Brought to you by:

Table of contents

Volume 799

Number 1, 2015 January 20

Previous issue Next issue

1

, , , , and

Recent advances in general relativistic magnetohydrodynamic simulations have expanded and improved our understanding of the dynamics of black-hole accretion disks. However, current simulations do not capture the thermodynamics of electrons in the low density accreting plasma. This poses a significant challenge in predicting accretion flow images and spectra from first principles. Because of this, simplified emission models have often been used, with widely different configurations (e.g., disk- versus jet-dominated emission), and were able to account for the observed spectral properties of accreting black holes. Exploring the large parameter space introduced by such models, however, requires significant computational power that exceeds conventional computational facilities. In this paper, we use GRay, a fast graphics processing unit (GPU) based ray-tracing algorithm, on the GPU cluster El Gato, to compute images and spectra for a set of six general relativistic magnetohydrodynamic simulations with different magnetic field configurations and black-hole spins. We also employ two different parametric models for the plasma thermodynamics in each of the simulations. We show that, if only the spectral properties of Sgr A* are used, all 12 models tested here can fit the spectra equally well. However, when combined with the measurement of the image size of the emission using the Event Horizon Telescope, current observations rule out all models with strong funnel emission, because the funnels are typically very extended. Our study shows that images of accretion flows with horizon-scale resolution offer a powerful tool in understanding accretion flows around black holes and their thermodynamic properties.

2

, , , , , and

We studied the horizontal branch oscillations (HBO) and the band-limited components observed in the power spectra of the transient neutron star low-mass X-ray binary XTE J1701-462 and the persistent "Sco-like" Z source GX 17+2. These two components were studied based on the state-resolved spectra. We found that the frequencies of XTE J1701-462 lie on the known correlations (WK and PBK), showing consistency with other types of X-ray binaries (black holes, atoll sources, and millisecond X-ray pulsars). However, GX 17+2 is shifted from the WK correlation like other typical Z sources. We suggest that the WK/PBK main track forms a boundary that separates persistent sources from transient sources. The characteristic frequencies of break and HBO are independent of accretion rate in both sources, though it depends on spectral models. We also report the energy dependence of the HBO and break frequencies in XTE J1701-462 and how the temporal properties change with spectral state in XTE J1701-462 and GX 17+2. We studied the correlation between rms at the break and the HBO frequency. We suggest that HBO and break components for both sources probably arise from a similar physical mechanism: Comptonization emission from the corona. These two components could be caused by the same kind of oscillation in a corona with uneven density, and they could be generated from different areas of the corona. We further suggest that different proportions of the Comptonization component in the total flux cause the different distribution between GX 17+2 and XTE J1701-462 in the rmsbreak–rmsHBO diagram.

3

, , , and

We constrain the jet opening angle and, for the first time, the off-axis observer angle for gamma-ray bursts in the Swift-XRT catalog by using the ScaleFit package to fit afterglow light curves directly to hydrodynamic simulations. The ScaleFit model uses scaling relations in the hydrodynamic and radiation equations to compute synthetic light curves directly from a set of high-resolution two-dimensional relativistic blast wave simulations. The data sample consists of all Swift-XRT afterglows from 2005 to 2012 with sufficient coverage and a known redshift, 226 bursts in total. We find that the jet half-opening angle varies widely but is commonly less than 0.1 rad. The distribution of the electron spectral index is also broad, with a median at 2.30. We find the observer angle to have a median value of 0.57 of the jet opening angle over our sample, which has profound consequences for the predicted rate of observed jet breaks and affects the beaming-corrected total energies of gamma-ray bursts.

4

, , , , , , , , , et al

We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 103.5 to 105 days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 106 to 107.5 days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.

5

and

The neutrino-heated "gain layer" immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations.

6

, , and

Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

7

, , , , , , , , , et al

We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560 GeV, is well described by a power law with a spectral index of 4.33 ± 0.09. The time-averaged integral flux above 200 GeV measured for this period was (1.69 ± 0.06) × 10−11 photons cm−2 s−1, corresponding to 6.9% of the Crab Nebula flux. We also present the combined γ-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100 MeV to 560 GeV. The data are well fit by a power law with an exponential cutoff at 101.9 ± 3.2 GeV. The origin of the cutoff could be intrinsic to PG 1553+113 or be due to the γ-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of z > 0.395 based on optical/UV observations of PG 1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of z ⩽ 0.62. A strongly elevated mean flux of (2.50 ± 0.14) × 10−11 photons cm−2 s−1 (10.3% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as $(4.44 \pm 0.71) \times 10^{-11} \, \mathrm{ph{\rm otons}} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$ (18.3% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a χ2 probability for a steady flux of 0.03%.

8

The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

9

, , , , , , , and

We present a global analysis of KOI-977, one of the planet host candidates detected by Kepler. The Kepler Input Catalog (KIC) reports that KOI-977 is a red giant, for which few close-in planets have been discovered. Our global analysis involves spectroscopic and asteroseismic determinations of stellar parameters (e.g., mass and radius) and radial velocity (RV) measurements. Our analyses reveal that KOI-977 is indeed a red giant, possibly in the red clump, but its estimated radius (≳ 20 R = 0.093 AU) is much larger than KOI-977.01's orbital distance (∼0.027 AU) estimated from its period (Porb ∼ 1.35 days) and host star's mass. RV measurements show a small variation, which also contradicts the amplitude of ellipsoidal variations seen in the light curve folded with KOI-977.01's period. Therefore, we conclude that KOI-977.01 is a false positive, meaning that the red giant, for which we measured the radius and RVs, is different from the object that produces the transit-like signal (i.e., an eclipsing binary). On the basis of this assumption, we also perform a light curve analysis including the modeling of transits/eclipses and phase-curve variations, adopting various values for the dilution factor D, which is defined as the flux ratio between the red giant and eclipsing binary. Fitting the whole folded light curve as well as individual transits in the short cadence data simultaneously, we find that the estimated mass and radius ratios of the eclipsing binary are consistent with those of a solar-type star and a late-type star (e.g., an M dwarf) for D ≳ 20.

10

, , , , , , , , , et al

We present new Karl G. Jansky Very Large Array radio continuum images of the nuclei of Arp 220, the nearest ultra-luminous infrared galaxy. These new images have both the angular resolution to study the detailed morphologies of the two nuclei that power the galaxy merger and sensitivity to a wide range of spatial scales. At 33 GHz, we achieve a resolution of 0farcs081 × 0farcs063 (29.9 × 23.3 pc) and resolve the radio emission surrounding both nuclei. We conclude from the decomposition of the radio spectral energy distribution that a majority of the 33 GHz emission is synchrotron radiation. The spatial distributions of radio emission in both nuclei are well described by exponential profiles. These have deconvolved half-light radii (R50d) of 51 and 35 pc for the eastern and western nuclei, respectively, and they match the number density profile of radio supernovae observed with very long baseline interferometry. This similarity might be due to the fast cooling of cosmic rays electrons caused by the presence of a strong (∼mG) magnetic field in this system. We estimate extremely high molecular gas surface densities of $2.2^{+2.1}_{-1.0} \times 10^5$ (east) and $4.5^{+4.5}_{-1.9} \times 10^5$ (west) M pc−2, corresponding to total hydrogen column densities of NH = $2.7^{+2.7}_{-1.2} \times 10^{25}$ (east) and $5.6^{+5.5}_{-2.4} \times 10^{25}$ cm−2 (west). The implied gas volume densities are similarly high, ${n_{H_{_2}} \sim 3.8^{+3.8}_{-1.6} \times 10^4}$ (east) and ${\sim } 11^{+12}_{-4.5} \times 10^4$ cm−3 (west). We also estimate very high luminosity surface densities of $ \Sigma _{\rm IR} \sim 4.2^{+1.6}_{-0.7} \times 10^{13}$ (east) and $\Sigma _{\rm IR} \sim 9.7^{+3.7}_{-2.4} \times 10^{13} \; {\rm (west)}\; L_{\odot }\,{\rm kpc^{-2}}$, and star formation rate surface densities of ΣSFR ∼ 103.7 ± 0.1 (east) and ΣSFR ∼ 104.1 ± 0.1(west) M yr−1kpc−2. These values, especially for the western nucleus are, to our knowledge, the highest luminosity surface densities and star formation rate surface densities measured for any star-forming system. Despite these high values, the nuclei appear to lie below the dusty Eddington limit in which radiation pressure is balanced only by self-gravity. The small measured sizes also imply that at wavelengths shorter than λ = 1 mm, dust absorption effects must play an important role in the observed light distribution while below 5 GHz free–free absorption contributes substantial opacity. According to these calculations, the nuclei of Arp 220 are only transparent in the frequency range ∼5–350 GHz. Our results offer no clear evidence that an active galactic nucleus dominates the emission from either nucleus at 33 GHz.

11

, , , , , , , , , et al

We present ALMA Cycle-0 observations of the CO (6–5) line emission and of the 435 μm dust continuum emission in the central kiloparsec of NGC 1614, a local luminous infrared galaxy at a distance of 67.8 Mpc ($\rm 1{^{\prime \prime }}= 329\, \rm pc$). The CO emission is well resolved by the ALMA beam (0farcs26 × 0farcs20) into a circumnuclear ring, with an integrated flux of fCO(6–5) = 898 (± 153) Jy km s−1, which is 63(± 12)% of the total CO (6–5) flux measured by Herschel. The molecular ring, located between $\rm 100\, \rm pc < r < 350\, \rm pc$ from the nucleus, looks clumpy and includes seven unresolved (or marginally resolved) knots with median velocity dispersion of ∼40 km s−1. These knots are associated with strong star formation regions with ΣSFR ∼ 100 M yr−1 kpc−2 and $\rm \Sigma _{Gas}\sim 10^4\, {M}_\odot \, \rm pc^{-2}$. The non-detections of the nucleus in both the CO (6–5) line emission and the 435 μm continuum rule out, with relatively high confidence, a Compton-thick active galactic nucleus in NGC 1614. Comparisons with radio continuum emission show a strong deviation from an expected local correlation between ΣGas and ΣSFR, indicating a breakdown of the Kennicutt–Schmidt law on the linear scale of ∼100 pc.

12

, , , , , and

We present comprehensive analyses of faint dropout galaxies up to z  ∼  10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z  ∼  5–10 in the HFF fields and enlarge the size of the z  ∼  9 galaxy sample obtained to date. Although the number of highly magnified (μ  ∼  10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as −2 at z  ∼  6–8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρUV, at z  >  8 from the large z  ∼  9 sample. We examine whether the rapid ρUV decrease trend can be reconciled with the large Thomson scattering optical depth, τe, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρUV decrease and the large τe. It is possible that the ρUV decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.

13

, , , , , , , and

We have recently detected the [C ii] 157.7 μm line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C ii] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O i] 63 μm line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O i]/FIR and [C ii]/FIR of ∼1% or more. The relatively strong [C ii] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt–Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10–100 times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C ii]/FIR values, we also find high [C ii]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4–5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C ii] excitation in addition to normal photoelectric heating may be contributing to the observed [C ii] line.

14

, , , , , , , and

Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H2O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H2O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH)n] and quinones [PAH(O)n] for all PAH:H2O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati & Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO2 and H2CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH)n and PAH(O)n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%–4% level relative to H2O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

15

, , , , , and

An extensive search has been conducted to confirm transitions of trans-ethyl methyl ether (tEME, C2H5OCH3), toward the high-mass star forming region W51 e1/e2 using the 12 m Telescope of the Arizona Radio Observatory at wavelengths from 2 mm and 3 mm. In short, we cannot confirm the detection of tEME toward W51 e1/e2 and our results call into question the initial identification of this species by Fuchs et al. Additionally, re-evaluation of the data from the original detection indicates that tEME is not present toward W51 e1/e2 in the abundance reported by Fuchs and colleagues. Typical peak-to-peak noise levels for the present observations of W51 e1/e2 were between 10 and 30 mK, yielding an upper limit of the tEME column density of ⩽1.5 × 1015 cm−2. This would make tEME at least a factor of two times less abundant than dimethyl ether (CH3OCH3) toward W51 e1/e2. We also performed an extensive search for this species toward the high-mass star forming region Sgr B2(N-LMH) with the National Radio Astronomy Observatory 100 m Green Bank Telescope. No transitions of tEME were detected and we were able to set an upper limit to the tEME column density of ⩽4 × 1014 cm−2 toward this source. Thus, we are able to show that tEME is not a new molecular component of the interstellar medium and that an exacting assessment must be carried out when assigning transitions of new molecular species to astronomical spectra to support the identification of large organic interstellar molecules.

16

I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10−10M yr−1 around a 1 MJ planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ($\dot{M}\sim 10^{-8}\ M_{\odot }\, {\rm yr}^{-1}$; enough to form a 10 MJ planet within 1 Myr) around a 1 MJ planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 MJ planet with a "hot start." To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 MJ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ($\dot{M}\lesssim 10^{-9}\ M_{\odot }\, {\rm yr}^{-1}$) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

17

, , , and

It is well-known that the light curve of a transiting planet contains information about the planet's orbital period and size relative to the host star. More recently, it has been demonstrated that a tight constraint on an individual planet's eccentricity can sometimes be derived from the light curve via the "photoeccentric effect," the effect of a planet's eccentricity on the shape and duration of its light curve. This has only been studied for large planets and high signal-to-noise scenarios, raising the question of how well it can be measured for smaller planets or low signal-to-noise cases. We explore the limits of the photoeccentric effect over a wide range of planet parameters. The method hinges upon measuring g directly from the light curve, where g is the ratio of the planet's speed (projected on the plane of the sky) during transit to the speed expected for a circular orbit. We find that when the signal-to-noise in the measurement of g is <10, the ability to measure eccentricity with the photoeccentric effect decreases. We develop a "rule of thumb" that for per-point relative photometric uncertainties σ = {10−3, 10−4, 10−5}, the critical values of the planet–star radius ratio are Rp/R ≈ {0.1, 0.05, 0.03} for Kepler-like 30 minute integration times. We demonstrate how to predict the best-case uncertainty in eccentricity that can be found with the photoeccentric effect for any light curve. This clears the path to study eccentricities of individual planets of various sizes in the Kepler sample and future transit surveys.

18

, , , , , and

Pair-instability supernovae (PISNe) have been suggested as candidates for some superluminous supernovae, such as SN 2007bi, and as one of the dominant types of explosion occurring in the early universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating, therefore exhibiting different evolutionary properties due to the effects of rotationally induced mixing and mass-loss. Proper identification of such events requires rigorous radiation hydrodynamics and radiative transfer calculations that capture not only the behavior of the light curve but also the spectral evolution of these events. We present radiation hydrodynamics and radiation transport calculations for 90–300 M rotating PISNe covering both the shock breakout and late light curve phases. We also investigate cases of different initial metallicity and rotation rate to determine the impact of these parameters on the detailed spectral characteristics of these events. In agreement with recent results on non-rotating PISNe, we find that for a range of progenitor masses and rotation rates these events have intrinsically red colors in contradiction with observations of superluminous supernovae. The spectroscopic properties of rotating PISNe are similar to those of non-rotating events with stripped hydrogen and helium envelopes. We find that the progenitor metallicity and rotation rate properties are erased after the explosion and cannot be identified in the resulting model spectra. It is the combined effects of pre-supernova mass-loss and the basic properties of the supernova ejecta such as mass, temperature, and velocity that have the most direct impact in the model spectra of PISNe.

19

, , , and

We present the detection of Cepheids in the barred spiral galaxy NGC 1313, using the Wide Field and Planetary Camera 2 on the Hubble Space Telescope. Twenty B(F450W) and V(F555W) epochs of observations spanning over three weeks were obtained, on which the profile-fitting photometry of all stars in the monitored field was performed using the package HSTphot. A sample of 26 variable stars have been identified to be Cepheids, with periods between 3 and 14 days. Based on the derived period–luminosity relations in B- and V-bands, we obtain an extinction-corrected distance modulus of μNGC 1313 = 28.32 ± 0.08 (random) ± 0.06 (systematic), employing the Large Magellanic Cloud as the distance zero point calibrator. The above moduli correspond to a distance of 4.61 ± 0.17 (random) ±0.13 (systematic) Mpc, consistent with previous measurements reported in the literature within uncertainties. In addition, the reddening to NGC 1313 is found to be small.

20

, , , and

We present a numerical study of turbulence and dynamo action in stratified shearing boxes with both finite and zero net magnetic flux. We assume that the fluid obeys the perfect gas law and has finite thermal diffusivity. The latter is chosen to be small enough so that vigorous convective states develop. The properties of these convective solutions are analyzed as the aspect ratio of the computational domain is varied and as the value of the mean field is increased. For the cases with zero net flux, we find that a well-defined converged state is obtained for large enough aspect ratios. In the converged state, the dynamo can be extremely efficient and can generate substantial toroidal flux. We identify solutions in which the toroidal field is mostly symmetric about the mid-plane and solutions in which it is mostly anti-symmetric. The symmetric solutions are found to be more efficient at transporting angular momentum and can give rise to a luminosity that is up to an order of magnitude larger than the corresponding value for the anti-symmetric states. In the cases with a finite net flux, the system appears to spend most of the time in the symmetric states.

21

, , , , , , and

We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C i] lines, observed with SPIRE, to measure the neutral gas densities, while the [O i] lines measure the gas temperature, at densities below ∼104 cm−3. Using the [O i]145 μm/63 μm and [S iii]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H ii regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O iii]88 μm/[O iv]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C ii]157 μm/[O i]63 μm is only able to mildly separate the two regimes. By comparing the observed [C ii]157 μm/[N ii]205 μm ratio with photoionization models, we also found that most of the [C ii] emission in the galaxies we examined is due to photodissociation regions.

22

, , , and

We calculate the rotational broadening in the observed thermal spectra of neutron stars spinning at moderate rates in the Hartle–Thorne approximation. These calculations accurately account for the effects of the second-order Doppler boosts as well as for the oblate shapes and the quadrupole moments of the neutron stars. We find that fitting the spectra and inferring the bolometric fluxes under the assumption that a star is not rotating causes an underestimate of the inferred fluxes and, thus, radii. The correction depends on the stellar spin, mass, radius, and the observer's inclination. For a 10 km, 1.4 M neutron star spinning at 600 Hz, the rotational correction to the flux is ∼1%–4%, while for a 15 km neutron star with the same spin period, the correction ranges from 2% for pole-on sources to 12% for edge-on sources. We calculate the inclination-averaged corrections to inferred radii as a function of the neutron-star radius and mass and provide an empirical formula for the corrections. For realistic neutron-star parameters (1.4 M, 12 km, 600 Hz), the stellar radius is on the order of 4% larger than the radius inferred under the assumption that the star is not spinning.

23

, , and

We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein–Maxwell–Thomas–Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

24

, , , , and

We use a 43 ks XMM-Newton observation to investigate the nature of sources first distinguished by a follow-up Chandra observation of the field surrounding INTEGRAL source IGR J17448-3232, which includes extended emission and a bright point source previously classified as a blazar. We establish that the extended emission is a heretofore unknown massive galaxy cluster hidden behind the Galactic bulge. The emission-weighted temperature of the cluster within the field of view is 8.8 keV, with parts of the cluster reaching temperatures of up to 12 keV; no cool core is evident. At a redshift of 0.055, the cluster is somewhat under-luminous relative to the X-ray luminosity–temperature relation, which may be attributable to its dynamical state. We present a preliminary analysis of its properties in this paper. We also confirm that the bright point source is a blazar, and we propose that it is either a flat spectrum radio quasar or a low-frequency peaked BL Lac object. We find four other fainter sources in the field, which we study and tentatively identify. Only one, which we propose is a foreground Galactic X-ray binary, is hard enough to contribute to IGR J17448-3232, but it is too faint to be significant. We thus determine that IGR J17448-3232 is in fact the galaxy cluster up to ≈45 keV and the blazar beyond.

25

, , , , , , , , , and

We present a multiwavelength study of the OH megamaser galaxy IRAS16399−0937, based on new Hubble Space Telescope (HST)/Advanced Camera for Surveys F814W and Hα+[N ii] images and archive data from HST, Two Micron All Sky Survey, Spitzer, Herschel and the Very Large Array. This system has a double nucleus, whose northern (IRAS16399N) and southern (IRAS16399S) components have a projected separation of ∼6'' (3.4 kpc) and have previously been identified based on optical spectra as a low ionization nuclear emission line region (LINER) and starburst nucleus, respectively. The nuclei are embedded in a tidally distorted common envelope, in which star formation is mostly heavily obscured. The infrared spectrum is dominated by strong polycyclic aromatic hydrocarbon, but deep silicate and molecular absorption features are also present, and are strongest in the IRAS16399N nucleus. The 0.435–500 μm spectral energy distribution was fitted with a model including stellar, interstellar medium and active galactic nucleus (AGN) torus components using our new Markov Chain Monte Carlo code, clumpyDREAM. The results indicate that the IRAS16399N contains an AGN (Lbol ∼ 1044 erg s−1) deeply embedded in a quasi-spherical distribution of optically thick clumps with a covering fraction ≈1. We suggest that these clumps are the source of the OHM emission in IRAS16399−0937. The high torus covering fraction precludes AGN photoionization as the origin of the LINER spectrum, however, the spectrum is consistent with shocks (v ∼ 100–200 km s−1). We infer that the ∼108M black hole in IRAS16399N is accreting at a small fraction (∼1%) of its Eddington rate. The low accretion rate and modest nuclear star formation rates suggest that while the gas-rich major merger forming the IRAS16399−0937 system has triggered widespread star formation, the massive gas inflows expected from merger simulations have not yet fully developed.

26

, , , , , and

We present high angular resolution observations of the HCN(1–0) emission (at ∼1'' or ∼34 pc), together with CO J = 1–0, 2–1, and 3–2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1–0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1–0)/CO(1–0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1–0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1–0)/CO(1–0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

27

We study the steady-state orbital distributions of giant planets migrating through the combination of the Kozai–Lidov (KL) mechanism due to a stellar companion and friction due to tides raised on the planet by the host star. We run a large set of Monte Carlo simulations that describe the secular evolution of a star–planet–star triple system including the effects from general relativistic precession, stellar and planetary spin evolution, and tides. Our simulations show that KL migration produces Hot Jupiters (HJs) with semi-major axes that are generally smaller than in the observations and they can only explain the observations if the following are both true: (1) tidal dissipation at high eccentricities is at least ∼150 times more efficient than the upper limit inferred from the Jupiter-Io interaction; (2) highly eccentric planets get tidally disrupted at distances ≳ 0.015 AU. Based on the occurrence rate and semi-major axis distribution of HJs, we find that KL migration in stellar binaries can produce at most ∼20% of the observed HJs. Almost no intermediate-period (semi-major axis ∼0.1 –2 AU) planets are formed by this mechanism—migrating planets spend most of their lifetimes undergoing KL oscillations at large orbital separations (>2 AU) or as HJs.

28

, , , and

This paper presents an example where the morphology of a single stellar stream can be used to rule out a specific galactic potential form without the need for velocity information. We investigate the globular cluster Palomar 5 (Pal 5), which is tidally disrupting into a cold, thin stream mapped over 22 deg on the sky with a typical width of 0.7 deg. We generate models of this stream by fixing Pal 5's present-day position, distance, and radial velocity via observations, while allowing its proper motion to vary. In a spherical dark matter halo we easily find models that fit the observed morphology. However, no plausible Pal 5 model could be found in the triaxial potential of Law & Majewski, which has been proposed to explain the properties of the Sagittarius stream. In this case, the long, thin, and curved morphology of the Pal 5 stream alone can be used to rule out such a potential configuration. Pal 5-like streams in this potential are either too straight, missing the curvature of the observations, or show an unusual morphology which we dub stream-fanning: a signature sensitive to the triaxiality of a potential. We conclude that the mere existence of other thin tidal streams must provide broad constraints on the orientation and shape of the dark matter halo they inhabit.

29

, , , , , , , and

We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO$^{^+}$(3–2), NH3(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) 13CO(1–0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region of the GRS 13CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of 13CO matched to the BGPS source. For objects with a HCO$^{^+}$(3–2) velocity, ≈95% of the new 13CO(1–0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H ii regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum–Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.

30

, , , , , , and

Good observations of preflare activities are important for us to understand the origin and triggering mechanism of solar flares, and to predict the occurrence of solar flares. This work presents the characteristics of microwave spectral fine structures as preflare activities of four solar flares observed by the Ondřejov radio spectrograph in the frequency range of 0.8–2.0 GHz. We found that these microwave bursts which occurred 1–4 minutes before the onset of flares have spectral fine structures with relatively weak intensities and very short timescales. They include microwave quasi-periodic pulsations with very short periods of 0.1–0.3 s and dot bursts with millisecond timescales and narrow frequency bandwidths. Accompanying these microwave bursts are filament motions, plasma ejection or loop brightening in the EUV imaging observations, and non-thermal hard X-ray emission enhancements observed by RHESSI. These facts may reveal certain independent, non-thermal energy releasing processes and particle acceleration before the onset of solar flares. They may help us to understand the nature of solar flares and to predict their occurrence.

31

We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008–2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

32

and

We show that the ratio of galaxies' specific star formation rates (SSFRs) to their host halos' specific mass accretion rates (SMARs) strongly constrains how the galaxies' stellar masses, SSFRs, and host halo masses evolve over cosmic time. This evolutionary constraint provides a simple way to probe z > 8 galaxy populations without direct observations. Tests of the method with galaxy properties at z = 4 successfully reproduce the known evolution of the stellar mass–halo mass (SMHM) relation, galaxy SSFRs, and the cosmic star formation rate (CSFR) for 5 < z < 8. We then predict the continued evolution of these properties for 8 < z < 15. In contrast to the nonevolution in the SMHM relation at z < 4, the median galaxy mass at fixed halo mass increases strongly at z > 4. We show that this result is closely linked to the flattening in galaxy SSFRs at z > 2 compared to halo SMARs; we expect that average galaxy SSFRs at fixed stellar mass will continue their mild evolution to z ∼ 15. The expected CSFR shows no breaks or features at z > 8.5; this constrains both reionization and the possibility of a steep falloff in the CSFR at z = 9–10. Finally, we make predictions for stellar mass and luminosity functions for the James Webb Space Telescope, which should be able to observe one galaxy with M* ≳ 108M per 103 Mpc3 at z = 9.6 and one such galaxy per 104 Mpc3 at z = 15.

33

, , and

This work presents a novel method to estimate the effective opening angle of CBe star disks from projected axis ratio measurements, obtained by interferometry using a statistical approach. A Monte Carlo scheme was used to generate a large set of theoretical axis ratios from disk models using different distributions of disk densities and opening angles. These theoretical samples were then compared to observational samples, using a two-sample Kolmogorov–Smirnov test, to determine which theoretical distribution best reproduces the observations. The results suggest that the observed ratio distributions in the K, H, and N band can best be explained by the presence of thin disks, with opening half-angles of the order of 0fdg15–4fdg0. Results for measurements over the Hα line point toward slightly thicker disks, 3fdg7–14°, which is consistent with a flaring disk predicted by the viscous disk model.

34

, , , , , , and

Recently, Lattelais et al. have interpreted aggregated observations of molecular isomers to suggest that there exists a "minimum energy principle," such that molecular formation will favor more stable molecular isomers for thermodynamic reasons. To test the predictive power of this principle, we have fully characterized the spectra of the three isomers of C3H2O toward the well-known molecular region Sgr B2(N). Evidence for the detection of the isomers cyclopropenone (c-C3H2O) and propynal (HCCCHO) is presented, along with evidence for the non-detection of the lowest zero-point energy isomer, propadienone (CH2CCO). We interpret these observations as evidence that chemical formation pathways, which may be under kinetic control, have a more pronounced effect on final isomer abundances than thermodynamic effects such as the minimum energy principle.

35

, , , and

Both observations and modeling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed, but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider the statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and interstellar medium parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate, and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit a noticeable degree of correlation, suggesting a universal behavior of the degree of order in galactic magnetic fields. We also compare the predictions of galactic dynamo theory to observed magnetic field parameters and identify directions in which theory and observations might be usefully developed.

36

, , , , , , , and

The epoch when low-mass star-forming galaxies (LMSFGs) form the bulk of their stellar mass is uncertain. While some models predict an early formation, others favor a delayed scenario until later ages of the universe. We present constraints on the star formation histories (SFHs) of a sample of LMSFGs obtained through the analysis of their spectral energy distributions using a novel approach that (1) consistently combines photometric (broadband) and spectroscopic (equivalent widths of emission lines) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time. The sample includes 31 spectroscopically confirmed LMSFGs (7.3 ⩽ log M*/M ⩽ 8.0), at 0.3 < zspec < 0.9, in the Extended-Chandra Deep Field-South field. Among them, 24 were selected with photometric stellar mass log M*/M < 8.0, 0.3 < zphot < 1.0, and mNB816, AB < 26 mag; the remaining 7 were selected as blue compact dwarfs within the same photometric redshift and magnitude ranges. We also study a secondary sample of 43 more massive spectroscopically confirmed galaxies (8.0 < log M*/M ⩽ 9.1), selected with the same criteria. The SFRs and stellar masses derived for both samples place our targets on the standard main sequence of star-forming galaxies. The median SFH of LMSFGs at intermediate redshifts appears to form 90% of the median stellar mass inferred for the sample in the ∼0.5–1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for LMSFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for the more massive secondary sample.

37

, , , and

We present new near-infrared photometry for seven late-type T dwarfs and nine Y-type dwarfs, and lower limit magnitudes for a tenth Y dwarf, obtained at Gemini Observatory. We also present a reanalysis of H-band imaging data from the Keck Observatory Archive, for an 11th Y dwarf. These data are combined with earlier MKO-system photometry, Spitzer and WISE mid-infrared photometry, and available trigonometric parallaxes, to create a sample of late-type brown dwarfs that includes 10 T9–T9.5 dwarfs or dwarf systems, and 16 Y dwarfs. We compare the data to our models, which include updated H2 and NH3 opacity, as well as low-temperature condensate clouds. The models qualitatively reproduce the trends seen in the observed colors; however, there are discrepancies of around a factor of two in flux for the Y0–Y1 dwarfs, with Teff ≈ 350–400 K. At Teff ∼ 400 K, the problems could be addressed by significantly reducing the NH3 absorption, for example by halving the abundance of NH3 possibly by vertical mixing. At Teff ∼ 350 K, the discrepancy may be resolved by incorporating thick water clouds. The onset of these clouds might occur over a narrow range in Teff, as indicated by the observed small change in 5 μm flux over a large change in JW2 color. Of the known Y dwarfs, the reddest in J −W2 are WISEP J182831.08+265037.8 and WISE J085510.83−071442.5. We interpret the former as a pair of identical 300–350 K dwarfs, and the latter as a 250 K dwarf. If these objects are ∼3 Gyr old, their masses are ∼10 and ∼5 Jupiter-masses, respectively.

38

, , , , , and

We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with KAB < 24 and confirmed redshifts of the 39 galaxies at 2.0 < zspec < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 ⩽ zspec ⩽ 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (JKAB > 1.4), hyper extremely red objects (JKAB > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ∼2–5 × 1014M, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (JKAB ⩾ 2.4) protocluster galaxies are massive galaxies with Mstar ∼ 1011M showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O iii] λ5007/Hβ emission line ratios and [O iii] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ∼ 2–3 in the general field.

39

, , , , and

Radiation-belt relativistic (E > 0.6, > 2.0, and > 4.0 MeV) electron acceleration is studied for solar cycle 23 (1995–2008). High-intensity, long-duration, continuous AE activity (HILDCAA) events are considered as the basis of the analyses. All of the 35 HILDCAA events under study were found to be characterized by flux enhancements of magnetospheric relativistic electrons of all three energies compared to the pre-event flux levels. For the E > 2.0 MeV electron fluxes, enhancement of >50% occurred during 100% of HILDCAAs. Cluster-4 passes were examined for electromagnetic chorus waves in the 5 < L < 10 and 0 < MLT < 12 region when wave data were available. Fully 100% of these HILDCAA cases were associated with enhanced whistler-mode chorus waves. The enhancements of E > 0.6, > 2.0, and > 4.0 MeV electrons occurred ∼1.0 day, ∼1.5 days, and ∼2.5 days after the statistical HILDCAA onset, respectively. The statistical acceleration rates for the three energy ranges were ∼1.8 × 105, 2.2 × 103, and 1.0 × 101 cm−2 s−1 sr−1 d−1, respectively. The relativistic electron-decay timescales were determined to be ∼7.7, 5.5, and 4.0 days for the three energy ranges, respectively. The HILDCAAs were divided into short-duration (D ⩽ 3 days) and long-duration (D > 3 days) events to study the dependence of relativistic electron variation on HILDCAA duration. For long-duration events, the flux enhancements during HILDCAAs with respect to pre-event fluxes were ∼290%, 520%, and 82% for E > 0.6, > 2.0, and > 4.0 MeV electrons, respectively. The enhancements were ∼250%, 400%, and 27% respectively, for short-duration events. The results are discussed with respect to the current understanding of radiation-belt dynamics.

40

, , and

Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets.

41

and

We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet–star mass ratio μ in the range 10−9 to 10−1.5, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius Rp ⩾ 0.001 RH where RH is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for μ ≲ 10−5; particle scattering to large distances is significant only for higher mass planets. For fixed ratio Rp/RH, the particle clearing timescale, Tcl, has a broken power-law dependence on μ. A shallower power law, Tcl ∼ μ−1/3, prevails at small μ where particles are cleared primarily by collisions with the planet; a steeper power law, Tcl ∼ μ−3/2, prevails at larger μ where scattering dominates the particle loss. In the limit of vanishing planet radius, we find Tcl ≈ 0.024 μ−3/2. The interior and exterior boundaries of the annular zone in which chaotic particles are cleared are increasingly asymmetric about the planet's orbit for larger planet masses; the inner boundary coincides well with the classical first order resonance overlap zone, Δacl, int ≃ 1.2 μ0.28ap; the outer boundary is better described by Δacl, ext ≃ 1.7 μ0.31ap, where ap is the planet–star separation.

42

, , , , , , , , , et al

We report on the first nulling interferometric observations with the Large Binocular Telescope Interferometer (LBTI), resolving the N' band (9.81–12.41 μm) emission around the nearby main-sequence star η Crv (F2V, 1–2 Gyr). The measured source null depth amounts to 4.40% ± 0.35% over a field-of-view of 140 mas in radius (∼2.6 AU for the distance of η Crv) and shows no significant variation over 35° of sky rotation. This relatively low null is unexpected given the total disk to star flux ratio measured by the Spitzer Infrared Spectrograph (IRS; ∼23% across the N' band), suggesting that a significant fraction of the dust lies within the central nulled response of the LBTI (79 mas or 1.4 AU). Modeling of the warm disk shows that it cannot resemble a scaled version of the solar zodiacal cloud unless it is almost perpendicular to the outer disk imaged by Herschel. It is more likely that the inner and outer disks are coplanar and the warm dust is located at a distance of 0.5–1.0 AU, significantly closer than previously predicted by models of the IRS spectrum (∼3 AU). The predicted disk sizes can be reconciled if the warm disk is not centrosymmetric, or if the dust particles are dominated by very small grains. Both possibilities hint that a recent collision has produced much of the dust. Finally, we discuss the implications for the presence of dust for the distance where the insolation is the same as Earth's (2.3 AU).

43

, , , , , , , , , et al

The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk–planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and 12CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

44

, , , , , , , and

We present semi-analytical models and simplified N-body simulations with 104 particles aimed at probing the role of dynamical friction (DF) in determining the radial distribution of blue straggler stars (BSSs) in globular clusters. The semi-analytical models show that DF (which is the only evolutionary mechanism at work) is responsible for the formation of a bimodal distribution with a dip progressively moving toward the external regions of the cluster. However, these models fail to reproduce the formation of the long-lived central peak observed in all dynamically evolved clusters. The results of N-body simulations confirm the formation of a sharp central peak, which remains as a stable feature over time regardless of the initial concentration of the system. In spite of noisy behavior, a bimodal distribution forms in many cases, with the size of the dip increasing as a function of time. In the most advanced stages, the distribution becomes monotonic. These results are in agreement with the observations. Also, the shape of the peak and the location of the minimum (which, in most of cases, is within 10 core radii) turn out to be consistent with observational results. For a more detailed and close comparison with observations, including a proper calibration of the timescales of the dynamical processes driving the evolution of the BSS spatial distribution, more realistic simulations will be necessary.

45

and

We explore the characteristics of the cosmic web around Local-Group (LG)-like pairs using a cosmological simulation in the ΛCDM cosmology. We use the Hessian of the gravitational potential to classify regions on scales of ∼2 Mpc as a peak, sheet, filament, or void. The sample of LG counterparts is represented by two samples of halo pairs. The first is a general sample composed of pairs with similar masses and isolation criteria as observed for the LG. The second is a subset with additional observed kinematic constraints such as relative pair velocity and separation. We find that the pairs in the LG sample with all constraints are: (1) preferentially located in filaments and sheets, (2) located in a narrow range of local overdensity 0 < δ < 2, web ellipticity 0.1 < e < 1.0, and prolateness −0.4 < p < 0.4, (3) strongly aligned with the cosmic web. The alignments are such that the pair orbital angular momentum tends to be perpendicular to the smallest tidal eigenvector, $\hat{e}_3$, which lies along the filament direction or the sheet plane. A stronger alignment is present for the vector linking the two halos with the vector $\hat{e}_3$. Additionally, we fail to find a strong correlation between the spin of each halo in the pair with the cosmic web. All of these trends are expected to a great extent from the selection of LG total mass in the general sample. Applied to the observed LG, there is a potential conflict between the alignments of the different satellite planes and the numerical evidence for satellite accretion along filaments; the direction defined by $\hat{e}_3$. This highlights the relevance of achieving a precise characterization for the location of the LG in the cosmic web in the cosmological context provided by ΛCDM.

46

, , , , , , , , , et al

Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period–luminosity and period–age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic center, three of which were reported in 2011 and a fourth being reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the nuclear stellar disk, a group of stars and interstellar matter occupying a region of ∼200 pc around the center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the nuclear stellar disk like younger stars and stellar clusters therein.

47

, , , , and

We use a sample of 62 clusters of galaxies to investigate the discrepancies between the gas temperature and total mass within r500 from XMM-Newton and Chandra data. Comparisons of the properties show that (1) both the de-projected and projected temperatures determined by Chandra are higher than those of XMM-Newton and there is a good linear relationship for the de-projected temperatures: TChandra = 1.25 ×TXMM−0.13. (2) The Chandra mass is much higher than the XMM-Newton mass with a bias of 0.15 and our mass relation is log10MChandra = 1.02 × log10MXMM+0.15. To explore the reasons for the discrepancy in mass, we recalculate the Chandra mass (expressed as $M_{\rm Ch}^{\rm mo/d}$) by modifying its temperature with the de-projected temperature relation. The results show that $M_{\rm Ch}^{\rm mo/d}$ is closer to the XMM-Newton mass with the bias reducing to 0.02. Moreover, $M_{\rm Ch}^{\rm mo/d}$ are corrected with the r500 measured by XMM-Newton and the intrinsic scatter is significantly improved with the value reducing from 0.20 to 0.12. These mean that the temperature bias may be the main factor causing the mass bias. Finally, we find that $M_{\rm Ch}^{\rm mo/d}$ is consistent with the corresponding XMM-Newton mass derived directly from our mass relation at a given Chandra mass. Thus, the de-projected temperature and mass relations can provide unbiased corrections for galaxy cluster properties derived from Chandra and XMM-Newton.

48

, , , and

In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly lensed sources. It is a puzzle, then, that the values of H0 obtained with this method span a range from ∼50–100 km s−1Mpc−1. Quasars monitored to measure these time delays are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable-emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of the sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Therefore, we propose using the value of H0 known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We particularly advocate this method for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0fdg1; lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H0.

49

, , , and

The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH2OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH2OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH2OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH2OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH3. Suggestions of conditions for future observations are provided.

50

, , , , , , , , , et al

We present the analysis of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) and their influence on the environment at far-infrared (FIR) and submillimeter wavelengths. We use new observations obtained with the Herschel Space Observatory and archival data obtained with the SpitzerSpace Telescope, to make the first FIR atlas of these objects. The SNRs are not clearly discernible at FIR wavelengths; however, their influence becomes apparent in maps of dust mass and dust temperature, which we constructed by fitting a modified blackbody to the observed spectral energy distribution in each sightline. Most of the dust that is seen is pre-existing interstellar dust in which SNRs leave imprints. The temperature maps clearly reveal SNRs heating surrounding dust, while the mass maps indicate the removal of 3.7$^{+7.5}_{-2.5}$M of dust per SNR. This agrees with the calculations by others that significant amounts of dust are sputtered by SNRs. Under the assumption that dust is sputtered and not merely pushed away, we estimate a dust destruction rate in the LMC of $0.037^{+0.075}_{-0.025}$M yr−1 due to SNRs, yielding an average lifetime for interstellar dust of $2^{+4.0}_{-1.3}\times 10^7$ yr. We conclude that sputtering of dust by SNRs may be an important ingredient in models of galactic evolution, that supernovae may destroy more dust than they produce, and that they therefore may not be net producers of long lived dust in galaxies.

51

, , , , , , , , , et al

We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from −13 to +272 days past the B-band maximum of −17.4 ± 0.5 mag. The spectra are dominated by Fe ii, O i, and Ca ii absorption lines at ejecta velocities of v ≈ 20,000 km s−1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He i, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s−1). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M, a kinetic energy of ∼1.0 × 1052 erg, and a 56Ni mass of 0.1–0.2 M. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O i] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of ZZ, moderate to high levels of host galaxy extinction (E(BV) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca ii]/[O i] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

52

, , , , , , , , , et al

Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti ii trough when compared to "SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is $5.6_{-3.8}^{+22}\%$ (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.

53

, , , and

Focus on Global Star Formation Properties Extracted from Synthetic Star-forming Regions: Measurements, Analysis, and Calibration

In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free–free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified "YSOs" to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.

54

, , , , and

The bulk of p isotopes is created in the "gamma processes" mainly by sequences of photodisintegrations and beta decays in explosive conditions in Type Ia supernovae (SNIa) or in core collapse supernovae (ccSN). The contribution of different stellar sources to the observed distribution of p-nuclei in the solar system is still under debate. We explore single degenerate Type Ia supernovae in the framework of two-dimensional SNIa delayed-detonation explosion models. Travaglio et al. discussed the sensitivity of p-nuclei production to different SNIa models, i.e., delayed detonations of different strength, deflagrations, and the dependence on selected s-process seed distributions. Here we present a detailed study of p-process nucleosynthesis occurring in SNIa with s-process seeds at different metallicities. Based on the delayed-detonation model DDT-a of TRV11, we analyze the dependence of p-nucleosynthesis on the s-seed distribution obtained from different strengths of the 13C pocket. We also demonstrate that 208Pb seed alone changes the p-nuclei production considerably. The heavy-s seeds (140 ⩽A < 208) contribute with about 30%–40% to the total light-p nuclei production up to 132Ba (with the exception of 94Mo and 130Ba, to which the heavy-s seeds contribute with about 15% only). Using a Galactic chemical evolution code from Travaglio et al., we study the contribution of SNIa to the solar stable p-nuclei. We find that explosions of Chandrasekhar-mass single degenerate systems produce a large amount of p-nuclei in our Galaxy, both in the range of light (A ⩽ 120) and heavy p-nuclei, at almost flat average production factors (within a factor of about three). We discussed in details p-isotopes such as 94Mo with a behavior diverging from the average, which we attribute to uncertainties in the nuclear data or in SNIa modeling. Li et al. find that about 70% of all SNeIa are normal events. If these are explained in the framework of explosions of Chandrasekhar-mass white dwarfs resulting from the single-degenerate progenitor channel, we find that they are responsible for at least 50% of the p-nuclei abundances in the solar system.

55

, , , , , , , , , and

Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

56

, , , and

The irregularity index λ is applied to the high-frequency content of daily sunspot numbers ISSN. This λ is a modification of the standard maximal Lyapunov exponent. It is computed here as a function of embedding dimension m, within four-year time windows centered at the maxima of Schwabe cycles. The λ(m) curves form separate clusters (pre-1923 and post-1933). This supports a regime transition and narrows its occurrence to cycle 16, preceding the growth of activity leading to the Modern Maximum. The two regimes are reproduced by a simple autoregressive process AR(1), with the mean of Poisson noise undergoing 11 yr modulation. The autocorrelation a of the process (linked to sunspot lifetime) is a ≈ 0.8 for 1850–1923 and ≈0.95 for 1933–2013. The AR(1) model suggests that groups of spots appear with a Poisson rate and disappear at a constant rate. We further applied the irregularity index to the daily sunspot group number series for the northern and southern hemispheres, provided by the Greenwich Royal Observatory (RGO), in order to study a possible desynchronization. Correlations between the north and south λ(m) curves vary quite strongly with time and indeed show desynchronization. This may reflect a slow change in the dimension of an underlying dynamical system. The ISSN and RGO series of group numbers do not imply an identical mechanism, but both uncover a regime change at a similar time. Computation of the irregularity index near the maximum of cycle 24 will help in checking whether yet another regime change is under way.

57

, , , and

Suprathermal particles are an important seed population for a variety of energetic particles found throughout the heliosphere, but their origin is in debate. We present, for the first time, high-cadence observations of suprathermal heavy ions during interplanetary coronal mass ejections (ICMEs), from the Suprathermal Ion Composition Spectrometer on board the Wind spacecraft, and investigate their ionic composition and compare it to the bulk solar wind plasma composition, observed from the Solar Wind Ion Composition Spectrometer on board the Advanced Composition Explorer. We find that the composition of the suprathermal plasma is related to the local bulk solar wind plasma and not to the plasma upstream of the ICME. This implies that the suprathermal plasma is accelerated from the local bulk solar wind plasma and not the upstream solar wind plasma.

58

and

The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. It is not possible to understand one without the other. Yet the temperature-dependent emissions from the two locations behave quite differently in the aftermath of an impulsive heating event such as a coronal nanoflare. Whereas the corona cools sequentially, emitting first at higher temperatures and then at lower temperatures, the TR is multithermal and the emission at all temperatures responds in unison. We have previously applied the automated time lag technique of Viall & Klimchuk to disk observations of an active region (AR) made by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. Lines of sight passing through coronal plasma show clear evidence for post-nanoflare cooling, while lines of sight intersecting the TR footpoints of coronal strands show zero time lag. In this paper, we use the EBTEL hydrodynamics code to demonstrate that this is precisely the expected behavior when the corona is heated by nanoflares. We also apply the time lag technique for the first time to off-limb observations of an AR. Since TR emission is not present above the limb, the occurrence of zero time lags is greatly diminished, supporting the conclusion that zero time lags measured on the disk are due to TR plasma. Lastly, we show that the ''coronal'' channels in AIA can be dominated by bright TR emission. When defined in a physically meaningful way, the TR reaches a temperature of roughly 60% the peak temperature in a flux tube. The TR resulting from impulsive heating can extend to 3 MK and higher, well within the range of the ''coronal'' AIA channels.

59

and

Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O ii] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populations in distinct spectral regions: the Balmer region, the Mg ib region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber–Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger.

60

, , , , , , , , , et al

The Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) presents a unique data set for weak-lensing studies, having high-quality imaging and deep multiband photometry. We have initiated an XMM-CFHTLS project to provide X-ray observations of the brightest X-ray-selected clusters within the wide CFHTLS area. Performance of these observations and the high quality of CFHTLS data allow us to revisit the identification of X-ray sources, introducing automated reproducible algorithms, based on the multicolor red sequence finder. We have also introduced a new optical mass proxy. We provide the calibration of the red sequence observed in the Canada–France–Hawaii filters and compare the results with the traditional single-color red sequence and photo-z. We test the identification algorithm on the subset of highly significant XMM clusters and identify 100% of the sample. We find that the integrated z-band luminosity of the red sequence galaxies correlates well with the X-ray luminosity, with a surprisingly small scatter of 0.20 dex. We further use the multicolor red sequence to reduce spurious detections in the full XMM and ROSAT All-Sky Survey (RASS) data sets, resulting in catalogs of 196 and 32 clusters, respectively. We made spectroscopic follow-up observations of some of these systems with HECTOSPEC and in combination with BOSS DR9 data. We also describe the modifications needed to the source detection algorithm in order to maintain high purity of extended sources in the shallow X-ray data. We also present the scaling relation between X-ray luminosity and velocity dispersion.

61

, , and

To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H i in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H i are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R25. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H i kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R25 and R25, suggesting internal processes are important in dictating extra-planar kinematics.

62

, , and

We use spatially extended measurements of Lyα as well as less optically thick emission lines from an ≈80 kpc Lyα nebula at z ≈ 1.67 to assess the role of resonant scattering and to disentangle kinematic signatures from Lyα radiative transfer effects. We find that the Lyα, C iv, He ii, and C iii] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Lyα photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Lyα and the less optically thick He ii line (∼100–200 km s−1), providing further support for the argument that the Lyα and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: ≈500 km s−1 over the central ≈50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Lyα nebula represents accreting material that is illuminated by an offset, hidden active galactic nucleus or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(<R = 20 kpc) ∼3 × 1011M, this system may represent the early formation of a large Milky Way mass galaxy or galaxy group.

63

and

In this work, we analyze the spectra of quasar J125216.58+052737.7 (zem = 1.9035) which was observed by SDSS-I/II on 2003 January 30 and by BOSS on 2011 April 2. Both the continuum and the absorption spectra of this quasar show obvious variations between the two epochs. In the SDSS-I/II spectrum, we detect 8 ${\rm C}\,\scriptsize{IV}\,\lambda \lambda 1548,1551$ absorption systems, which are detected at zabs = 1.9098, 1.8948, 1.8841, 1.8770, 1.8732, 1.8635, 1.8154, and 1.7359, respectively, and one ${\rm Mg}\,\scriptsize{II}\, \lambda \lambda 2796,2803$ absorption system at zabs = 0.9912. Among these absorption systems, two ${\rm C}\,\scriptsize{IV}\,\lambda \lambda 1548,1551$ absorption systems at zabs = 1.9098 and 1.7359 and the ${\rm Mg}\,\scriptsize{II}\, \lambda \lambda 2796,2803$ absorption system are imprinted on the BOSS spectrum as well, and have similar absorption strengths when compared to those measured from the SDSS-I/II spectrum. Three ${\rm C}\,\scriptsize{IV}\,\lambda \lambda 1548,1551$ absorption systems at zabs = 1.8948, 1.8841, and 1.8770 are also detected in the BOSS spectrum, while their absorption strengths are much weaker than those measured from the SDSS-I/II spectrum; three systems at zabs  =  1.8732, 1.8635, and 1.8154 disappeared from the BOSS spectrum. Based on the variability analysis, the absorption systems that disappeared and weakened are likely to be intrinsic to the quasar. If these intrinsic absorption gases are blown away from the central region of the quasar, with respect to the quasar system, the absorption systems that disappeared would have separation velocities of 3147 kms−1, 4161 km s−1, and 9241 km s−1, while the absorption systems that weakened would have separation velocities of 900 km s−1, 2011 km s−1, and 2751 km s−1. Well-coordinated variations of the six ${\rm C}\,\scriptsize{IV}\,\lambda \lambda 1548,1551$ absorption systems that disappeared and weakened, occurring on a timescale of 1026.7 days at the quasar rest frame, can be interpreted as a result of global changes in the ionization state of the absorbing gas.

64

, , , , and

Dense, star-forming gas is believed to form at the stagnation points of large-scale interstellar medium flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way supershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining 12CO, 13CO, and C18O(J = 1–0) data with new high-resolution, three-dimensional hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass ($M_{\mathrm{H}_2}\sim 1.7\times 10^5\;M_{\odot }$), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas.

65

, , , and

We report the far infrared spectrum of H2–O2 at 80 K in the vicinity of the pure rotational bands of H2. Sharp peaks were observed, which correspond to end-over-end rotational transitions of the H2–O2 molecular complex, that are superimposed over broad collision induced absorptions. We find that the maximum value of the end-over-end rotational quantum number that is bound is seven, which is two more than supported by a recently reported ab initio H2–O2 potential energy surface. The rotational spectrum reported here should therefore greatly help in refining this surface, which is used to calculate scattering processes relevant to the chemistry occurring in interstellar molecular clouds.

66

We modeled recent observations of UV absorption of HD and $\mathrm{{\rm H}_2}$ in the Milky Way and toward damped/subdamped Lyα systems at z = 0.18 and z >1.7. N(HD)/N($\mathrm{{\rm H}_2}$) ratios reflect the separate self-shieldings of HD and $\mathrm{{\rm H}_2}$ and the coupling introduced by deuteration chemistry. Locally, observations are explained by diffuse molecular gas with 16 cm−3n(H) ≲ 128 cm−3 if the cosmic-ray ionization rate per H nucleus ζH =2 × 10−16 s−1, as inferred from H3+ and OH+. The dominant influence on N(HD)/N($\mathrm{{\rm H}_2}$) is the cosmic-ray ionization rate with a much weaker downward dependence on n(H) at solar metallicity, but dust extinction can drive N(HD) higher as with N($\mathrm{{\rm H}_2}$). At z > 1.7, N(HD) is comparable to the Galaxy but with 10 times smaller N($\mathrm{{\rm H}_2}$) and somewhat smaller N($\mathrm{{\rm H}_2}$)/N(H i). Comparison of our Galaxy with the Magellanic Clouds shows that smaller $\mathrm{{\rm H}_2}$/H is expected at subsolar metallicity, and we show by modeling that HD/$\mathrm{{\rm H}_2}$ increases with density at low metallicity, opposite to the Milky Way. Observations of HD would be explained with higher n(H) at low metallicity, but high-z systems have high HD/$\mathrm{{\rm H}_2}$ at metallicity 0.04 ≲ Z ≲ 2 solar. In parallel, we trace dust extinction and self-shielding effects. The abrupt $\mathrm{{\rm H}_2}$ transition to $\mathrm{{\rm H}_2}$/H ≈ 1%–10% occurs mostly from self-shielding, although it is assisted by extinction for n(H) ≲ 16 cm−3. Interior $\mathrm{{\rm H}_2}$ fractions are substantially increased by dust extinction below ≲ 32 cm−3. At smaller n(H), ζH, small increases in $\mathrm{{\rm H}_2}$ triggered by dust extinction can trigger abrupt increases in N(HD).

67

, , , , , , , , , et al

We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C vi emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T ≈ 1.0 × 106 K). We estimate X-ray luminosities in the 0.2–2.0 keV energy band of LX, CSPN = (1.2 ± 0.3) × 1031 erg s−1 and LX, DIFF = (9.2 ± 2.3) × 1030 erg s−1 for the CSPN and diffuse components, respectively.

68

, , , , , , , , , et al

The circular ribbon of enhanced energetic neutral atom (ENA) emission observed by the Interstellar Boundary Explorer (IBEX) mission remains a critical signature for understanding the interaction between the heliosphere and the interstellar medium. We study the symmetry of the ribbon flux and find strong, spectrally dependent reflection symmetry throughout the energy range 0.7–4.3 keV. The distribution of ENA flux around the ribbon is predominantly unimodal at 0.7 and 1.1 keV, distinctly bimodal at 2.7 and 4.3 keV, and a mixture of both at 1.7 keV. The bimodal flux distribution consists of partially opposing bilateral flux lobes, located at highest and lowest heliographic latitude extents of the ribbon. The vector between the ribbon center and heliospheric nose (which defines the so-called BV plane) appears to play an organizing role in the spectral dependence of the symmetry axis locations as well as asymmetric contributions to the ribbon flux. The symmetry planes at 2.7 and 4.3 keV, derived by projecting the symmetry axes to a great circle in the sky, are equivalent to tilting the heliographic equatorial plane to the ribbon center, suggesting a global heliospheric ordering. The presence and energy dependence of symmetric unilateral and bilateral flux distributions suggest strong spectral filtration from processes encountered by an ion along its journey from the source plasma to its eventual detection at IBEX.

69

, , , , and

We use realistic Monte Carlo simulations including both gravitational-wave (GW) and short gamma-ray burst (sGRB) selection effects to revisit the coincident rate of binary systems composed of two neutron stars or a neutron star and a black hole. We show that the fraction of GW triggers that can be observed in coincidence with sGRBs is proportional to the beaming factor at z = 0, but increases with the distance until it reaches 100% at the GW detector horizon distance. When this is taken into account the rate is improved by a factor of three compared to the simple beaming factor correction. We provide an estimate of the performance future GRB detectors should achieve in order to fully exploit the potentiality of the planned third-generation GW antenna Einstein Telescope, and we propose a simple method to constrain the beaming angle of sGRBs.

70

, , , , , , and

Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

71

Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as $\dot{M} \lesssim 10^{-3} \dot{M}_{\rm Edd}$, where $\dot{M}_{\rm Edd}$ is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as $\dot{M} \gtrsim 10\, \dot{M}_{\rm Edd}$, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations.

72

, , , , , and

Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg2 covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ∼60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.

73

and

We report the discovery of an ultra-faint stellar system in the constellation of Pegasus. This concentration of stars was detected by applying our overdensity detection algorithm to the Sloan Digital Sky Survey Data Release 10 and confirmed with deeper photometry from the Dark Energy Camera (DECam) at the 4 m Blanco telescope. The best-fitting model isochrone indicates that this stellar system, Kim 1, features an old (12 Gyr) and metal-poor ([Fe/H] ∼ -1.7) stellar population at a heliocentric distance of 19.8 ± 0.9 kpc. We measure a half-light radius of 6.9 ± 0.6 pc using a Plummer profile. The small physical size and the extremely low luminosity are comparable to the faintest known star clusters Segue 3, Koposov 1 and 2, and Muñoz 1. However, Kim 1 exhibits a lower star concentration and is lacking a well-defined center. It also has an unusually high ellipticity and irregular outer isophotes, which suggests that we are seeing an intermediate mass star cluster being stripped by the Galactic tidal field. An extended search for evidence of an associated stellar stream within the 3 $\deg ^{2}$ DECam field remains inconclusive. The finding of Kim 1 is consistent with current overdensity detection limits and supports the hypothesis that there are still a substantial number of extreme low-luminosity star clusters undetected in the wider Milky Way halo.

74

, , , , , and

High-mass stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as infrared dark clouds (IRDCs), are the nurseries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11−0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11−0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high-mass surface densities, are not required to facilitate HMSF.

75

, , , , , and

We report molecular line observations, made with ASTE and SEST, and dust continuum observations at 0.87 mm, made with APEX, toward the cold dust core G305.136+0.068. The molecular observations show that the core is isolated and roughly circularly symmetric and imply that it has a mass of 1.1 × 103M. A simultaneous model fitting of the spectra observed in four transitions of CS, using a non-LTE radiative transfer code, indicates that the core is centrally condensed, with the density decreasing with radius as r−1.8, and that the turbulent velocity increases toward the center. The dust observations also indicate that the core is highly centrally condensed and that the average column density is 1.1 g cm−2, a value slightly above the theoretical threshold required for the formation of high-mass stars. A fit to the spectral energy distribution of the emission from the core indicates a dust temperature of 17 ± 2 K, confirming that the core is cold. Spitzer images show that the core is seen in silhouette from 3.6 to 24.0 μm and that it is surrounded by an envelope of emission, presumably tracing an externally excited photo-dissociated region. We found two embedded sources within a region of 20'' centered at the peak of the core, one of which is young, has a luminosity of 66 L, and is accreting mass with a high accretion rate of ∼1 × 10−4M yr−1. We suggest that this object corresponds to the seed of a high-mass protostar still in the process of formation. The present observations support the hypothesis that G305.136+0.068 is a massive and dense cold core in an early stage of evolution, in which the formation of a high-mass star has just started.

76

, , , , , , , , , et al

We have investigated the field around the radio-quiet γ-ray pulsar, PSR J2021+4026, with a ∼140 ks XMM-Newton observation and ∼56 ks archival Chandra data. Through analyzing the pulsed spectrum, we show that the X-ray pulsation is purely thermal in nature, which suggests that the pulsation originated from a hot polar cap with T ∼ 3 × 106 K on the surface of a rotating neutron star. On the other hand, the power-law (PL) component that dominates the pulsar emission in the hard band is originated from off-pulse phases, which possibly comes from a pulsar wind nebula. In re-analyzing the Chandra data, we have confirmed the presence of a bow-shock nebula that extends from the pulsar to the west by ∼10 arcsec. The orientation of this nebular feature suggests that the pulsar is probably moving eastward, which is consistent with the speculated proper motion by extrapolating from the nominal geometrical center of the supernova remnant (SNR) G78.2+2.1 to the current pulsar position. For G78.2+2.1, our deep XMM-Newton observation also enables a study of the central region and part of the southeastern region with superior photon statistics. The column absorption derived for the SNR is comparable to that for PSR J2021+4026, which supports their association. The remnant emission in both of the examined regions is in a non-equilibrium ionization state. Also, the elapsed time of both regions after shock-heating is apparently shorter than the Sedov age of G78.2+2.1. This might suggest that the reverse shock has reached the center not long ago. Apart from PSR J2021+4026 and G78.2+2.1, we have also serendipitously detected an X-ray flash-like event, XMM J202154.7+402855, from this XMM-Newton observation.

77

, , and

Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He++ – proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

78

and

The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from −35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

79

, , , and

Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼106–107 in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01–0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s−1. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 104 K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.

80

We present results from numerical simulations of the acceleration of solar energetic particles (SEPs) associated with strong, fast, and radially propagating interplanetary shocks. We focus on the phase of the SEP event at the time of the shock passage at 1 AU, which is when the peak intensity at energies below a few MeV is the highest. The shocks in our study start between 2 and 10 solar radii and propagate beyond 1 AU. We study the effect of various shock and particle input parameters, such as the spatial diffusion coefficient, shock speed, solar wind speed, initial location of the shock, and shock deceleration rate, on the total integrated differential intensity, I, of SEPs with kinetic energies > 10 MeV. I is the integral over energy of the differential intensity spectrum at the time of the shock passage at 1 AU. We find that relatively small changes in the parameters can lead to significant event-to-event changes in I. For example, a factor of 2 increase in the diffusion coefficient at a given energy and spatial location, can lead to a decrease in I by as much as a factor of 50. This may help explain why there are fewer large SEP events seen during the current solar maximum compared to previous maxima. It is known that the magnitude of the interplanetary magnetic field is noticeably weaker this solar cycle than it was in the previous cycle and this will naturally lead to a somewhat larger diffusion coefficient of SEPs.

81

, , , , , , , , , et al

We present high-resolution (0farcs3) Atacama Large Millimeter Array 870 μm imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey field to investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2–10 kpc scales. We derive a median intrinsic angular size of FWHM = 0farcs30 ± 0farcs04 for the 23 SMGs in the sample detected at a signal-to-noise ratio (S/N) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4 ± 0.2 kpc. A stacking analysis of the SMGs detected at S/N <10 shows they have sizes consistent with the 870 μm bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ∼250 μm sizes of SMGs are consistent with studies of resolved 12CO (J = 3–2 to 7–6) emission lines, but that sizes derived from 1.4 GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kiloparsecs in extent, with a median star formation rate surface density of 90 ± 30 M yr−1 kpc−2, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.

82

, , , , , , , , , et al

Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, preventing massive galaxies to overgrow and producing the red colors of ellipticals. On the other hand, some models are also requiring "positive" active galactic nucleus feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively driven winds are available. Here we present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z = 1.59 QSO detected in the XMM-COSMOS survey, in which we clearly resolve a fast (1500 km s−1) and extended (up to 13 kpc from the black hole) outflow in the [O iii] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U-band flux from Hubble Space Telescope/Advanced Camera for Surveys imaging enable to map the current star formation in the host galaxy: both tracers independently show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy ("negative feedback"), but also triggering star formation by outflow induced pressure at the edges ("positive feedback"). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.

83

, , , and

We present a detailed study of active galactic nucleus feedback in the narrow-line region (NLR) of the Seyfert 1 galaxy NGC 4151. We illustrate the data and techniques needed to determine the mass outflow rate ($\dot{M}_{{\rm out}}$) and kinetic luminosity (LKE) of the outflowing ionized gas as a function of position in the NLR. We find that $\dot{M}_{{\rm out}}$ peaks at a value of 3.0 M yr−1 at a distance of 70 pc from the central supermassive black hole (SMBH), which is about 10 times the outflow rate coming from inside 13 pc, and 230 times the mass accretion rate inferred from the bolometric luminosity of NGC 4151. Thus, most of the outflow must arise from in situ acceleration of ambient gas throughout the NLR. LKE peaks at 90 pc and drops rapidly thereafter, indicating that most of the kinetic energy is deposited within about 100 pc from the SMBH. Both values exceed the $\dot{M}_{{\rm out}}$ and LKE determined for the UV/X-ray absorber outflows in NGC 4151, indicating the importance of NLR outflows in providing feedback on scales where circumnuclear star formation and bulge growth occur.

84

, , , , , and

We present the results of a broadband X-ray study of the enigmatic Be star Gamma Cassiopeiae (herein γ Cas) based on observations made with both the Suzaku and INTEGRAL observatories. γ Cas has long been recognized as the prototypical example of a small subclass of Be stars with moderately strong X-ray emission dominated by a hot thermal component in the 0.5–12 keV energy range (Lx ≈ 1032–1033 erg s−1). This places them at the high end of the known luminosity distribution for stellar emission, but several orders of magnitude below typical accretion-powered Be X-ray binaries. The INTEGRAL observations spanned an eight-year baseline and represent the deepest measurement to date at energies above ∼50 keV. We find that the INTEGRAL data are consistent within statistics to a constant intensity source above 20 keV, with emission extending up to ∼100 keV, and that searches for all of the previously reported periodicities of the system at lower energies led to null results. We further find that our combined Suzaku and INTEGRAL spectrum, which we suggest is the most accurate broadband X-ray measurement of γ Cas to date, is fitted extremely well with a thermal plasma emission model with a single absorption component. We found no compelling need for an additional non-thermal high-energy component. We discuss these results in the context of a currently favored models for γ Cas and its analogs.

85

, , and

The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit–Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across "boundaries" from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed "initial" rotation rates of pulsars. The MRI analysis suggests that localized fields ∼1012 G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.

86

, , , , , , , , , et al

The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10−6 cm−2 s−1 sr−1 above 100 MeV, with an additional +15%/−30% systematic uncertainty due to the Galactic diffuse foregrounds.

87

We use Nt, the number of exoplanets observed in time t, as a science metric to study direct-search missions like Terrestrial Planet Finder. In our model, N has 27 parameters, divided into three categories: 2 astronomical, 7 instrumental, and 18 science-operational. For various "27-vectors" of those parameters chosen to explore parameter space, we compute design reference missions to estimate Nt. Our treatment includes the recovery of completeness c after a search observation, for revisits, solar and antisolar avoidance, observational overhead, and follow-on spectroscopy. Our baseline 27-vector has aperture D = 16 m, inner working angle IWA = 0.039'', mission time t = 0–5 yr, occurrence probability for Earth-like exoplanets η = 0.2, and typical values for the remaining 23 parameters. For the baseline case, a typical five-year design reference mission has an input catalog of ∼4700 stars with nonzero completeness, ∼1300 unique stars observed in ∼2600 observations, of which ∼1300 are revisits, and it produces N1 ∼ 50 exoplanets after one year and N5 ∼ 130 after five years. We explore offsets from the baseline for 10 parameters. We find that N depends strongly on IWA and only weakly on D. It also depends only weakly on zodiacal light for Z < 50 zodis, end-to-end efficiency for h > 0.2, and scattered starlight for ζ < 10−10. We find that observational overheads, completeness recovery and revisits, solar and antisolar avoidance, and follow-on spectroscopy are all important factors in estimating N.

88

, , , and

We have studied the possibility that a third circumbinary planet in the Kepler-47 planetary system is the source of the single unexplained transiting event reported during the discovery of these planets. We applied the MEGNO technique to identify regions in the phase space where a third planet can maintain quasi-periodic orbits, and assessed the long-term stability of the three-planet system by integrating the entire five bodies (binary + planets) for 10 Myr. We identified several stable regions between the two known planets as well as a region beyond the orbit of Kepler-47c where the orbit of the third planet could be stable. To constrain the orbit of this planet, we used the measured duration of the unexplained transit event (∼4.15 hr) and compared that with the transit duration of the third planet in an ensemble of stable orbits. To remove the degeneracy among the orbits with similar transit durations, we considered the planet to be in a circular orbit and calculated its period analytically. The latter places an upper limit of 424 days on the orbital period of the third planet. Our analysis suggests that if the unexplained transit event detected during the discovery of the Kepler-47 circumbinary system is due to a planetary object, this planet will be in a low eccentricity orbit with a semi-major axis smaller than 1.24 AU. Further constraining of the mass and orbital elements of this planet requires a re-analysis of the entire currently available data, including those obtained post-announcement of the discovery of this system. We present details of our methodology and discuss the implication of the results.

89

, , , , , , and

Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 MJup) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.

90

, , and

The most promising near-term observable of the cosmic dark age prior to widespread reionization (z  ∼  15–200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered "spectrally smooth"). Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

91

, , and

In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR–hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O iv] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O iv] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR–hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

92

, , , , and

We present CO J = 2–1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M* galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV − r, and WISE color W3 − W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M* ⩽1010M, the H i fraction (fH iMH i/M*) is significantly higher than that of more massive galaxies, while the H2 gas fraction ($f_{\rm H_2}$$M_{\rm H_2}$/M*) remains nearly unchanged. (2) Compared to $f_{\rm H_2}$, fH i correlates better with both M* and NUV − r. (3) A new parameter, WISE color W3 − W2 (12–4.6 μm), is introduced, which is similar to NUV − r in tracing star formation activity, and we find that W3 − W2 has a tighter anti-correlation with log $f_{\rm H_2}$ than the anti-correlation of (NUV − r)–fH i, (NUV − r)–$f_{\rm H_2}$, and (W3 − W2)–fH i. This indicates that W3 − W2 can trace the H2 fraction in galaxies. For the gas ratio $M_{\rm H_2}$/MH i , only in the intermediate-M* galaxies it appears to depend on M* and NUV − r. We find a tight correlation between the molecular gas mass $M_{\rm H_2}$ and 12 μm (W3) luminosities (L12 μm), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H2 mass for star-forming galaxies.

93

, , , , , , , , , et al

We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ∼ 20) on a circular region with a 44'' radius, corresponding to Rext = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{{\rm Fe}} = 0.41_{-0.26}^{+0.29}Z_{{\rm Fe}_\odot }$ (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius Rext = 375 kpc to be MICM(r < Rext) = (1.48 ± 0.20) × 1013M. Under the assumption of hydrostatic equilibrium and assuming isothermality within Rext, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} \times 10 ^{14}\, M_\odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius Rext we find $M_{500} = 3.2_{-0.6}^{+0.9} \times 10 ^{14}\,M_\odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ∼ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

94

, , , , and

In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background-stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic equations in three dimensions, we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma-β is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh–Taylor instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic field. However, magnetic shear is able to reduce or even to suppress this instability.

95

, , and

The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog.

96

, , , , , , , , , et al

We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H i) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H2 + H i). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we find that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H2) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r25 (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H i) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.

97

Long slit spectra recorded with the Gemini Multi-Object Spectrograph on Gemini South are used to examine the star-forming history (SFH) of the lenticular galaxy NGC 5102. Structural and supplemental photometric information are obtained from archival Spitzer [3.6] images. Absorption features at blue and visible wavelengths are traced out along the minor axis to galactocentric radii ∼60 arcsec (∼0.9 kpc), sampling the nucleus, bulge, and disk components. Comparisons with model spectra point to luminosity-weighted metallicities that are consistent with the colors of resolved red giant branch stars in the disk. The nucleus has a luminosity-weighted age at visible wavelengths of ${\sim } 1^{+0.2}_{-0.1}$ Gyr, and the integrated light is dominated by stars that formed over a time period of only a few hundred Myr. For comparison, the luminosity-weighted ages of the bulge and disk are ${\sim } 2^{+0.5}_{-0.2}$ Gyr and 10$^{+2}_{-2}$ Gyr, respectively. The g' − [3.6] colors of the nucleus and bulge are consistent with the spectroscopically based ages. In contrast to the nucleus, models that assume star-forming activity spanning many Gyr provide a better match to the spectra of the bulge and disk than simple stellar population models. Isophotes in the bulge have a disky shape, hinting that the bulge was assembled from material with significant rotational support. The SFHs of the bulge and disk are consistent with the bulge forming from the collapse of a long-lived bar, rather than from the collapse of a transient structure that formed as the result of a tidal interaction. It is thus suggested that the progenitor of NGC 5102 was a barred disk galaxy that morphed into a lenticular galaxy through the buckling of its bar.

98

, , , , , , and

Distinct seed formation mechanisms are imprinted upon the fraction of dwarf galaxies currently containing a central supermassive black hole. Seeding by Population III remnants is expected to produce a higher occupation fraction than is generated with direct gas collapse precursors. Chandra observations of nearby early-type galaxies can directly detect even low-level supermassive black hole activity, and the active fraction immediately provides a firm lower limit to the occupation fraction. Here, we use the volume-limited AMUSE surveys of ∼200 optically selected early-type galaxies to characterize simultaneously, for the first time, the occupation fraction and the scaling of LX with Mstar, accounting for intrinsic scatter, measurement uncertainties, and X-ray limits. For early-type galaxies with Mstar < 1010M, we obtain a lower limit to the occupation fraction of >20% (at 95% confidence), but full occupation cannot be excluded. The preferred dependence of log LX upon log Mstar has a slope of ∼0.7–0.8, consistent with the "downsizing" trend previously identified from the AMUSE data set, and a uniform Eddington efficiency is disfavored at ∼2σ. We provide guidelines for the future precision with which these parameters may be refined with larger or more sensitive samples.

99

, , , , , , , , , et al

We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

100

, , , , and

We observed the giant H ii region around the NGC 3603 YC with the five broad bands (70, 160, 250, 350, 500 μm) of the SPIRE and PACS instruments, on board the Herschel Space Observatory. Together with what is currently known of the stellar, atomic, molecular, and warm dust components, this additional and crucial information should allow us to better understand the details of the star-formation history in this region. The main objective of the investigation is to study, at high spatial resolution, the distribution and main physical characteristics of the cold dust. By reconstructing the temperature and density maps, we found, respectively, a mean value of 36 K and log10NH = 22.0 ± 0.1 cm−2. We carried out a photometric analysis detecting 107 point-like sources, mostly confined to the north and south of the cluster. By comparing our data with spectral energy distribution models, we found that 35 sources are well represented by young stellar objects in early evolutionary phases, from Class 0 to Class I. The Herschel detections also provided far-IR counterparts for 4 H2O masers and 11 objects previously known from mid-IR observations. The existence of so many embedded sources confirms the hypothesis of intense and ongoing star-formation activity in the region around NGC 3603 YC.

101

and

Although Type Ia supernovae have been heavily scrutinized due to their use in making cosmological distance estimates, we are still unable to definitively identify the progenitors for the entire population. While answers have been presented for certain specific systems, a complete solution remains elusive. We present observations of two supernova remnants (SNRs) in the Large Magellanic Cloud, SNR 0505-67.9 and SNR 0509-68.7, for which we have identified the center of the remnant and the 99.73% containment central region in which any companion star left over after the supernova must be located. Both remnants have a number of potential ex-companion stars near their centers; all possible single and double degenerate progenitor models remain viable for these two supernovae. Future observations may be able to identify the true ex-companions for both remnants.

102

, , , , , , , , , et al

We present ∼2' × 2' spectral-maps of Orion Becklin–Neugebauer/Kleinmann–Low (BN/KL) outflows taken with Herschel at ∼12'' resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H2 shocked regions "Peak 1" and "Peak 2" from that of the hot core and ambient cloud. We analyze the ∼54–310 μm spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of 12CO (up to J = 48–47), H2O, OH, 13CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/LFIR ≈ 5 × 10−3 ratio and a plethora of far-IR H2O emission lines. The high-J CO and OH lines are a factor of ≈2 brighter toward Peak 1 whereas several excited H2O lines are ≲50% brighter toward Peak 2. Most of the CO column density arises from Tk ∼ 200–500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H2O/CO ≲ 10−2 abundance ratio. In addition, the very excited CO (J > 35) and H2O lines reveal a hotter gas component (Tk ∼ 2500 K) from faster (vS > 25 km s−1) shocks that are able to sputter the frozen-out H2O and lead to high H2O/CO ≳ 1 abundance ratios. The H2O and OH luminosities cannot be reproduced by shock models that assume high (undepleted) abundances of atomic oxygen in the preshock gas and/or neglect the presence of UV radiation in the postshock gas. Although massive outflows are a common feature in other massive star-forming cores, Orion BN/KL seems more peculiar because of its higher molecular luminosities and strong outflows caused by a recent explosive event.

103

, , , , , and

The physical nature of thermal composite supernova remnants (SNRs) remains controversial. We have revisited the archival XMM-Newton and Chandra data of the thermal composite SNR Kesteven 41 (Kes 41 or G337.8−0.1) and performed a millimeter observation toward this source in the 12CO, 13CO, and C18O lines. The X-ray emission, mainly concentrated toward the southwestern part of the SNR, is characterized by distinct S and Ar He-like lines in the spectra. The X-ray spectra can be fitted with an absorbed nonequilibrium ionization collisional plasma model at a temperature of 1.3–2.6 keV and an ionization timescale of 0.1–1.2 × 1012 cm−3 s. The metal species S and Ar are overabundant, with 1.2–2.7 and 1.3–3.8 solar abundances, respectively, which strongly indicate the presence of a substantial ejecta component in the X-ray-emitting plasma of this SNR. Kes 41 is found to be associated with a giant molecular cloud (MC) at a systemic local standard of rest velocity of −50 km s−1 and confined in a cavity delineated by a northern molecular shell, a western concave MC that features a discernible shell, and an H i cloud seen toward the southeast of the SNR. The birth of the SNR in a preexisting molecular cavity implies a mass of ≳ 18 M for the progenitor if it was not in a binary system. Thermal conduction and cloudlet evaporation seem to be feasible mechanisms to interpret the X-ray thermal composite morphology, and the scenario of gas reheating by the shock reflected from the cavity wall is quantitatively consistent with the observations. An updated list of thermal composite SNRs is also presented in this paper.

104

and

We present the modeling results of deuterium fractionation of water ice, H2, and the primary deuterium isotopologues of ${\rm H_3^+}$ adopting physical conditions associated with the star and planet formation process. We calculated the deuterium chemistry for a range of gas temperatures (Tgas ∼ 10–30 K), molecular hydrogen density (n(H2) ∼ 104–107), and ortho/para ratio (opr) of H2 based on state-to-state reaction rates and explore the resulting fractionation including the formation of a water ice mantle coating grain surfaces. We find that the deuterium fractionation exhibits the expected temperature dependence of large enrichments at low gas temperature. More significantly, the inclusion of water ice formation leads to large D/H ratios in water ice (≳ 10−2 at 10 K) but also alters the overall deuterium chemistry. For T < 20 K, the implantation of deuterium into ices lowers the overall abundance of HD which reduces the efficiency of deuterium fractionation at high density. In agreement with an earlier study, under these conditions HD may not be the primary deuterium reservoir in the cold dense interstellar medium and ${\rm H_3^+}$ will be the main charge carrier in the dense centers of pre-stellar cores and the protoplanetary disk midplane.

105

, , , and

We report observations of the bright M82 supernova 2014J serendipitously obtained with the Kilodegree Extremely Little Telescope (KELT). The supernova (SN) was observed at high cadence for over 100 days, from pre-explosion, to early rise and peak times, through the secondary bump. The high cadence KELT data with high signal-to-noise ratio is completely unique for SN 2014J and for any other SNIa, with the exception of the (yet) unpublished Kepler data. Here, we report determinations of the SN explosion time and peak time. We also report measures of the "smoothness" of the light curve on timescales of minutes/hours never before probed, and we use this to place limits on energy produced from short-lived isotopes or inhomogeneities in the explosion or the circumstellar medium. From the non-observation of significant perturbations of the light curves, we derive a 3σ upper limit corresponding to 8.7 × 1036 erg  s−1 for any such extra sources of luminosity at optical wavelengths.

106

, , , , , , , , and

We study the very early light curve of supernova 2014J (SN 2014J) using the high-cadence broad-band imaging data obtained by the Kilodegree Extremely Little Telescope, which fortuitously observed M 82 around the time of the explosion, starting more than 2 months prior to detection, with up to 20 observations per night. These observations are complemented by observations in two narrow-band filters used in an Hα survey of nearby galaxies by the intermediate Palomar Transient Factory that also captured the first days of the brightening of the supernova. The evolution of the light curves is consistent with the expected signal from the cooling of shock heated material of large scale dimensions, ≳1R. This could be due to heated material of the progenitor, a companion star or pre-existing circumstellar environment, e.g., in the form of an accretion disk. Structure seen in the light curves during the first days after explosion could also originate from radioactive material in the outer parts of an exploding white dwarf, as suggested from the early detection of gamma-rays. The model degeneracy translates into a systematic uncertainty of ±0.3 days on the estimate of the first light from SN 2014J.

107

, , , and

Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required.

108

and

We present a numerical study of dark matter halo concentrations in ΛCDM and self-similar cosmologies. We show that the relation between concentration, c, and peak height, ν, exhibits the smallest deviations from universality if halo masses are defined with respect to the critical density of the universe. These deviations can be explained by the residual dependence of concentration on the local slope of the matter power spectrum, n, which affects both the normalization and shape of the c–ν relation. In particular, there is no well-defined floor in the concentration values. Instead, the minimum concentration depends on redshift: at fixed ν, halos at higher z experience steeper slopes n, and thus have lower minimum concentrations. We show that the concentrations in our simulations can be accurately described by a universal seven-parameter function of only ν and n. This model matches our ΛCDM results to ≲ 5% accuracy up to z = 6, and matches scale-free Ωm = 1 models to ≲ 15%. The model also reproduces the low concentration values of Earth–mass halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in halo mass. The predictions of our model differ significantly from all models previously proposed in the literature at high masses and redshifts. Our model is in excellent agreement with recent lensing measurements of cluster concentrations.

109

, , , , , , and

Using Keck/HIRES, we report abundances of 11 different elements heavier than helium in the spectrum of Ton 345, a white dwarf that has accreted one of its own minor planets. This particular extrasolar planetesimal, which was at least 60% as massive as Vesta, appears to have been carbon-rich and water-poor; we suggest it was compositionally similar to those Kuiper Belt Objects with relatively little ice.

110

, , , , and

We present high angular resolution Submillimeter Array observations of the outbursting Jupiter family comet 17P/Holmes on 2007 October 26–29, achieving a spatial resolution of 2farcs5, or ∼3000 km at the comet distance. The observations resulted in detections of the rotational lines CO 3–2, HCN 4–3, H13CN 4–3, CS 7–6, H2CO 31, 2–21, 1, H2S 22, 0–21, 1, and multiple CH3OH lines, along with the associated dust continuum at 221 and 349 GHz. The continuum has a spectral index of 2.7 ± 0.3, slightly steeper than blackbody emission from large dust particles. From the imaging data, we identify two components in the molecular emission. One component is characterized by a relatively broad line width (∼1 km s−1 FWHM) exhibiting a symmetric outgassing pattern with respect to the nucleus position. The second component has a narrower line width (<0.5 km s−1 FWHM) with the line center redshifted by 0.1–0.2 km s−1 (cometocentric frame), and shows a velocity shift across the nucleus position with the position angle gradually changing from 66° to 30° within the four days of observations. We determine distinctly different CO/HCN ratios for each of the components. For the broad-line component we find CO/HCN < 7, while in the narrow-line component, CO/HCN = 40 ± 5. We hypothesize that the narrow-line component originates from the ice grain halo found in near-nucleus photometry, believed to be created by sublimating recently released ice grains around the nucleus during the outburst. In this interpretation, the high CO/HCN ratio of this component reflects the more pristine volatile composition of nucleus material released in the outburst.

111

and

This paper investigates the onset time of solar energetic particle (SEP) events with numerical simulations and analyzes the accuracy of the velocity dispersion analysis (VDA) method. Using a three-dimensional focused transport model, we calculate the fluxes of protons observed in the ecliptic at 1 AU in the energy range between 10 MeV and 80 MeV. In particular, three models are used to describe different SEP sources produced by flare or coronal shock, and the effects of particle perpendicular diffusion in the interplanetary space are also studied. We have the following findings. When the observer is disconnected from the source, the effects of perpendicular diffusion in the interplanetary space and particles propagating in the solar atmosphere have a significant influence on the VDA results. As a result, although the VDA method is valid with impulsive source duration, low background, and weak scattering in the interplanetary space or fast diffusion in the solar atmosphere, the method is not valid with gradual source duration, high background, or strong scattering.

112

, , , and

We analyze the origin of the gamma-ray flux from the Fermi Bubbles (FBs) in the framework of the hadronic model in which gamma-rays are produced by collisions of relativistic protons with the protons of the background plasma in the Galactic halo. It is assumed in this model that the observed radio emission from the FBs is due to synchrotron radiation of secondary electrons produced by pp collisions. However, if these electrons lose their energy through synchrotron and inverse-Compton emission, the spectrum of secondary electrons will be too soft, and an additional arbitrary component of the primary electrons will be necessary in order to reproduce the radio data. Thus, a mixture of the hadronic and leptonic models is required for the observed radio flux. It was shown that if the spectrum of primary electrons is ${\propto} E_e^{-2}$, the permitted range of the magnetic field strength is within the 2–7 μG region. The fraction of gamma-rays produced by pp collisions can reach about 80% of the total gamma-ray flux from the FBs. If the magnetic field is <2 μG or >7 μG the model is unable to reproduce the data. Alternatively, the electrons in the FBs may lose their energy through adiabatic energy losses if there is a strong plasma outflow in the GC. Then, the pure hadronic model is able to reproduce characteristics of the radio and gamma-ray flux from the FBs. However, in this case the required magnetic field strength in the FBs and the power of CR sources are much higher than those following from observations.