Table of contents

Volume 33

Number 49, 3 December 2022

Previous issue Next issue

Buy this issue in print

Perspective

492501

, , and

The development of a functional nervous system requires neurons to interact with and promptly respond to a wealth of biochemical, mechanical and topographical cues found in the neural extracellular matrix (ECM). Among these, ECM topographical cues have been found to strongly influence neuronal function and behavior. Here, we discuss how the blueprint of the architectural organization of the brain ECM has been tremendously useful as a source of inspiration to design biomimetic substrates to enhance neural interfaces and dictate neuronal behavior at the cell-material interface. In particular, we focus on different strategies to recapitulate cell-ECM and cell–cell interactions. In order to mimic cell-ECM interactions, we introduce roughness as a first approach to provide informative topographical biomimetic cues to neurons. We then examine 3D scaffolds and hydrogels, as softer 3D platforms for neural interfaces. Moreover, we will discuss how anisotropic features such as grooves and fibers, recapitulating both ECM fibrils and axonal tracts, may provide recognizable paths and tracks that neuron can follow as they develop and establish functional connections. Finally, we show how isotropic topographical cues, recapitulating shapes, and geometries of filopodia- and mushroom-like dendritic spines, have been instrumental to better reproduce neuron–neuron interactions for applications in bioelectronics and neural repair strategies. The high complexity of the brain architecture makes the quest for the fabrication of create more biologically relevant biomimetic architectures in continuous and fast development. Here, we discuss how recent advancements in two-photon polymerization and remotely reconfigurable dynamic interfaces are paving the way towards to a new class of smart biointerfaces for in vitro applications spanning from neural tissue engineering as well as neural repair strategies.

Papers

Quantum phenomena and technology

495001
The following article is Open access

, , , , and

We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions. The technique involves the resistive boundary conditions, the separation of variables in the local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and threshold values of the gain index that complement the full-wave computations. For the dimer, we derive separate determinantal equations for four different classes of symmetry of the lasing supermodes and solve them numerically. Our investigation of the mode frequencies and thresholds versus the graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than 10 μm, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes comparable to the radius. These results open a way for building essentially single-mode plasmonic nanolasers and their arrays and suggest certain engineering rules for their design.

Biology and medicine

495101

In this study, PLGA-NPs coated with folic acid-chitosan (PCF-NPs) loaded with Peganum harmala smoke extract (PSE) were synthesized (PSE-PCF-NPs), and their anti-cancer effects were evaluated. PSE-PCF-NPs were synthesized by the nanoprecipitation method and then characterized by DLS, SEM, and FTIR methods. HPLC and UV–vis spectroscopy were used to evaluate the PSE's folic acid (FA) binding and encapsulation. PSE-PCF-NPs-mediated cell viability and apoptosis were investigated by MTT, qPCR, flow cytometry, AO/PI, and DAPI staining. Anti-oxidant properties of PSE-PCF-NPs were evaluated by ABTS, DPPH, FRAP, and ROS. Angiogenic effects of PSE-PCF-NPs were assessed by CAM assay. The PSE-PCF-NPs (276.16 nm, PDI: 0.25, zeta-potential: +32.31 mV, FB: 67.6% and %EE: 89%) demonstrated selective toxicity on MCF-7 cells (IC50: 75.65 μg ml−1). The occurrence of apoptosis in MCF-7 cells was confirmed by up-regulation of P53, Cas-3, and Cas-9 genes, increased SubG1 phase cells, and the results of fluorescent staining. Scavenging free radicals, reducing iron ions, increasing intracellular ROS, and decreasing SOD gene confirmed the anti- and pro-oxidant effects of PSE-PCF-NPs outside and inside MCF-7 cells. Reduction of angiogenic factors in CAM assay showed the anti-angiogenic effects of PSE-PCF-NPs. PSE-PCF-NPs, due to their anti-cancer properties, can be considered a therapeutic agent in cancer studies.

495102

, , , and

Soft nanoparticles (NPs) have recently emerged as a promising material for intracellular drug delivery. In this regard, NPs derived from polydimethylsiloxane (PDMS), an FDA approved polymer can be a suitable alternative to conventional soft NPs due to their intrinsic organelle targeting ability. However, the available synthesis methods of PDMS NPs are complicated or require inorganic fillers, forming composite NPs and compromising their native softness. Herein, for the first time, we present a simple, robust and scalable strategy for preparation of virgin sub-50 nm PDMS NPs at room temperature. The NPs are soft in nature, hydrophobic and about 30 nm in size. They are stable in physiological medium for two months and biocompatible. The NPs have been successful in delivering anticancer drug doxorubicin to mitochondria and nucleus of cervical and breast cancer cells with more than four-fold decrease in IC50 value of doxorubicin as compared to its free form. Furthermore, evaluation of cytotoxicity in reactive oxygen species detection, DNA fragmentation, apoptosis-associated gene expression and tumor spheroid growth inhibition demonstrate the PDMS NPs to be an excellent candidate for delivery of anticancer drugs in mitochondria and nucleus of cancer cells.

Electronics and photonics

495201

, , , , , , and

The artificial synapses are basic units in the hardware implementation of neuromorphic computing, whose performances should be gradually modulated under external stimuli. The underlying mechanism of the increasing and decreasing device conductance is still unclear in the Hf0.5Zr0.5O2 based synapses. In this study, the Hf0.5Zr0.5O2 capacitors with different stack orders are fabricated in atomic layer deposition, whose ferroelectric properties are investigated by analyzing the capacitance–voltage and polarization-voltage curves. The enhanced ferroelectricity is found after the rapid thermal annealing treatment for all the TiN/Hf0.5Zr0.5O2/TiN, TiN/HfO2-ZrO2/TiN and TiN/ZrO2-HfO2/TiN devices. In the device with poor ferroelectricity, the conductance gradually decreases under both positive and negative identical pulse schemes, which corresponds to the gradual dissolution process of the conductive filaments established in the initial pulse. For the capacitors with strong ferroelectricity, dual-direction conductance modulation can be observed due to the partial domain switching process, which can emulate the potentiation and depression process of biological synapses.

495202

, , , , , , , , , et al

NH-μLED, namely a micro light-emitting diode structure with nano-holes dug all the way through the active region, is designed to make silver nanoparticles in extremely close contact with the quantum wells for improving the coupling between the localized surface plasmon and the quantum wells (LSP-QWs coupling) and thus enhancing the optical properties of the μLED. The experimental results show that, thanks to this deep nanohole structure, the LSP-QWs coupling can be realized effectively, which ultimately increases the optical performance of the μLED. The internal quantum efficiency of the NH-μLED filled with silver nanoparticles is increased by 12%, and the final optical output power is also enhanced. We have further carried out a comparison study which measures the transient lifetime of two different types of μLEDs, and the results provide convincing evidence for the existence of the ultra close range LSP-QWs coupling effect.

495203

, , , , and

The incidence of intra-flake heterogeneity of spectroscopic and electrical properties in chemical vapour deposited (CVD) WS2 flakes is explored in a multi-physics investigation via spatially resolved spectroscopic maps correlated with electrical, electronic and mechanical properties. The investigation demonstrates that the three-fold symmetric segregation of spectroscopic response, in topographically uniform WS2 flakes are accompanied by commensurate segmentation of electronic properties e.g. local carrier density and the differences in the mechanics of tip-sample interactions, evidenced via scanning probe microscopy phase maps. Overall, the differences are understood to originate from point defects, namely sulfur vacancies within the flake along with a dominant role played by the substrate. While evolution of the multi-physics maps upon sulfur annealing elucidates the role played by sulfur vacancy, substrate-induced effects are investigated by contrasting data from WS2 flake on Si and Au surfaces. Local charge depletion induced by the nature of the sample-substrate junction in case of WS2 on Au is seen to invert the electrical response with comprehensible effects on their spectroscopic properties. Finally, the role of these optoelectronic properties in preserving valley polarization that affects valleytronic applications in WS2 flakes, is investigated via circular polarization discriminated photoluminescence experiments. The study provides a thorough understanding of spatial heterogeneity in optoelectronic properties of WS2 and other transition metal chalcogenides, which are critical for device fabrication and potential applications.

495204

, , , , , , , and

Phase-change optical device has recently gained tremendous interest due to its ultra-fast transmitting speed, multiplexing and large bandwidth. However, majority of phase-change optical devices are only devoted to on-chip components such as optical tensor core and optical main memory, while developing a secondary storage memory in an optical manner is rarely reported. To address this issue, we propose a novel phase-change optical memory based on plasmonic resonance effects for secondary storage applications. Such design makes use of the plasmonic dimer nanoantenna to generate plasmonic resonance inside the chalcogenide alloy, and thus enables the performance improvements in terms of energy consumption and switching speed. It is found that choosing height, radius, and separation of the plasmonic nanoantenna as 10 nm, 150 nm, and 10 nm, respectively, allows for a write/erase energies of 100 and 240 pJ and a write/erase speed of 10 ns for crystallization and amorphization processes, respectively. Such performance merits encouragingly prevail conventional secondary storage memories and thus pave a route towards the advent of all-optical computer in near future.

Patterning and nanofabrication

495301

, , , , and

The self-ordered anodic aluminium oxide (AAO) structure consists of micron-scale domains—defect-free areas with a hexagonal arrangement of pores. A substantial increase in domain size is possible solely by pre-patterning the aluminium surface in the form of a defect-free hexagonal array of concaves, which guide the pore growth during subsequent anodization. Among the numerous pre-patterning techniques, direct etching by focused gallium ion beam (Ga FIB) allows the preparation of AAO with a custom-made geometry through precise control of the irradiation positions, beam energy, and ion dosage. The main drawback of the FIB approach includes gallium contamination of the aluminium surface. Here, we propose a multi-step anodizing procedure to prevent gallium incorporation into the aluminium substrate. The suggested approach successfully covers a wide range of AAO interpore distances from 100 to 500 nm. In particular, anodization of FIB pre-patterned aluminium in 0.1 M phosphoric acid at 195 V to prepare AAO with the interpore distance of about 500 nm was demonstrated for the first time. The quantification of the degree of pore ordering reveals the fraction of pores in hexagonal coordination above 96% and the in-plane mosaicity below 3° over an area of about 1000 μm2. Large-scale defect-free AAO structures are promising for creating photonic crystals and hyperbolic metamaterials with distinct functional properties.

Energy at the nanoscale

495401

, , , , , , and

The rapid development of the internet of things is accompanied by a large number of equipment deployment. When the equipment fails or reaches its service life, tons of e-waste will be generated. Therefore, there is an urgent need to find environmentally friendly and effective ways to recycle and treat e-waste. In this paper, a method of classification detection and resource utilization of waste electronic components based on the triboelectric nanogenerator (TENG) is proposed, which provides a novel idea for electronic waste treatment. We studied the output voltage characteristics of different kinds of TENG based on waste electronic components subject to different environmental loadings. The output characteristics of TENG are explored, reflecting the e-waste categories and processing environment. TENG is also connected with hundreds of light-emitting diodes (LEDs) through rectifier bridge circuit, and the output performance of TENG is characterized by the number and intensity of LEDs.

495402

, , , , and

Solar-driven photoelectrochemical (PEC) water splitting for hydrogen generation is regarded as a sustainable strategy to relieve fossil resource issue. However, its PEC conversion efficiency still suffers from the low light absorption and high electron–hole recombination. Herein, we report 1D/2D hierarchical heterostructured photoelectrode constructed by ordered ZnO nanorod array and intimately attached ultra-thin Hematene (thickness of monolayer: 1–2 nm) for effective PEC water oxidation with visible light irradiation. The onset potential of Hematene/ZnO NRs photoanode (0.28 V versus RHE) for PEC water oxidation has an obvious negative shift compared with that of ZnO NRs (0.32 V versus RHE) indicating the enhanced PEC kinetics. Furthermore, reduced charge transport resistance (18.82 KΩ cm−2), a high carrier density of 9.03 × 1018 cm−3 and the resulting significantly enhanced incident photon-to-current efficiency enhancement compared with ZnO NRs photoanode were obtained for Hematene/ZnO NRs photoanode. All these were ascribed to the formation of large built-in electric field which was arising from the charge redistribution at the ZnO and Hematene interface, and the band alignment engineering between the components. In summary, such interfacial engineering may inspire the future development of 1D/2D hierarchical heterostructured photoanodes in the field of PEC water splitting.

495403

, , , and

The number of MXene layers plays a crucial role in their performance when they are used as anode materials for sodium-ion batteries. Herein, Ti-based nitride MXenes with different layers, TixNx−1O2 MXene (x = 2, 3, 4) structures, were constructed to calculate the structural stability of their precursor, electronic properties after etching, and sodium storage behavior compared with the common Ti2CO2 and Ti3C2O2 MXene. First-principles calculations indicate that nitride MXenes possess a better rate capability than carbide MXenes of the same thickness. Moreover, the barrier for Na diffusion on the Ti2NO2 MXene surface (0.114 eV) is lowest. Meanwhile, comparing the properties of three nitride MXenes with different thicknesses, Ti2NO2 MXene performs relatively well with a high theoretical capacity with 756 mAh g−1 and a lower open circuit voltage of 1.1 V. In conclusion, the performance improvement of nitride MXene is not linear with thickness, because that of Ti3N2O2 MXene is relatively weaker. This work lays the foundation for the feasibility of Ti3N2Tx experimental preparation and provides corresponding evidence on the choice of MXene thickness. More attention should be paid to the etching method for Ti2NTx MXene.

495404

, , , , and

3D porous electrodes have been considered as a new paradigm shift for increasing the energy storage of pseudocapacitive micro-supercapacitors for on-chip electronics. However, the conformal deposition of active materials is still challenging when highly porous structures are involved. In this work, we have investigated the atomic layer deposition (ALD) of ruthenium dioxide RuO2 on porous Au and Pt architectures prepared by hydrogen bubble templated electrodeposition, with area enlargement factors ranging from 400 to 10 000 cm2/cm2. Using proper ALD conditions, a uniform RuO2 coverage has been successfully obtained on porous Au, with a specific electrode capacitance of 8.1 mF cm−2 and a specific power of 160 mW cm−2 for a minute amount of active material. This study also shows the importance of the chemical composition and reactivity of the porous substrate for achieving conformal deposition of a ruthenium oxide layer.

Materials: synthesis or self-assembly

495601

, , , , , , and

In this study, spray pyrolysis; an aerosol processing technique was utilized to produce a mixed-phase copper on carbon (Cu/CuxO@C) catalyst. The catalyst production was performed via chemical reduction of copper nitrate by a reducing sugar, i.e. glucose, using aqueous solution. The physical and chemical properties of the produced particles was assessed using various characterization techniques. The synthesis temperature had pronounced effect on the final particles. Since CO2 adsorption onto the catalyst is an important step in catalytic CO2 reduction processes, it was studied using thermogravimetric and temperature programmed desorption techniques. Additionally, photocatalytic activity of the particles was evaluated by gas-phase oxidation of acetylene gas which revealed excellent activity under both UV and visible light irradiation indicating the possible use of wider range of the solar spectrum.

495602

, , , and

An essential prerequisite for successful solution blow spinning (SBS) is the presence of effective molecular entanglements of polymers in the solution. However, the fabrication of biopolymer fibers is not as straightforward as synthetic polymers. Particularly for biopolymers such as pectin, molecular entanglements are essential but insufficient for successful spinning through the SBS production method. Such a challenge is due to the biopolymer's complex nature. However, incorporating an easily spinnable polymer precursor, such as polyacrylonitrile (PAN), to pectin effectively enabled the production of fibers from the SBS process. In this process, PAN-assisted pectin nanofibers are produced with average diameters ranging from 410.75 ± 3.73 to 477.09 ± 6.60 nm using a feed flow rate of 5 ml h−1, air pressure of 3 bars, syringe tip to collector distance at 30 cm, and spinning time of 10 min. PAN in DMSO solvent at different volume ratios (i.e. 35%–55% v/v) was critical in assisting pectin to produce nanofibers. The addition of a high molecular weight polymer, PAN, to pectin also improved the viscoelasticity of the solution, eventually contributing to its successful SBS process. Furthermore, the composite SBS-spun fibers obtained suggest that its formation is concentration-dependent.

495603

, , , , , and

The growing concern about microorganism infections, especially hospital-acquired infections, has driven the demand for effective and safe agents in recent years. Herein, novel nanocomposites were prepared based on layered double hydroxides (LDH NPs), Fe2O3 nanoparticles (Fe2O3 NPs), and chitosan hydrogel beads in different concentrations. The characteristics and composition of the prepared materials were investigated by various techniques such as XRD, FESEM, and FTIR. The results indicate that the nanocomposites are synthesized successfully, and each component is present in hydrogel matrixes. Then, their biomedical properties, including antibacterial, antifungal, and antioxidant activity, were examined. Our findings demonstrate that the antimicrobial activity of nanocomposites significantly depends on the concentration of each component and their chemical groups. It shows itself in the result of the inhibitory zone of all bacteria or fungi samples. The obtained results indicate that the nanocomposite of Chitosan-hydrogel beads with 20% LDH and Fe2O3 (CHB-LDH-Fe2O3%20) and Chitosan-hydrogel beads based on 20% LDH (CHB-LDH%20) showed excellent antibacterial and antifungal properties against all tested bacteria and fungi (P ≤ 0.01). In addition, the antioxidant effects of the synthesized materials (especially CHB-LDH Fe2O3%20 and CHB-LDH%20) were investigated, showing high antioxidant efficacy against DPPH free radicals (P ≤ 0.01). According to our findings, we can say that these materials are promising biomaterials for inhibiting some infectious bacteria and fungi.

Materials: properties, characterization or tools

495701

, and

In this paper, a promising acoustic structure for noise reduction was prepared, in which microperforated nanofibrous resonant membrane together with nonwovens were used. The role of microperforated nanofibrous film, the effect of perforation parameters, cavity and the assembly sequence of the composite fibrous structure on sound absorption performance has been studied. This structure effectively combined the porous sound absorbing, micro-perforated absorbing and membrane resonance mechanisms, which can improve the sound absorbing performance without weight and thickness penalty offering a competitive advantage in noise reduction. In addition, the composite materials exhibited favorable performance in a wide-frequency regime under the condition of appropriate assembly sequence and perforation parameters.

495702

, , , , and

Carbon impurity as point defects makes key impact on the leakage in GaN-on-Si structures. GaN-based epitaxial layers with different point defects by changing carbon-doped concentration were used to investigate the point defects behavior. It was found that leakage mechanisms correspond with space-charge-limited current models at low voltages, and after 1st kink, electron injection from silicon to GaN and PF conduction play a key role in the leakage of both point defects case with low carbon and high carbon doped. In addition, high carbon in GaN-on-Si epitaxial layers obtained lower leakage and larger breakdown voltage. The slope of log JV has two kinks and effective energy barrier Ea has two peaks, 0.4247 eV at about 300 V and 0.3485 eV at about 900 V, respectively, which is related to accepted states and donor states related with carbon impurity. While the slope of log JV has one kink and effective energy barrier Ea has one peak, 0.4794 eV at about 400 V of low carbon in GaN-on-Si epitaxial layers, indicating only field-induced accepted ionized makes impact on leakage. The comparative results of more donor trap density in high carbon indicate point defects related with carbon impurity play a key role in the kinks of log JV slope.

495703

, and

Herein, we demonstrate a microwave-assisted chemical reduction technique to exfoliate a few layers of graphene from the natural waste material, 'coconut shell'. The microwave irradiation coconut shell is subjected to structural, morphological and functional groups characterization methods including SEM, Raman, FTIR and XPS spectroscopic analyses. The formation of biomass reduced graphene (BRG) has been confirmed through Raman and FTIR spectroscopic analyzes with the presence of D, G and 2D and other functional spectral bands, respectively. The surface topography of the BRG exhibits two-dimensional mat structures with wrinkle topography, imaged by electron microscopic techniques. The metallic behaviour of the BRG is evaluated by band structure calculation using density functional theory. The synthesized nanostructure has been evaluated for exhaled diabetic breath sensing application by fabricating sensor device on the paper-based substrate by roll-to-roll coating technique. The BRG sensor exhibited enhanced sensing response at a very lower concentration of diabetic biomarker with long term stability and rapid response/recovery time of 1.11 s/41.25 s, respectively. Based on our findings, the microwave-assisted BRG is a potential candidate for fabricating highly scalable, inherently safe, economically viable and excellent sensing performance to detect exhaled diabetic breath at room temperature.

495704
The following article is Open access

, , and

Polymer-assisted wet transfer of chemical vapor deposited (CVD) graphene has achieved great success towards the true potential for large-scale electronic applications, while the lack of an efficient polymer removal method has been regarded as a crucial factor for realizing high carrier mobility in graphene devices. Hereby, we report an efficient and facile method to clean polymer residues on graphene surface by merely employing solvent mixture of isopropanol (IPA) and water (H2O). Raman spectroscopy shows an intact crystal structure of graphene after treatment, and the x-ray photoelectron spectroscopy indicates a significant decrease in the C–O and C=O bond signals, which is mainly attributed to the removal of polymer residues and further confirmed by subsequent atomic force microscopy analysis. More importantly, our gated measurements demonstrate that the proposed approach has resulted in a 3-fold increase of the carrier mobility in CVD graphene with the electron mobility close to 10 000 cm2 V−1 S−1, corresponding to an electron mean free path beyond 100 nm. This intrigues the promising application for this novel method in achieving ballistic transport for CVD graphene devices.

495705

, , , and

In this paper, natural organic honey embedded with carbon nanotubes (CNTs) was studied as a resistive switching material for biodegradable nonvolatile memory in emerging neuromorphic systems. CNTs were dispersed in a honey-water solution with the concentration of 0.2 wt% CNT and 30 wt% honey. The final honey-CNT-water mixture was spin-coated and dried into a thin film sandwiched in between Cu bottom electrode and Al top electrode to form a honey-CNT based resistive switching memory (RSM). Surface morphology, electrical characteristics and current conduction mechanism were investigated. The results show that although CNTs formed agglomerations in the dried honey-CNT film, both switching speed and the stability in SET and RESET process of honey-CNT RSM were improved. The mechanism of current conduction in CNT is governed by Ohm's law in low-resistance state and the low-voltage range in high-resistance state, but transits to the space charge limited conduction at high voltages approaching the SET voltage.

495706

, , and

We report a simple one-pot hydrothermal synthesis of carbon dots from frankincense soot. Carbon dots prepared from frankincense (FI-CDs) have narrow size distribution with an average size of 1.80 nm. FI-CDs emit intense blue fluorescence without additional surface functionalization or modification. A negative surface charge was observed for FI-CDs, indicating the abundance of epoxy, carboxylic acid, and hydroxyl functionalities that accounts for their stability. A theoretical investigation of the FI-CDs attached to oxygen-rich functional groups is incorporated in this study. The characteristics of FI-CDs signify arm-chair orientation, which is confirmed by comparing the indirect bandgap of FI-CDs with the bandgap obtained from Tauc plots. Also, we demonstrate that the FI-CDs are promising fluoroprobes for the ratiometric detection of Pb2+ ions (detection limit of 0.12 μM). The addition of Pb2+ to FI-CD solution quenched the fluorescence intensity, which is observable under illumination by UV light LED chips. We demonstrate a smartphone-assisted quantification of the fluorescence intensity change providing an efficient strategy for the colorimetric sensing of Pb2+ in real-life samples.

495707
The following article is Open access

, , , , and

Materials exhibiting an exchange bias effect are a class of magnetic systems that have a wide range of possible technological applications e.g. in sensors, read heads, and spintronic devices. In this study, we demonstrate the effect of laser interference patterning on the magnetic properties of Pd/CoO/Co/Pd multilayers. Laser patterning creates arrays of well-ordered stripes, rectangles, and squares on the substrate surface. We found that the laser treatment caused magnetic softening of the structure edges while the centers of the objects remained unchanged and exhibited the exchange bias effect. In this study we focused on the shape and configurational magnetic anisotropies induced by patterning and showed that the magnetic properties varied depending on the angle at which the external magnetic field was applied with respect to the pattern geometry.