip is reported.

In both experiments, the input data is a repeating sequence of 50 000 pre-processed audio samples. We
chose overall throughput, measured as the total number of input words processed per second, as the primary
performance metric.

4.3. Single network results
Table 2 shows the results of running a single network instance on the U250 and ZU3EG platforms. On the
U250, the sparse–dense implementation achieves over 11.7× the throughput of the dense implementation,
while the sparse–sparse implementation outperforms both the dense and the sparse–dense implementations
by 33.6× and 2.8× respectively (figures 10(a) and (b)).

The dense implementation did not fit on the smaller ZU3EG platform due to the limited resources avail-
able. Both sparse implementations were able to compile and run successfully on the platform due to their
smaller size and lower resource requirements. The sparse–sparse implementation was about 2.1× faster than
the sparse–dense implementation. Interestingly, the sparse–dense implementation on the ZU3EG platform
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Table 3. Full-chip throughput of sparse and dense networks on the U250,
measured in words processed per second. The relatively compact footprint of
the sparse networks allowed the compiler to fit a larger number of networks
per chip. The sparse–sparse implementation was over 100× faster than the
dense implementation.

FPGA Network Total
Throughput Speedupplatform implementation networks

U250 Dense 4 12 195 1.0
Sparse–dense 24 689 655 56.5
Sparse–sparse 20 1369 863 112.3

was still 6.9× faster than the dense implementation on the more powerful U250. This demonstrates the per-
formance benefits associated with sparse networks, and also the potential for sparse networks to open up new
applications in embedded scenarios that were previously impossible.

4.4. Full chip results
Table 3 shows the full-chip throughput results for the U250. The numbers illustrate the performance bene-
fits of sparse networks. In the experiments on the U250, the sparse–sense and sparse–sparse implementations
outperformed the dense implementation by 56.5× and 112.3× respectively (figure 10(a)). The increased per-
formance delta between the dense and sparse implementations can be attributed to the relative compactness
of sparsity allowing significantly more sparse networks to be accommodated on the chip (e.g. 20 sparse–sparse
networks versus four dense networks). This results in the observed increase in aggregate throughput. Only one
copy of each sparse network could fit on the ZU3EG, thus overall throughput on this platform was identical
to that in table 2.

Note that the 20× replication count achieved for the sparse–sparse implementation is lower than the 24×
replication achieved for the sparse–dense. The added complexity of handling sparse activation indices (see
section 3.3.2) increases the FPGA resources required to support the network. Nevertheless, the additional per-
formance benefits associated with exploiting activation sparsity more than outweigh the resource costs, almost
doubling the aggregate throughput.

4.5. Comparisons with CPU inference engines
In this section we report performance gains of our sparse GSC network on a variety of widely available inference
runtimes. The CPU in these experiments is a 3.0 GHz 24-core Intel Xeon 8275CL processor. Figure 10(c)
demonstrates the speedup of the sparse–dense network on these runtimes (relative to the dense network on
the same engine) observed for our GSC CNN network. Most strikingly, both the well-known ONNX Runtime
[58] and OpenVino [30] runtimes fail to exploit sparsity. For the other runtime engines the sparse networks
outperform the dense network, with Neural Magic’s Deepsparse [54] and the Apache TVM providing a 2×
and 3× speedup, respectively. The observed performance gains are relatively modest, considering there is a
20× reduction in the number of non-zero weights.

In figure 10(d), the absolute performance for the sparse networks on the CPU and FPGA are compared.
The results show significant speedups from sparsity on an FPGA with absolute performance over 10× that
currently achievable on a CPU system. None of these runtime engines exploit both sparsity in activations and
weights.

4.6. Power efficiency
In addition to improved inference performance, reduced power consumption is becoming increasingly critical
[69, 72]. Table 4 shows the absolute and relative power efficiency for inference operations. Due to the significant
resource reductions associated with sparse networks, not only has the total throughput improved, but the
power consumed per inference operation has also dropped considerably. It is common to improve throughput
at the expense of increasing energy consumption [72]. Our results demonstrate that sparsity avoids many
unnecessary operations altogether, simultaneously improving throughput and power efficiency.

5. Resource tradeoffs analysis

In the previous section, we discussed end-to-end throughput results for a full network. It became clear during
implementation that a key consideration is the resource usage required to implement the routing and k-WTA
components. In this section we implemented a series of controlled experiments to analyze these resource
tradeoffs in isolation.
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Table 4. Power efficiency of sparse networks on the U250 and ZE3EG FPGAs
in comparison with the dense network baseline. We estimate power efficiency
using a word/sec/watt metric based on worst-case (i.e. total system power of
each platform).

FPGA System Network Number of Words Relative
platform power (W) type networks sec/watt efficiency, %

U250 225 Dense 4 54 100
Sparse–dense 1 158 292
Sparse–dense 24 3065 5675
Sparse–sparse 1 455 842
Sparse–sparse 20 6088 11 274

ZU3EG 24 Dense 0 0 0
Sparse–dense 1 877 1624
Sparse–sparse 1 1893 3505

Figure 11. Overview of a ResNet-50 architecture, illustrating the repeated use of identity and convolutional blocks, and the
increasing number of channels deeper in the network. As can be seen, most of the layers use either 1 × 1 or 3 × 3 kernel sizes. The
very first ‘stem’ layer uses a 7 × 7 kernel size.

In GSC, the convolutional layers employed 5 × 5 kernels. In these experiments we focus on two other
structures, 1 × 1 and 3 × 3 kernel types. These kernel types are typical of a number of common networks
structures, such as the ResNet-50 (figure 11), ResNeXt, and MobileNetV2 networks [26, 66, 82]. We inves-
tigate the resource savings achievable via a combination of activation and weight sparsity applied to these
convolutional layer types. The key questions revolve around how the FPGA resource requirements scale with
weight sparsity, and how this changes as we add in activation sparsity.

5.1. Experiment setup
To investigate whether Complementary Sparsity could be applied generally, we developed the component
shown in figure 5(a) as a set of general-purpose parameterized blocks. For the k-WTA block, K is defined
per instance at compilation time. Three convolutional blocks were developed: a sparse–dense 7 × 7 convo-
lutional block, and separate blocks for 1 × 1 and 3 × 3 sparse–sparse convolutions. The parameterization of
these blocks included: boundary padding size, stride, weight sparsity, and memory bandwidth, as well as input
activation sparsity for the 1 × 1 and 3 × 3 blocks.
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When implementing components on an FPGA there is a great deal of flexibility in choosing how resources
are allocated. There is significant latitude to trade serial processing for parallel processing by allocating suf-
ficient resources to every stage. This in turn makes it challenging to explore both resource utilization and
throughput in a controlled manner. In these implementations, we targeted a fixed throughput for all com-
ponents in order to focus on resources. Our throughput target was chosen to be aggressive without leading
to exploding resources. The primary target stipulated that a 1 × 1 [64:64]2 convolution should be computed
in a single cycle. For a 1 × 1 [64:64] convolution, when weights and activations are dense, 4096 multiplica-
tions and 4096 additions are required to carry out the computation per spatial location. For a sparse–sparse
computation (N = 4 and K = 8), this requirement is reduced to 32 multiplications and 32 additions, making
this aggressive target feasible. Our 3 × 3 [64:64] convolution used nine 1 × 1 convolutions, taking about nine
cycles. The k-WTA layer had a target of one cycle. As sparsity levels varied the compiler automatically allo-
cated the hardware resources to achieve this target, allowing a controlled investigation of resource impact. We
removed bandwidth as a confounding parameter by allocating sufficient memory to meet the target (but see
section 5.5 below for an analysis of bandwidth).

The parameterization and above setup facilitated a systematic analysis of Complementary Sparsity for a
variety of convolutional layers, primarily as a function of weight and activation sparsities. Our goal was to
gain an improved understanding of the resource consumption and its scaling with degree of sparsity. Since
extending sparse architectures to dense configurations is not meaningful, we confine our analysis to k-WTA
activation sparsity �50%, and weight sparsity �50%. These represent reasonable break points between sparse
and dense implementations.

5.2. Resource utilization of sparse–sparse convolution kernels
In figures 12(a)–(c), and 13(a)–(c), we present the resource utilization observed for the convolutional
layers when activation sparsity is increased. In each experiment, we hold the weight sparsity constant,
increase the activation sparsity and report the reduction in resource utilization. Our FPGA implementa-
tions of convolutional layers consume a variety of FPGA resources, including lookup tables (LUTs), flip
flops (FFs), and memory blocks ultraRAMs (URAMs). We found that, for all investigated levels of weight
sparsity, increasing the activation sparsity delivered a significant reduction in the resource utilization across
all FPGA resources. For example, looking a figure 12(a), for a weight sparsity of four non-zeros out of
64-elements (i.e. 60

64 = 93.75% sparse), as the activation sparsity is increased from 16
64 to 8

64 and 4
64 , the

number of LUTs required for the implementation of the 1 × 1 convolution is reduced by 2.7× and 4.1×,
respectively.

It is apparent that, across all levels of weight sparsity investigated, as the level of activation sparsity is
increased, the complexity of the implementations of the convolutional layers is reduced. The degree to which
the resource utilization decreased with increased sparsity is dictated by the resource type and the degree of
weight sparsity. For instance, there is a clear linear relationship between URAMs consumed and the degree of
activation sparsity. This is true for all levels of weight sparsity investigated.

LUTs are used for both routing and implementing multipliers in this design. The LUT count is reduced
as a function of weight sparsity due to the decreased number of multipliers, while conversely there is greater
routing complexity with increased weight sparsity. This latter effect is due to managing larger numbers of con-
solidated sparse weight kernels. Despite these competing factors, the overall LUT count decreases significantly
with weight sparsity.

For FF utilization, the resource savings are more muted at higher weight sparsities. For FFs, which are
primarily used for high bandwidth local storage, there is a baseline quantity for holding input and output
values. The especially muted 3×3 convolution FF resource utilization results illustrated in figure 13(b) reflect
the fact that FFs are also used to buffer intermediate results; the results of the nine internal 1 × 1 operations
are serially accumulated. Therefore the FF utilization scaling as a function of weight sparsity is on top of these
relatively static baselines. However, in many instances we demonstrate a super-linear reduction in resource
utilization. This is rate of reduction is observed because a number of the elements in the implementations of
the convolutions scale non-linearly with the number of non-zero activations; resulting in significant resource
savings as K is decreased.

Figures 14(a)–(c) and 15(a)–(c) show the impact of varying weight sparsity for a fixed activation spar-
sity. In these results, the resource savings are sub-linear. Increases in weight sparsity result in decreases in the
number of multiplies, but as discussed, routing overheads limit these reductions. However, for LUTs, FFs and
URAMs, at any given activation sparsity, increasing the weight sparsity reduces the resource consumed by the
implementation.

2 Our notation [a:b] refers to an input channel count of a and an output channel count of b.
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Figure 12. Impact of activation sparsity on resource utilization for 1 × 1 [64:64] convolution operations for different degrees of
weight sparsity for: (a) LUTs, (b) FFs and (c) URAMs (K and N indicate the number of non-zero elements, reduction in
utilization relative to K = 16).

In summary, for our FPGA implementations using Complementary Sparsity, increasing sparsity (weight,
activation or both) results in more resource efficient implementations, while continuing to meet the stipulated
throughput metric.

5.3. Resource utilization of k-WTA
We also investigated the resource impact of our k-WTA implementations. Here too increasing activation
sparsity resulted in the consumption of fewer hardware resources, as illustrated in figure 16. The resource
utilization was found to decrease almost linearly with the degree of sparsity. This represents an impor-
tant synergy, with the convolutional kernel implementations benefiting from increased levels of activation
sparsity, and the cost of providing the sparse activations decreasing as the level of activation sparsity is
increased.

In figures 17(b) and (a), the combined resource utilization for sparse–sparse convolutions and their asso-
ciated k-WTA components is shown. For both the 1 × 1 and 3 × 3 convolutions, the costs associated with
the k-WTA implement is small compared with the costs associated with the convolutions, especially for the
3 × 3 convolution, where the implementation cost of the convolution is increased, but the k-WTA cost remains
constant.

5.4. Sparsity in the network stem
In addition to the convolutional kernels that form the convolutional and identity blocks in ResNet-50, the
network contains an initial ‘stem’. This stem performs a 7 × 7× 3 (RGB color values) convolution on the input
image [17]. In many sparse implementations, this first convolutional layer is left as a standard dense operation,
because it represents a small part of the overall implementation profile. However, the implementation of this
initial convolution can both require significant hardware resources and dictate overall network throughput.
Although the overall latency of the entire network pipeline will shrink when recast as a sparse implementation,
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Figure 13. Impact of activation sparsity on resource utilization for 3 × 3 [64:64] convolution operations for different degrees of
weight sparsity for: (a) LUTs, (b) FFs, (c) URAMs (K and N indicate the number of non-zero elements, reduction in utilization
relative to K = 16).

the throughput benefits will be capped by this first layer, making an efficient sparse implementation highly
desirable.

Complementary Sparsity can be successfully applied to this stem convolution, but, because the inputs to
this first layer are dense images, a sparse–sparse implementation is not feasible. However, a weight-sparse
implementation on an FPGA provides a considerable performance benefit: in our implementations, by increas-
ing the weight sparsity (from N = 9 to N = 5) by 1.8×, we increased throughput by 1.6×. In this layer we
chose to implement Complementary Sparsity in the spatial dimensions. We also imposed block sparsity con-
straints, with the three-element input dimension being treated as a block, either fully non-zero or completely
zero.

The first layer of most DNNs process a dense input data stream and will only be able to exploit weight
sparsity in a sparse–dense configuration. If the rest of the DNN is implemented as sparse–sparse layers those
layers will see large performance gains. As an unexpected result, in pipelined implementations we find that
the first layer’s throughput will often dictate the maximum throughput of the network. To increase overall
throughput, in FPGAs it is possible to increase the parallelism of the first layer, such that its sparse–dense layer
latency is less than or equal to the highest latency sparse–sparse layer. This additional resource cost is made
up by the resource gains achieved in the rest of the network. As a general rule, we find that the large gains
achieved by a sparse–sparse implementation warrant careful profiling of the rest of the system as unexpected
bottlenecks can emerge.

5.5. Sparse–sparse memory bandwidth considerations
Memory represents a scarce resource, and its efficient utilization is a key contributor to the success of
sparse–sparse implementations. Two factors dictate memory utilization on the FPGA. The first is simply dic-
tated by the capacity required to retain the relevant weight elements. Second is the requirement for sufficient
memory bandwidth to extract all needed weight elements on a per-cycle basis. This bandwidth requirement
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Figure 14. Impact of weight sparsity on resource utilization for 1 × 1 [64:64] convolution for different degrees of activation
sparsity for: (a) LUTs, (b) FFs and (c) URAMs (K and N indicates the number of non-zero elements, reduction in utilization
relative to K = 16).

is dictated both by the number of weights that need to be fetched for each activation and the number of
activations that are processed in parallel:

(a) Weight sparsity: for each non-zero activation, the elements from the corresponding compacted dense
weight kernels are processed in parallel. As weight sparsity is increased (i.e. smaller N), the width of the
port required to support the parallel read of all the associated data decreases linearly.

(b) Activation sparsity: processing for each non-zero activation requires an independent lookup. If activa-
tions are processed in parallel, each operation requires its own memory port. As activation sparsity is
increased (i.e. smaller K), the number of memory ports falls linearly.

On FPGAs, memory bandwidth requirements are served by numerous relatively small tightly coupled
memories (TCM) that are implemented as static RAMs. On Xilinx platforms, URAMs are dual-ported, with
a port width of 72 bits and a capacity of 288 Kbits (4096 locations). In our implementation, memory require-
ments for the first few stages of a network such as ResNet-50 will be driven by bandwidth rather than capacity.
In order to achieve the stipulated throughput target, weights must be distributed across a larger number of
URAMs than would be dictated by storage capacity requirements alone. The memory bandwidth required to
support the computation of a 1 × 1 [64:64] convolution in a single cycle (i.e. fully parallelize [64:64] channel
dot products) necessitates multiple dual-ported URAMs. As a result, the storage capacity of each URAM unit
is relatively underutilized.

In summary, in this experiment where we employ a high degree of parallel computation to make an
aggressive but fixed throughput target, sufficient local memory bandwidth is key. The pattern of access is not
predictable, due to the dynamic selections of the k-WTA module. Although this disrupts location access coher-
ence, the rate of access is predictable. This rate is a combined function of both weight and activation sparsity.
Compared to an equivalent fully parallel dense network, sparse–sparse networks deliver significant reductions
in both the number and capacity of FPGA TCMs, and the associated bandwidth.
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Figure 15. Impact of weight sparsity on resource utilization for 3 × 3 [64:64] convolution operations for different degrees of
activation sparsity for: (a) LUTs, (b) FFs, (c) URAMs (K and N indicate the number of non-zero elements, reduction in
utilization relative to N = 16).

Figure 16. Impact of activation sparsity levels on k-WTA resource utilization (K indicates the number of non-zero elements,
reduction in utilization relative to K = 32).

6. Discussion

Over the last decade there has been significant attention focused on accelerating DNNs using FPGAs and other
architectures, including convolutional networks [18]. In this section we compare our approach to research that
is closest to our work, discuss some of the issues that arise in deploying our solution to complex networks, and
suggest some directions for future work.
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Figure 17. Total resource utilization of convolution operations and associated k-WTA components (for N = 8 and k = 8).
k-WTA consumes a relatively small percentage of LUTs and FFs, and no URAMS.

6.1. Accelerating sparse DNNs on FPGAs
With Complementary Sparsity we demonstrated that sparse filter kernels can be interleaved such that mul-
tiple convolutional kernels are processed simultaneously. A related idea has appeared in [39] where they
compact columns of a weight matrix used in a matrix multiply implementation of convolution, which is
then processed through a bit-serial systolic array. As such they can reduce the number of MAC opera-
tions by a factor of 8 (see below for additional discussion on systolic arrays). They also discuss a pro-
cess for creating an interleaved weight matrix by incrementally pruning and compacting during train-
ing. Although they did not explicitly discuss sparse–sparse optimizations, their compaction technique
could potentially be adapted for creating complementary sparse kernels that are compatible with our
implementation.

In [90] the authors implement both sparse training and inference on FPGAs. By implementing unstruc-
tured pruning and a fine-grained dataflow approach they demonstrate a 1.9× overall improvement in
performance due to sparsity. Their unstructured pruning approach is not compatible with Complemen-
tary Sparsity, as our approach requires precisely non-overlapping weights. Although we have not demon-
strated training speedups, our technique leads to significantly higher inference throughput than their
technique.

There have been a number of papers investigating sparse–dense network implementations on FPGAs.
Employing either weight [10, 16, 20, 31, 34, 39, 92] or activation sparsity [2], they show it is possible to
reduce the number of MAC operations by routing a subset of the dense values to the sparse set of operands at
the processing units. This can be done either via multi-ported memories [16] or multiplexor networks [20].
Although reducing the number of multiplies results in power savings, these techniques typically perform only
one dot product at a time in each processing unit. Unlike these methods, Complementary Sparsity makes full
use of dense activations and sparse weights. Each activation is paired with a corresponding weight value which
allows multiple dot products to be performed every cycle and enables fully parallel operations. In addition,
Complementary Sparsity provides a path to sparse–sparse implementations.

6.2. Accelerating sparse networks on other platforms
Recognizing that hardware limitations have held back the deployment of sparse networks [29], there has been
increasing interest in accelerating sparsity on GPU platforms. It is possible to extract meaningful performance
gains with block-sparse kernels by implementing large blocks, of size 32 × 32 or larger [24] with a potential
negative impact on accuracy. In [21] CSR based techniques are used to accelerate common DNN networks such
as MobileNet [66]. However, the end to end performance gains are limited and restricted to about 1.2× and
2× increase over the dense implementations, respectively. Recently NVIDIA has introduced native support for
sparsity in their Ampere [52] architecture. In Ampere there is a limit of 50% sparsity and end-to-end gains are
modest at about 1.3× faster than dense. To date, GPU based techniques are limited in their ability to achieve
significant performance gains on full networks. In addition they do not provide a path to exploiting both sparse
activations and sparse weights.
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For sparse–sparse networks, when both weight and activation sparsity are employed [11, 22, 32, 49, 76, 77],
it is difficult to efficiently pair the non-zero weight and activations. In [78] the authors discuss modifi-
cations that could be made to NVidia’s Volta Tensor Core to support unstructured weight and activation
sparsity. Many emerging solutions are based around 2D systolic arrays of processing units, on both FPGAs
and custom ASIC designs. Here each processing unit performs a check for either matching indices [32,
49] or non-zeros [11] as the weight and activation values are streamed through the systolic array. One
concern with this approach is overall performance. With Complementary Sparsity we are able to paral-
lelize computation such that we can execute an entire 1 × 1 conv block, representing many sparse ker-
nels, in one cycle. Systolic arrays fundamentally require several cycles to flow through the weights and
activations. This process would then have to occur for each sparse kernel, thereby limiting their perfor-
mance gains. Finally, implementing them efficiently often requires the costly development of specialized
hardware. In contrast, Complementary Sparsity can deliver performance gains today on currently available
hardware.

In our implementation we use k-WTA to achieve activation sparsity. Another approach is to remove entire
channels in convolutional layers during training through a structured pruning process [19, 44, 73]. In [19]
they notice that activations naturally become sparse during training and use a measure of sparsity to grad-
ually prune channels. In [73] the method is extended to incorporate mixed precision quantization based on
activation sparsity and then evaluated on a hardware simulation platform. At a high level our approach is
complementary to theirs and can be combined to achieve even greater speedups. k-WTA can be applied to the
channel-pruned models as can weight sparsity. However, since the pruned models presumably have less redun-
dancy, larger values of K may be required. Finding the balance between these two complementary approaches
is an interesting area of future research.

In this paper we have focused on standard DNNs. Spiking neural networks (SNNs) represent an alternate
formalism that offers significant potential for performance improvements [23, 63]. SNNs model neurons using
an analog, continuous time, framework. Neurons in SNNs have high temporal sparsity, i.e., they rarely become
active. Hardware chips are emerging that exploit this characteristic to create event-based systems that achieve
significant energy efficiencies [15, 63]. SNNs historically have been unable to match the accuracy of DNNs
on complex tasks, an issue that has held back their wide-scale deployment. This problem is an active area of
research, with promising recent results [36, 71], including approaches that attempt to model the temporal
sparsity of SNNs in DNN systems [89].

There exist a number of emerging hardware architectures for exploiting sparsity. In [35] the authors
review different factors for DNNs, including activation and weight sparsity, and compare a large set of
architectures. They suggest that analog crossbar-based architectures represent the most promising direc-
tion. This is also investigated in [4] where they review memristors, memristive crossbars, FPGAs, and SNNs
for embedded healthcare applications. Another approach is to implement a scatter-compute-gather module
to aggregate operands based upon the indices of their non-zero values [77]. In [94] the authors imple-
mented a completely custom memristor-based mixed signal architecture. They demonstrate large performance
gains and energy efficiencies for embedded applications using a biologically inspired sparse–sparse learning
algorithm.

6.3. Deploying complex sparse–sparse systems
Our results indicate that it is possible to create convolutional networks that exploit both sparse activations
and sparse weights. In this article we presented results for an end-to-end speech network as well as the core
components used in most convolutional networks. Although these components can form the foundation for
building many networks, modern convolutional networks often contain a large number of layers and a variety
of structures. In these networks a number of other issues come into play when designing end-to-end sys-
tems. These issues, outlined below, are important design considerations in implementing efficient commercial
systems based on Complementary Sparsity.

Channel partitioning. The number of channels associated with the convolutional kernels is not constant
and often increases for the deeper layers. For example, in a Resnet-50, layers start with 64 channels, but
this increases to 2048, as illustrated in figure 11. However, as explicitly noted in [26], the feature map size is
reduced correspondingly, keeping the computational requirements roughly constant. In ResNet-50, all convo-
lution operations can be decomposed into groups of 64 dot-products between 64 element vectors, enabling the
increasing channel dimension to be handled by the repeated use of our modular [64:64] channel blocks. Our
implementation of the k-WTA operator also processes the output of the convolutions in units of 64 elements,
enabling the modular construction of the ResNet-50 layers.

Pipeline latency balancing. When balancing the pipeline of an implementation with multiple layers, carefully
‘right-sizing’ the layers is important to maximize efficiency and minimize resource utilization. This in partic-
ularly important in sparse–sparse networks. As discussed in section 5.4 we find that the large gains achieved
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by Complementary Sparsity can lead to unexpected bottlenecks in other areas, such as the initial stem layer.
For dense implementations, the main option is a choice between serial or parallel implementations. However,
for sparse networks, we also have an additional option. Increasing weight and/or activation sparsity for a given
layer translates into reductions in compute operations per layer, reducing (serial) latency, and reducing the
memory bandwidth required to supply the operands to the computation.

Training accuracy. An important issue, outside the focus of this article, is the ability to train sparse–sparse
networks that have sufficient accuracy while retaining high sparsity. As discussed in section 2.2 research in
training sparse networks has increased significantly. Of particular interest is the ability to learn the mask itself.
Using such adaptive techniques it is now possible to create accurate networks with 90% sparsity on ImageNet
[17] and Transformers [13]. Most of the training work has focused on weight sparsity with a few papers focused
on activation sparsity. There is relative lack of research on networks that have both forms of sparsity (exceptions
are [1, 94]). In some scenarios networks trained without explicit activation sparsity end up with highly sparse
activations anyway [8, 19, 20, 33]. This is encouraging because it suggests that sparse activations may naturally
be an optimal outcome. We hope the performance results shown in this article will help lead to additional
research on sparse–sparse networks.

6.4. Future directions
We have presented an initial set of results on Complementary Sparsity, and there are a number of areas for
future research. Our technique currently imposes restrictions on the weights that do not clearly map to neu-
roscience. Connectivity in the brain is thought to have properties such as a small-world structure and locality
[7, 80] that could be very beneficial in hardware implementations. It would be interesting to see if there exist
Complementary Sparsity patterns which more closely mimic biological wiring patterns. Our activation spar-
sity mechanism, k-WTA, is directly inspired by neuroscience but is sub-optimal from a coding standpoint.
A more optimal code, such as those described in [64, 67] would increase the overall sparsity in activations
and increase the impact of sparse–sparse. It would be interesting to see if these more optimal sparse coding
methods can be implemented efficiently in hardware.

Another direction is to look beyond convolutional networks and apply Complementary Sparsity to other
important architectures, such as Transformers [74], and Deep Recommender systems [91]. This will require
a greater focus on linear layers, where it is possible to overlay multiple rows or columns from a layer’s sparse
weight matrix. A second promising direction is to leverage our FPGA designs to create hardened IP blocks for
a variety of ASICs. A third area is to consider the application of Complementary Sparsity to existing hardware
platforms beyond FPGAs [68].

Finally, it would be interesting to see if Complementary Sparsity can be used to accelerate the training of
sparse–sparse networks. In this paper we showed that the feedforward pass, one of the main steps in training,
can be accelerated. Two additional steps are the accumulation of forward gradients and the backward pass itself.
The number of non-zero gradients reduces in multiplicative fashion with the weight and activation sparsities,
and the loop structure of the backward pass is the transpose of the forward pass. As a result in principle all
phases of training should see significant speedup through Complementary Sparsity. Structured pruning steps
[19, 44, 73], as discussed earlier, can also be folded in to further accelerate training. These techniques may
require highly flexible circuitry, and as such, FPGAs may serve as a better platform than GPUs for developing
these ideas. Overall we believe there is significant potential to increase training speed using sparse–sparse
approaches.

7. Conclusions

In this article, inspired by the high levels of sparsity in the brain, we investigate the performance benefits of
DNNs that exploit both weight and activation sparsity. Using a novel technique that we term Complemen-
tary Sparsity we show that it enables highly efficient sparse–dense and sparse–sparse networks. Using FPGAs
we demonstrate that individual sparse–sparse networks can outperform standard dense DNN networks by
over 30×. We further illustrate that sparse–sparse networks can be implemented using far fewer hardware
resources than their dense counterparts, and that the resource requirements are inversely proportional to the
degree of sparsity. This frugal use of resources allows 5× more networks to be accommodated on an FPGA,
delivering a full-chip throughput over 110× higher than the corresponding dense networks. Complementary
Sparsity also enables the deployment of DNNs on smaller embedded platforms than previously possible. To our
knowledge, we are the first to report such dramatic benefits for both sparse–dense and sparse–sparse networks
on FPGAs.
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