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ABSTRACT

The circular ribbon of enhanced energetic neutral atom (ENA) emission observed by the Interstellar Boundary
Explorer (IBEX) mission remains a critical signature for understanding the interaction between the heliosphere
and the interstellar medium. We study the symmetry of the ribbon flux and find strong, spectrally dependent
reflection symmetry throughout the energy range 0.7–4.3 keV. The distribution of ENA flux around the ribbon is
predominantly unimodal at 0.7 and 1.1 keV, distinctly bimodal at 2.7 and 4.3 keV, and a mixture of both at 1.7 keV.
The bimodal flux distribution consists of partially opposing bilateral flux lobes, located at highest and lowest
heliographic latitude extents of the ribbon. The vector between the ribbon center and heliospheric nose (which
defines the so-called BV plane) appears to play an organizing role in the spectral dependence of the symmetry axis
locations as well as asymmetric contributions to the ribbon flux. The symmetry planes at 2.7 and 4.3 keV, derived by
projecting the symmetry axes to a great circle in the sky, are equivalent to tilting the heliographic equatorial plane
to the ribbon center, suggesting a global heliospheric ordering. The presence and energy dependence of symmetric
unilateral and bilateral flux distributions suggest strong spectral filtration from processes encountered by an ion
along its journey from the source plasma to its eventual detection at IBEX.

Key words: ISM: atoms – ISM: kinematics and dynamics – ISM: magnetic fields – ISM: structure –
Sun: heliosphere

1. INTRODUCTION

The Sun, with its radially outflowing solar wind plasma,
moves through the interstellar medium along an ecliptic vector
direction v̂Sun(λ, β) = (259◦, 5◦) that is derived from inflow
measurements of the neutral component of the ISM plasma
(McComas et al. 2012a; Bzowski et al. 2012; Möbius et al.
2012). This motion, which lies near the heliographic equator,
creates the heliospheric cavity in the interstellar medium, and
v̂Sun is an important ordering parameter for the global structure
and dynamics of the interaction between the solar wind and ISM.
A simplistic hydrodynamic picture of the interaction of these
plasmas results in a bullet-shaped heliosheath with cylindrical
symmetry around v̂Sun (Parker 1961).

Numerous processes can introduce asymmetries to this global
structure (e.g., Zank 1999), and many of these processes have
strong internal order and spatial or temporal symmetry. For
example, the properties of the solar wind, which is a dominant
energy and mass input in the heliosheath, has cylindrical
symmetry around the heliographic poles as well as reflection
symmetry near the heliographic equator that results from fast
solar wind at high latitudes and slower, denser solar wind
at low latitudes. As another example, the presence of an
interstellar magnetic field BISM can strongly influence the
Sun–ISM interaction, depending on its magnitude and direction
(e.g., Fahr et al. 1988; Zank 1999; Zank et al. 2009). Finally,

temporal symmetries can be introduced by the cyclical variation
of the solar wind structure and the Sun’s magnetic field vector
over the solar cycle. On a global scale, observational signatures
of these symmetries can provide insight into the predominant
dynamic processes that govern the Sun–ISM interaction.

The unexpected but dominant feature in the first sky map
of energetic neutral atoms (ENAs) measured from Interstellar
Boundary Explorer (IBEX; McComas et al. 2009a) is the so-
called ribbon of enhanced ENA flux (McComas et al. 2009b).
The ribbon is narrow (∼20◦) in width (Fuselier et al. 2009;
Schwadron et al. 2011) and circular with the center near
ecliptic coordinate (λ, β) = (221◦, 39◦) (Funsten et al. 2009a).
Recent analysis (Funsten et al. 2013) using 3 yr of IBEX
data has refined the ribbon center to (λ, β) = (219.◦2 ±
1.◦3, 39.◦9 ± 2.◦3) and quantified the energy dependence of
the ribbon center; additionally, the ribbon was found to have
strong circularity, spanning a half cone angle of 74.◦5 ± 2.◦0
in the sky and whose precision is less than the intrinsic 6.◦5
imaging resolution of the IBEX-Hi ENA imager (Funsten
et al. 2009b). The circularity of the ribbon is evidence of
strong cylindrical symmetry, with the ribbon center as the
cylindrical symmetry axis that defines a fundamental direction
that governs the overall structure responsible for the ribbon
ENA emission.

The ribbon center is generally consistent with the average
ISM magnetic field direction along lines-of-sight to nearby stars
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(e.g., Frisch et al. 2010, 2012), and current interpretation of the
ribbon places the pristine interstellar magnetic field direction
BISM along the vector from the Sun to the ribbon center, with
enhanced ENA emission observed when the radial line-of-sight
vector from the inner heliosphere is perpendicular to BP , i.e.,
Bp · r̂ ≈ 0 for which BP is the perturbed ISM magnetic field in
the vicinity of the heliosphere (e.g., Schwadron et al. 2009). Of
particular interest in this study are symmetries associated with
the circular ENA emission of the ribbon, which is apparently
centered at and therefore ordered by BISM. 3D MHD modeling
of the Sun–ISM interaction (Pogorelov et al. 2008a; Zank et al.
2009), as well as simulations of the interaction of ISM dust in the
heliosphere (Slavin et al. 2010), have identified as an important
ordering parameter the so-called BV plane, which contains the
Sun and the vector between BISM and v̂Sun. Assuming the ribbon
center corresponds to B̂ISM, the BV plane in the IBEX sky
maps is defined by the vector between the ribbon center and the
heliospheric nose.

The ENA spectral distribution can be generally characterized
as a power law (McComas et al. 2009b; Livadiotis et al. 2011;
Dayeh et al. 2011; Desai et al. 2012, 2014; Fuselier et al.
2014), and the ENA flux likely reaches a maximum near 100 eV
(Fuselier et al. 2014). Variability of spectra over the ENA sky
maps indicates the spectra follow the general latitudinal ordering
of the solar wind (Funsten et al. 2009a; Dayeh et al. 2012;
McComas et al. 2012b; Livadiotis et al. 2013), are influenced
by heliospheric pickup ion populations (Livadiotis et al. 2012),
and may be composed of multiple source ion populations (Desai
et al. 2014). Temporal variation is also consistently observed in
the sky maps, with a general reduction in ENA flux over time
(McComas et al. 2010) that appears to be driven by reduction
in the solar wind over the current solar cycle (McComas et al.
2012b; Kucharek et al. 2013). An energy-dependent temporal
variation and a north–south temporal asymmetry of ENA flux is
systematically observed at the ecliptic poles (Reisenfeld et al.
2012; Allegrini et al. 2012), which are viewed continuously
throughout the IBEX mission and thus serve as a statistically
robust temporal baseline.

The ribbon is an exquisitely sharp and systematic feature
in the ENA sky maps and thus is an important signature for
understanding the structure and properties of the source plasma
that is believed to be heliospheric in origin. A hot plasma (such
as in the heliosheath) immersed in a cold neutral background
(such as the ISM neutral atoms that permeate the heliosheath)
will emit ENAs whose spectral distribution and flux retain
specific information about the properties of the source plasma.
Here, we define “filtration” as the spectral, spatial, and temporal
processes that act on this ENA emission and alter its properties,
thus obscuring the embedded information of the source plasma
properties.

A plethora of hypotheses have been posed to explain the
ribbon. Most start with initial ENA emission from a source
plasma in the heliosphere and subsequently follow different
spatial, spectral, and temporal filtration processes that occur
between initial ENA emission and their observation at IBEX
(see the recent summary of McComas et al. 2014b). Several
hypotheses of so-called secondary ENA emission (McComas
et al. 2009b; Chalov et al. 2010; Heerikhuisen et al. 2010;
Schwadron & McComas 2013; Möbius et al. 2013) explain
the ribbon structure as resulting from ENAs that are initially
emitted from a source plasma inside the heliosphere (solar wind
and inner heliosheath) and propagate into the ISM, are ionized
and captured on ISM magnetic field lines, and are eventually

neutralized again as “secondary” ENAs that can travel into the
inner heliosphere, where they can be detected by IBEX.

Modeling of these secondary ENA processes in the
ISM–heliospheric interaction via magneto-hydrodynamic
(MHD) simulations (e.g., Heerikhuisen et al. 2011; Pogorelov
et al. 2011) and analytic calculations (Schwadron & McComas
2013) are consistent with a spatial filtering process in which
(1) the ribbon center is the likely direction of BISM, (2) the
arc traced by the ribbon is the result of perturbation of the in-
terstellar magnetic field geometry by the heliosphere, and (3)
enhanced emission of secondary ENAs occurs from viewing lo-
cations in which the line-of-sight r̂ from the inner heliosphere
is perpendicular to the perturbed ISMF vector, i.e. Bp · r̂ ≈ 0.
These processes that induce spatial filtration are also energy-
dependent and thus introduce spectral filtration.

For this “secondary” hypothesis, filtration processes are com-
plex and include the energy-dependent radial distance that
an initial ENA travels into the ISM before it is ionized; the
Bp · r̂ ≈ 0 retention dynamics of the ionized primary ENAs
that are spatially, spectrally and temporally dependent and de-
pend on BISM and its perturbation in the vicinity of the he-
liosphere; the contributions from multiple heliospheric plasma
sources to a “retained” ion population at a specific location
along r̂ in the ISM; and ionization losses of secondary ENAs
as they travel to the inner heliosphere. Under any hypothesis
for the ribbon, understanding and quantifying these filtration
processes and their influence on the observed ENA distribu-
tions is essential for extracting source plasma properties from
ENA images.

Because of this complexity, parameterizing the global proper-
ties of the ribbon using compact representations, such as ribbon
circularity and its center location in the sky, are crucial for test-
ing these hypotheses and understanding the global structure,
dynamics, and origin of the ribbon. The presence of symmetry
and identification of symmetry axes likewise provide powerful
insight into the global ENA emission of the ribbon. In this study
we quantify and analyze the symmetry of ENA flux distributed
around the circular ribbon as a function of ENA energy.

Inspection of the ribbon-centered flux maps used for this
study (Figure 2 of Funsten et al. 2013) shows qualitatively that
the ribbon at lower energy (∼1 keV) appears to consist of a single
ENA flux peak broadly distributed around the circular ribbon
while at higher energy (2–4 keV) contains two opposing flux
peaks. The objective of this study is to quantify the regularity
of this symmetry over the entirety of the ribbon, obtain any
global ordering parameters arising from its symmetry (such as a
symmetry plane), and compare them with other parameters that
may govern the ENA emission, such as heliospheric latitude
and the direction of motion of the Sun in the ISM. We assume
throughout our symmetry analysis that the ribbon center lies
within the symmetry plane of any symmetry features discovered
within the ribbon.

2. IBEX OBSERVATIONS

Figure 1 shows annular ENA flux maps at 6◦ × 6◦ resolution
used for this study. They were obtained from the IBEX-Hi
neutral atom imager (Funsten et al. 2009b) and span five energy
passbands at nominal energies 0.7, 1.1, 1.7, 2.7, and 4.3 keV.
The ENA flux maps, fully described in McComas et al. (2014a),
cover the first five years of the IBEX mission, include IBEX
orbits 11 through 230, and are acquired from IBEX viewing
in the ram direction only. The maps are corrected for the
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Figure 1. IBEX ENA flux map F(θ , φ) at each of the five energy passbands is rotated into a ribbon-centric reference frame centered at ecliptic (221◦, 39◦). In this
frame the heliospheric nose lies along the azimuth θ = 0◦ axis; φ is the polar (radial) angle from the ribbon center. The white lines are the circular fits to the ribbon
flux from Funsten et al. (2013). The red lines show the primary (sagittal) symmetry axes derived from this study. The following directions are noted in each map for
reference: EN = Ecliptic North, Nose = heliospheric nose, and V1 and V2 are the locations of the Voyager 1 and 2 spacecraft in the sky.

Compton–Getting effect (McComas et al. 2012b) and for ENA
extinction as calculated along the ENA trajectories through the
inner heliosphere to the IBEX spacecraft (McComas et al. 2012b,
2014a; Bzowski 2008).

Following the frame used for analysis of the ribbon circularity
(Funsten et al. 2013), we project the IBEX ENA flux data onto a
ribbon-centered spherical coordinate frame (azimuth, polar) =
(θ , φ) centered on ecliptic (221◦, 39◦) for all energies. Our
objective is to understand systematic symmetry and its spectral
variation on a global scale, so we use this single frame even
though the ribbon center at 4.3 keV appears slightly offset from
the ribbon center at lower energies (Funsten et al. 2013). In this
rotated system, the ribbon center lies nearly at (0◦, 0◦), and the
polar (radial) angle φ corresponds to the angle between a point
in the sky and (0◦, 0◦). The azimuth angle θ ranges from 0◦ to
360◦ around the ribbon center. The heliospheric nose direction,
which is defined at ecliptic v̂Sun(λ, β) = (259◦, 5◦) (McComas
et al. 2012a; Bzowski et al. 2012; Möbius et al. 2012), is located
along the θ = 0◦ axis in the rotated frame. The ribbon flux
peak is generally found within the polar angle range 70◦ < φ <
85◦, so we use the annular flux maps over the polar angle range

48◦–102◦ (nine polar pixels of 6◦ width) that fully includes the
ribbon as the base data set for this study.

The azimuthal angle θ is defined specifically in reference to
the ribbon-centered coordinate system of Figure 1. Within this
ribbon-centered frame, we introduce three azimuthal reference
angles that are used as input (roll angle θR) and output (angles
θS and θT of primary and secondary reflection symmetry) of
the symmetry analysis. Because we find that the ribbon has
strong bilateral symmetry at high energies, we borrow the term
“sagittal” to refer to the primary reflection symmetry axis and
“transverse” as a secondary symmetry axis. These reference
angles are defined relative to the ribbon center–heliospheric
nose vector that lies at θ = 0◦, which, assuming the ribbon
center location corresponds to the pristine ISM magnetic field
vector direction B̂ISM, corresponds to the BV plane.

Distinct features of the structure of the ribbon simplify in-
vestigation of its symmetry. First, the ribbon is narrow in po-
lar angle and highly circular in azimuthal angle as projected
on the sky. Standard methods for symmetry identification in
an image usually first identify an object’s symmetry center;
the ribbon-centered reference frame of Figure 1 provides the
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natural coordinate system for its symmetry, and our analysis de-
fines the symmetry axes as traversing the ribbon center (0◦, 0◦).
Second, the ribbon flux as a function of polar angle φ is reason-
ably represented by a Gaussian distribution (Schwadron et al.
2011, 2014) and more precisely represented as a systematically
skewed (asymmetric gamma) distribution, with a wider peak to-
ward the ribbon interior (Funsten et al. 2013). Because this flux
peak lies tightly and systematically along the ribbon circle, our
analysis focuses on variation of the ribbon flux F(θ ) as a func-
tion of azimuthal angle only. In summary, the ribbon scribes a
circle in our ribbon-centered coordinate system, the ribbon flux
peak is narrow in polar angle, and strong flux symmetries are
observed as a function of azimuthal angle only.

2.1. Autocorrelation of IBEX Flux Maps:
An Indicator of Ribbon Symmetry

The human brain is conditioned to identify symmetry (Enquist
& Arak 1994; Rhodes 2006), and inspection of the distribution
of ENA flux around the ribbon in the flux maps of Figure 1
indicates a single, broad flux peak at low energies with apparent
reflection symmetry and two flux peaks of similar azimuthal
width and largely opposing (on opposite sides of the ribbon) at
the high energies.

Cross-correlation is routinely used to identify periodic pat-
terns in data and thus can be used as an indicator of the presence
of symmetric features in an image (Reichardt 1961; Neubecker
1996; Masuda et al. 1993), thus providing quantitative insight
of our visual inspection of Figure 1. We examine rotational
symmetry using the autocorrelation A(θ0, φ0) using the annu-
lar flux map F(θ , φ) at each energy in Figure 1 as a function of
6◦ increments of azimuthal (θ0) and polar (φ0) offset angles:

A (θ0, φ0) = F (θ, φ) � F (θ + θ0, φ + φ0)

≡ 1

4π

∫ 2π

0

∫ π

0
F (θ, φ) F (θ + θ0, φ + φ0)

× sin φ dφ dθ. (1)

From Equation (1), we derive the autocorrelation score
χ (θ0, φ0) = (A(θ0, φ0) − AMIN)/(AMAX − AMIN), where AMIN
and AMAX are the minimum and maximum values of A(θ0, φ0)
of each map. Values of χ = 0 and χ = 1 correspond to the lowest
and highest autocorrelation, respectively, in each flux map.

The autocorrelation score is shown in Figure 2 for each of
the annular flux maps of Figure 1 as a function of azimuthal
and polar offset angles, with red corresponding to higher
autocorrelation and blue corresponding to lower autocorrelation.
As expected, the maximum value of χ lies at the center of the
primary autocorrelation peak, (θ0, φ0) = (0◦, 0◦). As the polar
and azimuth offset angles increase from 0◦, χ slowly decreases
at a rate that indicates the characteristic spatial sizes of the
ribbon flux peak(s) in these angular directions.

In polar angle, regions of higher χ appear to be narrow (�24◦)
and generally centered at polar offset angle φ0 = 0◦, confirming
that the ribbon flux is narrow in polar angle, highly circular, and
well-centered in the ribbon-centered coordinate frame.

In azimuthal angle, only a single autocorrelation peak, cen-
tered at θ0 = 0◦, is observed at 0.7 and 1.1 keV, suggesting the
ribbon flux is unimodal. This autocorrelation peak narrows by
∼30% at 2.7 and ∼50% at 4.3 keV. Additionally, at 2.7 keV
and 4.3 keV, a secondary autocorrelation peak centered near
θ0 = ±180◦ is clearly observed, suggesting the presence of two

Figure 2. Autocorrelation score χ (θ0, φ0) is shown for each of the annular flux
maps of Figure 1 as a function of azimuthal (θ0) and polar (φ0) offset angles
used in Equation (1). Values of χ = 0 and χ = 1 correspond to the lowest
and highest autocorrelation, respectively, in each flux map. The autocorrelation
maps provide a qualitative indication of the presence of rotational symmetry of
the ribbon flux and the possible presence of symmetric flux peaks.

(bilateral) flux lobes that are generally located on opposite sides
of the circular ribbon.

2.2. IBEX Data for Reflection Symmetry Analysis

While the autocorrelation analysis clearly reveals the exis-
tence of rotational symmetry of the ribbon flux as well as the
presence of multiple flux peaks with rotational symmetry, it does
not provide a quantitative test for symmetry or the location of
symmetry axes. For quantitative symmetry analysis, we test for
reflection symmetry using correlation analysis of the annular
flux maps of Figure 1. For this study, we do not separate the rib-
bon flux from the spatially slowly varying globally distributed
flux (Schwadron et al. 2011, 2014); thus our results are char-
acteristic of a combined azimuthally varying ribbon flux and
a slowly varying globally distributed flux at each energy. We
employ several input data sets for the correlation analysis:

1. F(θ , φ): the 2D annular ENA flux maps of Figure 1, which
span nine polar pixels in the angular range 48◦–102◦ that
are generally centered on the ribbon.

2. FP9(θ ): at each azimuthal angle θ , the average ENA flux
of all nine polar pixels (which span 48◦–102◦) and, at

4



The Astrophysical Journal, 799:68 (17pp), 2015 January 20 Funsten et al.

(a) (b)

Figure 3. Quantification of reflection symmetry for a 2D flux map is obtained by (a) folding the two halves A and B of the annular IBEX flux map at azimuthal roll
angle θR relative to the ribbon center–heliospheric nose vector (BV plane) and (b) applying correlation analysis on the pairs of co-registered pixels. This is performed
at each 6◦ increment of roll angle over the range −90◦ to +90◦.

most energies, fully contains the ribbon flux. Because
FP9(θ ) includes the flux of nine pixels at each θ , it is the
most statistically significant data. However, it also includes
regions inside and outside of the ribbon peak that are largely
dominated by the globally distributed flux and is therefore
comparatively less sensitive to variations of the ribbon flux
over azimuthal angle.

3. FP2max(θ ): at each azimuthal angle θ , the average flux of
the two adjacent polar pixels of maximum flux within the
nine polar pixels spanning 48◦–102◦. This flux is derived
from only two pixels and thus provides comparatively
poorer statistics; however, because FP2max(θ ) includes a
comparatively larger fraction of the ribbon flux than FP9(θ ),
it provides better insight into azimuthal variations of ribbon
flux. Note that FP2max(θ ) > FP9(θ ) for any θ .

3. TESTS OF REFLECTION SYMMETRY

We test the azimuthal dependence of ribbon flux for reflection
symmetry, for which perfect reflection symmetry is obtained if
the following is true over all angles −180◦ � θ � +180◦:

F (θS − Θ) = F (θS + Θ). (2)

Throughout this paper, we use θ to denote an azimuthal angle
measured relative to the ribbon center–heliospheric nose vector,
which lies in the BV plane, and Θ to denote an azimuthal angle
measured relative to the primary (sagittal) symmetry axis θS.
Because an axis of symmetry traverses the ribbon center and
bisects the circular ribbon, the axis of symmetry at θS can
equivalently be defined at the opposite side (i.e., θS + 180◦)
of the ribbon. We note that our test for reflection symmetry
also clearly identifies rotational symmetry, in which flux peaks
may be periodically distributed around the ribbon and for which
n-fold symmetry yields n − 1 symmetry axes.

As illustrated in Figure 3 for the 2D flux map F(θ , φ) at
4.3 keV, our reflection symmetry test starts with “folding” the
flux map along an axis defined by azimuthal roll angle θR into
two halves, A and B. In this geometry, any reflection symmetry

axis bisects the ribbon and traverses the ribbon center. Because
θR is referenced to the vector between the ribbon center and
heliospheric nose, θR = 0◦ corresponds to folding the flux map
at the BV-plane. The 6◦ × 6◦ pixel pairs of the folded half maps
are co-registered; computationally, pixels of A are co-registered
with the azimuthal inverse of pixels of B, which we denote as
B̄. The fluxes of each pair of co-registered pixels are compared
and scored using correlation analysis. The ensemble scores of
all co-registered pixels are then combined into a single score for
each roll angle θR. The roll angle is advanced from −90◦ to 90◦
in 6◦ increments, yielding a correlation score as a function of
θR for every 6◦ in azimuth. The results at −90◦ and 90◦ have
the same folding axis and therefore are identical.

Figure 3 shows the processing of a 2D flux map for symmetry
analysis, and an identical process can be applied to the circular
1D flux distributions FP9(θ ) and FP2max(θ ). For example, FP9(θ )
is split at roll angle θR into the two azimuthal halves A and
B (each with 30 flux pixels) and folded such that pixels of A
and B̄ are co-registered. Co-registered pixel pairs are scored
individually and then combined, yielding a single symmetry
score at each roll angle θR. As with the 2D analysis, θR ranges
from −90◦ to 90◦ in increments of 6◦.

We use two tests for symmetry, and strong correlation scores
from both tests are necessary to demonstrate a meaningful cor-
relation (Livadiotis & McComas 2013) from which we identify
reflection symmetry. First, the Pearson product-moment cor-
relation (Pearson 1896; Onwuegbuzie et al. 2007) quantifies
the degree of dependence between the folded and co-registered
flux data A and B̄. The Pearson correlation coefficient ρ(θR)
varies between +1 (total positive correlation) and −1 (total neg-
ative correlation), where 0 corresponds to no correlation. While
this is a standard statistical test used broadly in the physical sci-
ences, its weakness lies in its independent normalization of the
data within A and within B̄, which excludes consideration of the
absolute fluxes of A and B̄ within the calculation of ρ(θR). Thus,
the Pearson correlation is a quantitative, comparative measure of
distribution shape that does not consider variation in distribution
amplitude between A and B̄.
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Second, the Coefficient of Variation of the Root Mean Square
Deviation, or CV(RMSD) and denoted as CV(θR), provides
an absolute, aggregate measure of the differences between the
(folded and co-registered) flux data A and B̄. This symmetry
test calculates the sum of the differences squared of the fluxes of
pixel pairs that are matched by the reflection operation generally
described in Equation (2) and illustrated in Figure 3. At roll
angle θR, the root-mean-square deviation (RMSD) of the flux
differences of co-registered pixels is therefore

RMSD(θR) =
√∑

θ,φ(F (θR − θ ′, φ) − F (θR + θ ′, φ))2

NR
(3)

where θ ′ is the azimuthal offset angle relative to θR, NR is the
number of co-registered pixel pairs, and the polar angle φ is
included only when using the annular sky maps F(θ , φ) as input
data. CV(RMSD) is then derived using

CV (θR) = RMSD(θR)

F̄
(4)

where F is the mean ENA flux per pixel of all data used to derive
RMSD(θR). CV(θR) is always positive, and perfect reflection
symmetry corresponds to CV(θR) = 0. While the CV(RMSD)
analysis does not yield an explicit correlation coefficient like ρ,
its result incorporates the absolute flux differences between A
and B̄.

3.1. Illustrations of Reflection Symmetry

To better interpret the information provided by the symmetry
tests, and with some insight into the summary results of this
study, we construct the simplest flux symmetries of a circular
emission structure that could represent the ribbon flux, shown
in Figure 4. Schematically illustrated are a unimodal flux
peak in Figure 4(i), opposing bilateral flux lobes of the same
flux brightness in Figure 4(ii), partially opposing bilateral flux
lobes of different brightness in Figure 4(iii), and non-opposing
bilateral flux lobes of different brightness in Figure 4(iv).

Analogous to physiological symmetry geometries, we refer
to the primary axis of reflection symmetry at θS as the sagittal
axis. In Figures 4(i)–(iv), for purposes of illustration in this
section, we conveniently select the sagittal axis to lie along the
BV-plane, such that the sagittal axis at θS = 0◦ also corresponds
to a roll angle θR = 0◦.

For a unimodal flux distribution, a single symmetry axis
(the sagittal symmetry axis θS) is observed and is located
near the point of bisection of the distribution. For a bimodal
flux distribution, we expect to observe up to three axes of
symmetry. The sagittal symmetry axis is located where one
flux peak is “folded” and co-registered with the other flux
peak. The same symmetry operation used to identify θS yields
two additional symmetry axes, which we refer to as transverse
symmetry axes θT and are located at local ρ(θR) maxima and
local CV(θR) minima. Because the symmetry operation applies
to the entirety of the ribbon flux, the location of a transverse axis
is associated with the internal symmetry of an individual flux
peak but is modulated by the global variation of flux around the
ribbon. Therefore, a transverse axis can be located near (but not
necessarily at) the angle of bisection of an individual flux peak
of a bimodal distribution.

Figures 4(a)–(d) show simplistic, 1D azimuthally dependent
fluxes F(θ ) for each of the scenarios of panels (i)–(iv). These

fluxes, analogous to the fluxes FP9(θ ) or FP2max(θ ) obtained
from the IBEX data, are constructed as the combination of the
constant, ubiquitous globally distributed flux with normalized
flux magnitude 0.35 and an azimuthally varying ribbon flux
of one (for unimodal) or two (for bilateral) Gaussian-shaped
flux peaks. The parameters of the Gaussian flux distributions
are listed in Figures 4(i)–(iv) and include the offset angle ΘO
relative to the symmetry axis θS, the angular full-width-at-half-
maximum (FWHM) θFWHM, and, for the bilateral peaks, the
relative flux magnitudes FL and FR of the left and right flux
lobes, respectively.

Figures 4(e)–(h) and Figures 4(i)–(l) show ρ(θR) and CV(θR)
calculated as a function of roll angle θR for the flux distribution
F(θ ) of each scenario. For reference, also shown are the roll
angle locations of the sagittal (red dashed line) and transverse
symmetry axes (purple dotted line).

As indicated by the autocorrelation analysis of Figure 2, the
ribbon flux at lower ENA energies (∼1 keV) likely appears as a
unimodal peak that is broad in azimuth. The unimodal Gaussian
flux peak of Figure 4(a) is centered at θ = 0◦. The Pearson
correlation coefficient in Figure 4(e) reaches a single maximum
ρ(0◦) = +1 (perfect positive correlation) at the sagittal axis and a
single minimum ρ(±90◦) = −1 (perfect negative correlation) at
the transverse axis. The corresponding CV(RMSD) correlation
score in Figure 4(i) reaches a single minimum value CV(0) =
0 at the sagittal axis and a single maximum value CV(±90◦) =
0.6. A unimodal peak is therefore characterized by (1) a single
ρ(θR) maximum and single CV(θR) minimum at the same roll
angle, which marks its sagittal axis, and (2) the ρ(θR) minimum
and the CV(θR) maximum lie 90◦ from the sagittal axis.

At 2.7 and 4.3 keV, inspection of the flux maps of Figure 1
and the autocorrelation analysis of Figure 2 clearly indicate
the presence of two distinct flux peaks that generally lie on
opposite sides of the circular ribbon. We therefore construct in
Figures 4(ii)–(iv) three representative (but distinctly different)
cases for bilateral flux lobes. The common features across these
cases include (1) the flux distribution is the superposition of a
constant flux of normalized magnitude 0.35 and two Gaussian
flux peaks and (2) the Gaussian flux peaks are symmetrically
located at offset angles ±ΘO relative the sagittal symmetry axis,
which lies at θ = 0◦.

In the first bilateral lobe case, shown in Figure 4(b), the
Gaussian bilateral flux lobes are of equal width and magnitude
and are offset ΘO = ±90◦ and are thus on opposite sides
of the ribbon, separated by 2|ΘO| = 180◦. The two ρ(θR)
maxima in Figure 4(f) and two CV(θR) minima in Figure 4(j)
indicate strong symmetry along two axes: θR = 0◦ (the sagittal
axis) and θR = ±90◦ (transverse axis, which is the common
symmetry axes that bisects each of the individual opposing flux
peaks). Another signature for opposing bilateral lobes is the
locations of two pairs of ρ(θR) minimum and CV(θR) maximum
at θR = ±45◦, midway between the sagittal and transverse
symmetry axes.

In the second bilateral lobe case, shown in Figure 4(c), the
Gaussian flux lobes are offset ΘO = ±70◦ from θS and thus
referred to as “partially opposing” bilateral lobes. As with the
case of opposing bilateral flux lobes, two pairs of ρ maximum
and CV minimum are observed. Strong symmetry is present at
the sagittal symmetry axis, with ρ(0◦) = +1 and CV(0◦) = 0.12.
However, the second pair of local ρ maximum (at θR ∼ 85◦)
and local CV minimum (at θR ∼ 74◦) are slightly offset from
θR = 90◦ and are not precisely paired at the same roll angle.
Additionally, the correlation score CV(74◦) at the transverse
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Figure 4. Four general scenarios for the symmetry of the ENA flux distribution around the ribbon are illustrated in panels (i)–(iv), in which blue represents the
globally distributed flux and red represents the ribbon flux, analogous to Figure 1. Representative 1D ribbon flux distributions F(θ ) for each scenario are shown in
panels (a)–(d) using Gaussian distribution(s) superimposed on a constant flux of normalized magnitude 0.35. For each scenario, the symmetry of F(θ ) is established
using the Pearson correlation coefficient ρ(θR) (panels (e)–(h)) and the CV(RMSD) correlation score CV(θR) (panels (i)-(l)). The sagittal symmetry axis θS (green
dashed line) is conveniently selected to lie at θ = 0◦ and is identified by a global ρ(θR) maximum and global CV(θR) minimum. The transverse symmetry axes θT
(purple dotted lines) are identified by local ρ(θR) maxima and local CV(θR) minima.

axis is significantly poorer than the score CV(0◦) at the sagittal
axis. These are key signatures that distinguish partially opposing
bilateral lobes from opposing bilateral lobes.

To illustrate the signatures of bilateral flux lobes of different
flux magnitudes, the flux magnitude FL of the left flux peak in
Figure 4(c) is 80% that of FR. From Figures 4(g) and (k), this
results indifferent magnitudes of the two CV(θR) maxima. Note
also that the minimum value of CV(θR) is nonzero, although
a nonzero CV(θR) minimum is expected for a natural system
in which individual flux peaks are not identical in shape and
magnitude.

The third bilateral lobe case, shown in Figure 4(d), has
non-opposing flux lobes that are narrow in angular width and
separated by 2|ΘO| = 90◦. For this case, the two transverse
symmetry axes that bisect the individual flux lobes are well-
separated and distinct. Therefore, three unique symmetry axes
are present and lie near the locations of the three pairs of ρ
maximum and CV minimum. As with the other bilateral lobe
cases, the sagittal axis lies at the global ρ maximum and CV
minimum (θS = 0◦), and the transverse axes lie at the roll angles
of local ρ(θR) maximum and CV(θR) minimum, which are in
the vicinity of the offset angle ΘO of each flux peak.
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Figure 5. Results for the Pearson correlation analysis (left panels) and CV(RMSD) correlation analysis (right panels) are shown as points for the ENA flux measured
by IBEX as a function of roll angle θR relative to the ribbon center–heliospheric nose direction (BV-plane). The error bars of CV(θR) are computed using the IBEX flux
variance sky maps (McComas et al. 2014a). The lines connecting the points are a cubic spline interpolation. The black dashed lines that generally follow the FP2max(θ )
correlation results are the correlation scores from the double Gaussian fit (Equation (7)) to the FP2max(θ ) flux distributions as shown in Figure 8. The vertical dashed
lines are the global Pearson correlation maxima and CV(RMSD) minima that indicate the locations of strongest reflection symmetry and thus the sagittal symmetry
axis. The solid vertical lines at 2.7 and 4.3 keV mark the locations of the transverse symmetry axes that are distinguishing signatures of bilateral flux lobes.

In summary, the key signatures for interpreting the flux
symmetry of the IBEX ribbon include:

1. Reflection symmetry is present only when a ρ(θR) maxi-
mum and CV(θR) minimum pair lie at the same roll angle
θR (Livadiotis & McComas 2013).

2. The sagittal symmetry axis is identified at the roll angle of
the global maximum ρ(θR) and global minimum of CV(θR).

3. The reflection symmetry is strongest when ρ(θR) → +1 and
CV(θR) → 0.

4. A unimodal peak is characterized by a single, paired ρ
maximum and CV minimum, which defines the location of
the sagittal symmetry axis. Additionally, the ρ minimum
and CV maximum are likewise paired and lie ∼90◦ from
the sagittal symmetry axis.

5. Bilateral lobes are characterized by two or three pairs of ρ
maximum and CV minimum.

6. Opposing bilateral lobes are characterized by two pairs of ρ
maximum and CV minimum with similar ρ maxima values
and similar CV minima values. The transverse symmetry
axis is located ∼90◦ from the sagittal symmetry axis.

7. Partially opposing bilateral lobes are distinguished from
opposing bilateral lobes by a single global CV mini-
mum at θS and a local CV minimum at θT, such that

CV(θS) < CV(θT). The transverse axis is slightly offset
from 90◦ relative to the sagittal symmetry axis.

8. Partially opposing bilateral lobes of different flux mag-
nitudes are identified when the magnitudes of the two ρ
minima are dissimilar and the magnitudes of the two CV
maxima are dissimilar.

9. Non-opposing bilateral lobes are identified by three pairs
of ρ maximum and CV minimum.

4. REFLECTION SYMMETRY OF THE
IBEX RIBBON: RESULTS

Figure 5 shows the Pearson and CV(RMSD) correlation
results for the IBEX data at each energy passband. The points
in Figure 5 correspond to calculated values of ρ(θR) (left
panels) and CV(θR) (right panels) as a function of roll angle θR,
where θR = 0◦ corresponds to the ribbon center–heliospheric
nose vector in the ribbon-centered frame of Figure 1. The red
points are derived using FP9(θ ) as input data, green points
using FP2max(θ ), and blue points using the complete 2D flux
distribution F(θ , φ) of the annular maps of Figure 1. The solid
lines through the data points are cubic spline interpolation and
are used both to guide the eye as well as a first estimate for
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identification of the sagittal axis at the global minimum of ρ(θR)
and global maximum of CV(θR).

We find consistently stronger correlation scores (ρ(θR) max-
ima and CV(θR) minima) for input data FP9(θ ) and FP2max(θ )
compared to F(θ , φ). This is expected because FP9(θ ) and
FP2max(θ ) are average fluxes at each azimuth, whereas F(θ ,
φ) retains the flux variance of nine polar pixels at each az-
imuth, which is propagated through the correlation calculation
and leads to a slightly poorer correlation score. Nevertheless, the
F(θ , φ) data set provides an important indication of symmetry
across the 2D annular flux maps of Figure 1.

4.1. Sagittal Symmetry Axes

To calculate the sagittal symmetry axis locations, we follow
Livadiotis & McComas (2013) to identify the Pearson corre-
lation maximum at each energy. We first convert the corre-
lation coefficient to a positive definite quadratic form using
R(θR) = 1−ρ(θR)2, such that the maximum positive value of
ρ(θR) is located at the same roll angle as the minimum of R(θR).
The downward-opening parabola of ρ(θR) near its maximum is
therefore transformed into an upward-opening parabola of R(θR)
near its minimum. Next, the six data points of R(θR) closest to
the estimated symmetry axis (derived from the interpolated roll
angle of the ρ(θR) maximum) are fit to

R(θR) = Rmin − RC(θS − θR)2. (5)

The three fit parameters include: the sagittal symmetry axis θS,
which identifies the parabolic vertex; the minimum value Rmin
that lies at the parabolic vertex; and the curvature coefficient
RC that is used to derive the error of θS. The derived sagittal
axes are shown as vertical dashed lines in the left panels of
Figure 5 for each input data set FP9(θ ), FP2max(θ ), and F(θ , φ);
at each energy, these values are generally clustered together and
indicate consistent results over the input data sets.

The errors associated with the derivation of θS from the
parabolic fits are crucial for comparing the results across data
sets as well as comparing and combining the Pearson and
CV(RMSD) results. This error is calculated using the curvature
coefficient RC of the fitted parabola according to (Livadiotis &
McComas 2013)

(δθS)2 = Rmin

(N − 1) RC
(6)

where N is the number of data points used for the parabolic fit
(here N = 6).

A similar method of parabolic fit and derivation of both θS
and δθS are obtained for the CV(θR) results (Livadiotis 2007),
whose minimum can intrinsically be modeled in positive definite
quadratic form similar to Equations (5) and (6):

CV (θR) = Cmin + CC(θS − θR)2

(δθS)2 = Cmin

(N − 1)CC

(7)

where Cmin is the minimum of CV(θR) and CC is the
parabolic curvature coefficient. The derived values of θS for
the CV(RMSD) results for N = 6 are shown as dashed lines in
the right panels of Figure 5 for each of the data sets. At each en-
ergy, the sagittal symmetry axes derived using the CV(RMSD)
analysis are closely clustered, indicating consistency over the
data sets.

Figure 6. Sagittal symmetry axis angle θS is derived using a parabolic fit to the
six data points around the maxima of the Pearson correlation coefficient (left
of the black bar at each energy) and the minima for the CV(RMSD) correlation
(right of the black bar at each energy). The results are shown for each energy
and for each input data set FP9(θ ), FP2max(θ ), and F(θ , φ). The black bar is the
composite value of θS from the combined Pearson and CV(RMSD) analyses.
The error bars ±δθS are calculated using the parabolic curvature coefficient.

In Figure 5, the Pearson correlation results at 2.7 keV for
FP9(θ ) are unique because three ρ(θR) maxima are observed,
with the sagittal axis identified at the location θR ≈ 0◦ of
the ρ(θR) maximum (although a second local maximum of
nearly the same magnitude lies at −42◦). Additionally, the
ρ(θR) minimum lies nearly 90◦ from the sagittal axis. These
are signatures of non-opposing bilateral lobes as indicated in
Figure 4(h). However, all other correlation results at 2.7 keV
consistently show a sagittal axis near θR ≈ 30◦, and none
exhibit signatures of non-opposing lobes. We infer from these
results that the bilateral lobes at 2.7 keV have only weak
signatures of non-opposing flux lobes and, as will be discussed
later, are classified as partially opposing lobes. Because of
the discrepancy in sagittal axis identification introduced by
the signatures of non-opposing lobes, we do not use in any
subsequent analysis the value of θS derived using Pearson
analysis at 2.7 keV with the FP9(θ ) data.

After excluding the Pearson analysis results for the FP9(θ )
data at 2.7 keV, we derive the symmetry axis locations θS and
their associated errors ±δθS for each energy, each input data set,
and both Pearson and CV(RMSD) analyses. These are shown
in Figure 6, for which the center black bar at each energy
is the composite symmetry axis obtained by combining the
Pearson and CV(RMSD) analyses; the Pearson and CV(RMSD)
results lie to the left and right of the black bar, respectively.
The symmetry axis locations derived using both the Pearson
and CV(RMSD) analyses are consistent and clearly show a
systematic rotation of θS through ∼65◦ as the energy increases
from 0.7 keV to 4.3 keV.

As previously stated, the necessary criteria for identification
of strong symmetry and the sagittal axis is the presence of both
a maximum of ρ(θR) and a minimum of CV(θR) at a similar roll
angle (Livadiotis & McComas 2013). Figure 6 clearly shows
that both the Pearson and CV(RMSD) analyses identify consis-
tent locations of θS at each energy, and Figure 5 shows that these
values are associated with large, positive values of the Pearson
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Table 1
Location of the Sagittal Symmetry Axis θS of the Ribbon Flux Relative to the Ribbon Center–Heliospheric

Nose Vector in the Ribbon-centered Frame of Figure 1

ENA Energy θS, Pearson Correlation θS, CV(RMSD) θS, Composite Flux Centroid, θF

(keV)

0.7 35.◦0 ± 3.◦8 35.◦2 ± 5.◦8 35.◦0 ± 3.◦2 27◦
1.1 21.◦4 ± 6.◦0 27.◦2 ± 7.◦2 23.◦8 ± 4.◦6 24◦
1.7 −1.◦8 ± 2.◦5 −1.◦1 ± 4.◦6 −1.◦6 ± 2.◦2 −3◦
2.7 −28.◦3 ± 6.◦6 −29.◦7 ± 8.◦1 −28.◦8 ± 5.◦1 −18◦
4.3 −40.◦9 ± 3.◦7 −38.◦8 ± 5.◦7 −40.◦3 ± 3.◦1 −9◦

Table 2
Location of the Transverse Symmetry Axis θT of the Ribbon Flux Relative to the Ribbon Center–Heliospheric

Nose Vector in the Ribbon-centered Frame of Figure 1

ENA Energy Input Data Set θT, Pearson Correlation θT, CV(RMSD) θT, Composite |θT − θS|
(keV)

2.7 FP2max(θ ) 62.◦9 ± 6.◦8 59.◦4 ± 22.◦0 62.◦6 ± 6.◦5 91.◦4 ± 8.◦3

FP2max(θ ) 55.◦6 ± 6.◦4 51.◦9 ± 15.◦2
4.3 FP9(θ ) 48.◦0 ± 9.◦9 41.◦5 ± 21.◦4 51.◦8 ± 4.◦6 92.◦1 ± 5.◦5

F(θ ,φ) 49.◦0 ± 13.◦7 42.◦9 ± 24.◦0

correlation coefficient (∼0.8 to ∼0.95) and small CV(θR) cor-
relation scores (∼0.1 to ∼0.3). This is clear evidence for strong
reflection symmetry associated with the ribbon flux.

Table 1 lists the derived weighted mean values of θS (using
a weighted mean with weights δθS

−2) at each energy for both
the Pearson and CV(RMSD) analyses. The Pearson correlation
and CV(RMSD) results agree within 3◦, which quantitatively
demonstrates strong reflection symmetry of the ribbon flux.
All Pearson and CV(RMSD) results are then combined at each
energy, again using a weighted (δθS

−2) average, to obtain a
composite value of θS at each energy, which are also listed in
Table 1. These values are used as the primary symmetry axes
for the remainder of this study.

As indicated in Table 1, the sagittal symmetry axis location is
a strong function of energy, and we observe systematic rotation
from θS = +35◦ at 0.7 keV to θS = −40◦ at 4.3 keV. Notably,
the sagittal symmetry axes at 0.7 keV and 4.3 keV lie generally
on opposite sides of the BV-plane, which is located at θS = 0◦.

4.2. Transverse Symmetry Axes

To identify a transverse symmetry axis θT from the data, we
use the same parabolic fit method that was used to derive the
sagittal symmetry axis: Equation (5) applied to the six closest
points around secondary maxima of ρ(θR) or secondary minima
of CV(θR). We calculate transverse symmetry axis locations for
input data sets that satisfy two criteria: (1) a secondary maximum
of ρ(θR) and a secondary minimum of CV(θR) both exist and
(2) the peak of the secondary ρ(θR) maximum and trough of the
secondary CV(θR) minimum each extend over at least 36◦ in θR
(six 6◦ pixels) for a meaningful parabolic fit to the data.

The transverse axis locations derived from the parabolic fits
are summarized in Table 2 and are shown as the solid vertical
lines in Figure 5. As with the derivation of the sagittal axis, the
errors δθT of the transverse axis are derived from the curvature
coefficient of the parabolic fit, and the composite values of θT
are calculated using a weighted mean with weights δθT

−2.
Also listed in Table 2 is the angle between the sagittal (θS)

and transverse (θT) symmetry axes. At both energies, the angle
between the sagittal and transverse symmetry axes is ∼90◦,
which is a distinguishing feature of opposing and partially
opposing flux lobes.

4.3. Unimodal and Bilateral Flux Distributions

Referring to Figure 5, at 0.71 and 1.1 keV each of the
ρ(θR) and CV(θR) correlation distributions exhibits a single
maximum and single minimum that are spaced ∼90◦ apart in
roll angle, which is characteristic of a unimodal distribution as
in Figures 4(e) and (i). No signatures of bilateral flux peaks are
observed at these energies.

At 4.3 keV in Figure 5, two distinct pairs of ρ(θR) maximum
and CV(θR) minimum are clearly observed in all data sets,
and Table 2 shows that the resulting sagittal and transverse
symmetry axes are separated by ∼90◦. These are signatures of
opposing or partially opposing bilateral flux lobes. Furthermore,
the global minimum CV(θS) at the sagittal symmetry axis is
approximately half the value CV(θT) at the local minimum of
the transverse axis; this notable difference CV(θS) 	 CV(θT)
is a key signature of partially opposing bilateral flux lobes, as
illustrated in Figure 4(g). Finally, the magnitudes of the two ρ
minima are generally similar, and the magnitudes of the two
CV maxima are generally similar, indicating bilateral lobes of
similar flux magnitudes. We therefore conclude that the ribbon
at 4.3 keV is characterized by partially opposing bilateral flux
lobes of similar flux magnitudes.

The results at 2.7 keV are consistent with those at 4.3 keV.
In Figure 5, the ρ(θR) results clearly show two maxima that are
∼90◦ apart in roll angle and indicative of bilateral lobes. The
CV(θR) results also show the emergence of a second minimum
that is paired with a ρ maximum; this transverse symmetry axis
is particularly distinct for the FP2max(θ ) data, which are listed
in Table 2 and lies ∼91◦ from θS. Finally, partially opposing
flux lobes are indicated by CV(θS) 	 CV(θT), and flux peaks of
similar magnitude are indicated by similar values of ρ minima
and of CV maxima.

The results at 1.7 keV exhibit a mixture of unimodal and
bimodal flux peaks. In Figure 5, the ρ(θR) results show two
maxima that are ∼90◦ apart in roll angle and thus indicative of
bilateral lobes. The CV(θR) results show the emergence toward a
second minimum, but not a distinct minimum which is required
for classification as bilateral flux lobes.

In summary, the ribbon flux is predominantly unimodal at 0.7
and 1.1 keV, predominantly partially opposing bilateral lobes
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Figure 7. Sagittal symmetry axis locations θS of the ribbon (Table 1, composite
values) are a strong function of ENA energy E. The solid red line is a fit of the
data at 1.1, 1.7, and 2.7 keV, which span the transition from unimodal to bilateral
flux distributions, to a natural log function as specified in the figure. The dashed
line shows the fit function extrapolated to 0.7 keV (predominantly unimodal
flux distribution) and 4.3 keV (predominantly bilateral flux distribution). The
green dashed line shows the ribbon center–heliospheric nose vector, which lies
in the BV-plane.

at 2.7 and 4.3 keV, and in a transition state from a unimodal
to bimodal distribution at 1.7. Because the transition from
unimodal to bilateral flux distributions occurs between 1.1 and
2.7 keV, we fit the natural log function specified in Figure 7
to the data over this span of energies. The resulting fit, shown
as the solid red line, suggests a strong ln(E) dependence of θS
for these energies, and the sagittal symmetry axis traverses the
ribbon center–heliospheric nose vector (and thus the BV-plane)
at 1.65 keV.

The fit is extrapolated (dashed line) to 0.7 keV, which is a
strongly unimodal flux distribution, and to 4.3 keV, which is a
strongly bimodal flux distribution. At these energies the extrap-
olation projects symmetry axes at 50◦ and −56◦, respectively,
from the ribbon center–heliospheric nose vector, both of which
are ∼15◦ greater than observed. This indicates that the sym-
metry axes of the unimodal and bilateral flux distributions are
substantially less dependent on energy than at the transition
energies; furthermore, the symmetry axis angle may converge
toward a single value characteristic of unimodal flux distribu-
tion at low energies and, on the opposite side of the ribbon
center–heliospheric nose vector (the BV-plane), toward a single
symmetry value characteristic of a bilateral flux distribution at
high energies.

4.4. Flux Centroid

Presuming the existence of symmetry, a rotationally symmet-
ric flux map, such as opposing bilateral lobes as in Figure 4(ii),
results in a flux centroid at the ribbon center. In contrast, a flux
distribution that has reflection symmetry but is not rotationally
symmetric results in a flux centroid that is displaced from the
ribbon center along the sagittal symmetry axis. Examples of
such a system include the unimodal flux peak in Figure 4(i),

the partially opposing bilateral lobes in Figures 4(iii), and the
non-opposing bilateral lobes in Figure 4(iv).

The flux centroid RF relative to the ribbon center for each
annular map of Figure 1 is

RF =
∑

i

FiridΩi (8)

where ri, Fi, and dΩi are the vector direction, flux value, and
solid angle subtended by pixel i in the sky map. If RF lies at
the ribbon center, then opposing pixels generally have similar
flux, i.e., F(θ ) ≈ F(θ + 180◦), which is a signature for strong n-
fold (n � 2) rotational symmetry such as opposing bilateral flux
lobes (n = 3). Alternately, evidence of strong symmetry in the
correlation analysis combined with RF located away from the
ribbon center indicates a strong reflection symmetry and weak
rotational symmetry, such as a unimodal (n = 1) flux peak or
non-opposing bilateral flux lobes. Partially opposing bilateral
lobes will also exhibit a centroid, though at a moderate distance
from the ribbon center compared to the cases of unimodal and
non-opposing flux distributions.

The distance of RF from the ribbon center is a qualitative
(rather than a quantitative) indicator of nonrotational ribbon
symmetry. Deviation of RF from the symmetry axis can arise
from asymmetry of a unimodal flux peak or bilateral flux lobes
with different flux magnitudes or different shapes.

Nonribbon flux features that lie within the annular flux maps
that do not follow the ribbon symmetry can also influence RF.
First, the globally distributed flux is spatially slowly varying,
and its total flux in the annular flux maps is a significant
fraction (∼0.3–0.5) of the total ribbon flux; a nearly constant flux
distributed around the ribbon drives the calculated RF toward
the ribbon center. Second, the presence of asymmetric flux
variations within the annular maps can drive RF away from the
ribbon symmetry axis. This may include asymmetric features
of the ribbon flux as well as nonribbon flux features such as the
flux from the heliotail (McComas et al. 2013) and the variation
of the globally distributed flux (Schwadron et al. 2011, 2014).
Therefore, the presence of the globally distributed flux acts to
skew RF toward the ribbon center, and asymmetric flux features
can skew RF away from the sagittal symmetry axis.

The flux centroids RF calculated using the annular flux maps
F(θ , φ) of Figure 1 are shown as the points in Figure 8 at each
energy. The distance of the centroid points from the center of the
plot (the ribbon center) is represented as the fractional distance
(in percent) in the polar direction to the polar angle of 74.◦5 that
was identified in Funsten et al. (2013) as the circular location of
maximum ribbon flux at low energies. Also shown as the dashed
lines are the composite sagittal symmetry axes θS listed in Ta-
ble 1. The azimuthal angle θF of RF at each energy is also listed
in Table 1 for comparison with the correlation analysis results.

Several systematic features of the calculated flux centroids are
clearly observed. First, the azimuthal angles of the centroid loca-
tions at all energies except 4.3 keV lie within 12◦ of θS and there-
fore are consistent with the sagittal symmetry results from the
correlation analysis. Therefore, with the exception of 4.3 keV,
the abundance of asymmetric flux in the annular maps, which in-
cludes the flux variation of the globally distributed flux, is mini-
mal or mutually offsetting (flux of a feature on one side of the rib-
bon offsets the flux of an independent feature on the other side of
the ribbon). The flux centroid at 4.3 keV lies ∼30◦ from θS, and
the annular flux map at this energy likely includes one or more
underlying asymmetric flux features that are either not present
or exist at lower relative flux magnitude at lower energies.

11



The Astrophysical Journal, 799:68 (17pp), 2015 January 20 Funsten et al.

Figure 8. Flux centroid location of the annular ENA flux maps of Figure 1
provides a measure of nonrotational reflection symmetry. The centroid is plotted
in the same ribbon-centered frame of Figure 1 as a function of azimuthal angle θ .
The centroid distance from the center of the graph corresponds to the fractional
distance (in percent) to the average polar angle 74.◦5 of maximum circular ribbon
flux at low energies (Funsten et al. 2013). The dashed lines are the composite
sagittal symmetry axes derived in this study (Table 1).

Second, relative to the sagittal symmetry axis, the azimuthal
angle of the flux centroid at each energy is systematically
biased toward the ribbon-center heliospheric nose vector (with
the exception of 1.7 keV, which lies along this vector and for
which θF ≈ θS). This suggests that the predominant asymmetric
flux feature(s) in the annular flux maps lie in the vicinity of
this vector.

Third, the polar offset of the calculated flux centroid loca-
tion at 0.7 and 1.1 keV is consistently ∼17% of the charac-
teristic circular radius (74.◦5) of the ribbon, while at higher
energies is consistently ∼11% of this angular distance. The
higher value at lower energies reflects strong unimodal shape;
at higher energies, the offset is likely due to partially oppos-
ing bimodal flux peak, noting that RF would lie near the rib-
bon center for opposing bilateral lobes and at a larger angular
distance for non-opposing lobes. This result is therefore con-
sistent with the transition from unimodal flux distribution
at low energies to partially opposing bilateral flux lobes at
higher energies.

5. DISCUSSION

From autocorrelation analysis, Pearson and CV(RMSD) cor-
relation analysis, and flux centroid analysis, we draw compelling
evidence of reflection symmetry of the ribbon flux with strong
spectral dependence, a transition from a unimodal flux distribu-
tion at low energies to partially opposing flux lobes at high en-
ergies, and the presence of asymmetric flux features that appear
to be aligned with the ribbon center–heliospheric nose vector
direction, which, as previously stated, lies in the BV-plane if the
ribbon center direction corresponds to B̂ISM. We now look for
global heliospheric ordering of the ribbon symmetry.

5.1. Empirical Representation of the Ribbon Flux Symmetry

With knowledge of the sagittal symmetry axis location θS as
a function of energy, we now examine the 1D ribbon fluxes as a
function of azimuthal angle Θ from this symmetry axis. Figure 9
shows FP9(Θ) and FP2max(Θ) for −180◦ � Θ � 180◦. The FP9(Θ)
and FP2max(Θ) flux distributions are generally similar; however,
because FP2max(Θ) represents the two highest ribbon flux pixels
that are adjacent, FP2max(Θ) is larger and more variable than
FP9(Θ).

To identify systematic trends of the symmetric flux around
the ribbon, and for quantitative comparison of the observations
of ribbon flux symmetry with models and simulations, we
formulate a simplistic empirical representation of the ribbon
flux F(Θ) using

F (Θ) = F0 + FR (Θ) . (9)

We assume that F0 is a constant flux that is independent
of Θ and is loosely associated with the globally distributed
flux, but does not account for its variation (Schwadron et al.
2011, 2014) in the annular flux maps. At each energy, F0
is defined as the average flux of the five lowest-flux pixels
in the annular flux maps of Figure 1. Values for F0 are
listed in Table 3 and are shown as the red-shaded regions of
Figures 9(a)–(e).

The ribbon flux FR(Θ) is constructed as the superposition
of two flux peaks of different width and magnitude, but offset
by the same distance |ΘO| in opposite directions relative to the
sagittal symmetry axis. This construct allows representation of
bilateral lobes with reflection symmetry in which the two flux
peaks are separated by ∼2|ΘO|. It also allows for a unimodal
distribution, when flux peaks with small offset |ΘO| relative
to their angular widths merge into a single peak. However,
representing the unimodal representation with two unimodal
distributions is overdetermined (with complete degeneracy at
ΘO = 0◦), and small asymmetries in a unimodal flux peak can
drive large differences in the fit parameters of the two peaks that
comprise FR(Θ).

For each of the two ribbon flux peaks of FR(Θ), we use
a Gaussian distribution, which has the key parameters of flux
magnitude FR, offset angle ΘO, and distribution width ΘW:

FR (Θ) = FR1exp

(
− (Θ − ΘO)2

2Θ2
W1

)

+ FR2exp

(
− (Θ + ΘO)2

2Θ2
W2

)
,−180◦ � Θ � 180◦.

(10)

Here, FR1 and FR2 are flux constants of each flux peak, ΘW1 and
ΘW2 are the Gaussian widths of each flux peak, and ΘO is the
azimuthal offset angle of maximum flux relative to the sagittal
symmetry axis ΘS. The FWHM for a Gaussian distribution is
ΘFWHM = 2.35ΘW.

At each energy, Equation (9) was fit to the FP2max(Θ) data,
which are more sensitive to variations in ribbon flux than FP9(Θ)
data. The fit parameters are listed in Table 3, the black dashed
lines of Figures 9(a)–(e) show the individual flux peaks of
FR(Θ), and the green-shaded regions of Figures 9(a)–(e) show
the combination of the individual ribbon peaks FR(Θ).

The last column of Table 3 lists the ratio fR of the total
ribbon flux

∫
FR (Θ)dΘ (the area shaded green) to the total
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Figure 9. Ribbon fluxes FP9(Θ) (red circles) and FP2max(Θ) (blue diamonds) are shown as a function of angle Θ from sagittal symmetry axis, which is located at Θ =
0◦. The red fill is the average flux F0 of the five lowest-flux pixels in the flux maps of Figure 1; the green fill is the empirical double-Gaussian FR representation of the
ribbon flux (Equation (10)) resulting from the fit of Equation (9) to the FP2max(Θ) flux. The black dashed lines are the individual Gaussian flux peaks of FR that are
equidistant to (but located in opposite directions from) the symmetry axis and whose individual parameters are defined in Table 3. The lines in the bottom panel show
the ribbon latitude ΨHCI in the heliocentric inertial (HCI) frame, and the yellow shading corresponds to the band of HCI latitudes associated with the slow solar wind.

Table 3
Fit Parameters Derived from Empirical Fits of Equation (10) to the Data of Figure 9

ENA Energy F0 FR1 FR2 ΘFWHM1 ΘFWHM2 ΘO fR

0.7 keV 103 360 ± 13 405 ± 16 154◦ ± 8◦ 128◦ ± 5◦ 61◦ ± 1◦ 3.1
1.1 keV 47 144 ± 7 141 ± 9 178◦ ± 12◦ 142◦ ± 8◦ 55◦ ± 2◦ 2.8
1.7 keV 27 63.0 ± 2.9 64.5 ± 1.7 85◦ ± 4◦ 187◦ ± 9◦ 68◦ ± 1◦ 1.9
2.7 keV 10.6 28.6 ± 1.0 30.6 ± 0.9 112◦ ± 6◦ 125◦ ± 6◦ 74◦ ± 1◦ 2.0
4.3 keV 3.8 10.1 ± 0.4 8.9 ± 0.4 118◦ ± 9◦ 129◦ ± 11◦ 79◦ ± 1◦ 1.8

Note. ENA fluxes F0, FR1, and FR2 are in units of (cm2 s sr keV)−1.

flux
∫
FO dΘ (the area shaded red). The ribbon flux clearly

dominates at all energies, ranging from a factor of ∼3 larger
than the underlying flux at low energies and a factor of ∼2 at
high energies.

Several trends are apparent in Figure 9 and Table 3. First,
the flux magnitudes FR1 and FR2 of the bilateral lobes are
similar at each energy, which is consistent with the Pearson and
CV(RMSD) analysis results of bilateral lobes with similar flux
magnitudes.

Second, the offset angle ΘO of the two lobes increases from
∼60◦ at low energy to ∼80◦ at high energy. This increase in
offset angle is expected as the flux distribution transitions from
a unimodal to a bimodal distribution.

Third, the angular widths ΘFWHM1 and ΘFWHM2 vary sub-
stantially over the lowest energies at which a unimodal flux
distribution dominates. This results from the overdetermined
model FR(Θ), which is attempting to fit two flux peaks to the
unimodal data. Nevertheless, at 0.7 keV and 1.1 keV the
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Figure 10. IBEX ENA flux maps are shown using a Mollweide projection in heliographic inertial (HGI) coordinates. At each energy, the sagittal symmetry axis derived
in Table 1 defines a symmetry plane that scribes a great circle in the sky (dashed black lines). Also shown are the ribbon center (white star) and, as white diamonds,
the normal vector to the symmetry plane (also listed in Table 4) and its antipode. For reference, the heliospheric nose and tail directions as well as the locations of
Voyagers 1 and 2 are shown as black stars. The ribbon center at ecliptic (221.◦0, 39.◦0) lies at HCI (140.◦9, 34.◦6).

resulting fit distribution FR(Θ) suggests a broad unimodal peak
with a slight asymmetry, yielding a maximum flux at Θ ∼ −45◦
rather than at the sagittal symmetry axis. This is consistent with
the slight offset of the flux centroid from the sagittal symmetry
axis toward the BV-plane.

The results at 1.7 keV mark the transition from a unimodal
distribution to bilateral lobes. However, because the bilateral
lobes are emerging and not dominant, this system remains
largely overdetermined with the emergence of a bilateral lobe
at Θ ∼ 60◦ driving the fit that results in ΘFWHM1 
 ΘFWHM2.
Importantly, the results presented here using a bimodal flux
model cannot distinguish whether the observed ENA unimodal
and bilateral flux distributions result from a single energy-
dependent process or a combination of independent processes
that operate at different energies.

Fourth, the bilateral flux peaks at 2.7 and 4.3 keV become
distinct, and the fit parameters of the two model flux peaks of
FR(Θ) agree within 15%. This reinforces the strong reflection
symmetry and partially opposing locations that were obtained
by the correlation analysis. At these highest energies, the largest
deviation of the model results FR(Θ) from the FP2max(Θ) data
lie near the one side of the transverse axis Θ ≈ −90◦. At this
location, which corresponds to the most northern extent of the
ribbon in heliographic latitude, one flux lobe appears to split into
two sublobes or, equivalently, a notch of flux depletion appears
in the lobe.

Most ribbon models (e.g., Schwadron & McComas 2013) (1)
attribute the source population of the ribbon ENA flux to the
solar wind and its processing in the heliosheath and (2) assume
or derive by modeling that the journey of ENAs from their
source to IBEX uniquely retains information about properties of
the source plasma. Therefore, we should expect some imprint of
the latitudinal structure of the solar wind on the ribbon symmetry
or at locations of ribbon asymmetry, and particularly in the
vicinity of heliospheric latitude transition between slow and fast
solar wind.

Figure 9(f) shows the latitude ΨHCI of the ribbon in the
Heliocentric Inertial (HCI) frame (Fränz & Harper 2002),
color-coded for energy and assuming, as before, the ribbon is
located 74.◦5 from the ribbon center. The yellow shaded region
corresponds to the HCI latitudes generally associated with the
slow solar wind, for which we have used ΨHCI ∼ 36◦ as the
latitude of transition between slow and fast solar wind, although
this interface location is substantially blurred by solar variability
and by the offset of the Sun’s global magnetic field orientation
and its spin axis (McComas et al. 2000).

At low energies, we find no obvious association between the
symmetry axis of the unimodal distribution and heliocentric
latitude. However, at 2.7 and 4.3 keV, we observe that one lobe
lies at the highest northern extent of the ribbon, well within the
latitude of the fast solar wind, while the other lobe lies at the most
southern extent of the ribbon, largely embedded in the region
of slow solar wind but reaching the transition latitude between
slow and fast solar wind. Therefore, the transverse symmetry
axes at 2.7 and 4.3 keV, which lie nearly perpendicular to the
sagittal axis, scribe a circle of fixed HCI longitude through
the ribbon center. We further investigate this symmetry in the
next section.

5.2. Implications and Constraints of Ribbon Symmetry

As viewed from the inner heliosphere, the sagittal symmetry
axis is an arc segment of a great circle in the sky that traverses
the ribbon center. We therefore represent the symmetry axis as
a symmetry plane that contains the Sun and the ribbon center.
Figure 10 shows the projection of the symmetry plane (black
dashed lines) onto the ENA flux maps in HCI coordinates, whose
north pole is tilted 7.◦25 relative to ecliptic north and thus is
slightly offset from the ecliptic reference frame. Also shown as
white diamonds are the location (and its antipode) of the vector
normal that defines the symmetry plane. For reference, Table 4
shows one vector normal coordinate (but not its antipode).
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Figure 11. Simulations of the ENA flux that would be observed at IBEX based on the “secondary” ENA emission hypothesis. The ENA flux, which represents a
snapshot in time using solar wind boundary conditions at time 2009.5 (Zirnstein et al. 2014), is shown centered on ecliptic (225◦, 44◦), which is the antipode of the
interstellar magnetic field vector direction used in the simulation. (a) The ribbon at 1.1 keV follows a unimodal distribution that is centered near the BV-plane. (b) At
2.7 keV, the ribbon is predominantly bilateral flux lobes, whose symmetry axis generally lies at the intersection (dashed yellow line) of the ribbon and the equatorial
plane (solid yellow line). For reference, the black circle lies at 74.◦5 from the ISM magnetic field vector, which is the nominal location of the ribbon relative to the
ribbon center (Funsten et al. 2013).

Table 4
Key Parameters of the Sagittal Symmetry Plane of the Ribbon in the Heliocentric Inertial (HCI) Frame

ENA Energy (keV) Vector Normal to Symmetry Plane Tilt of Symmetry Plane Relative to HCI Equator

HCI Longitude HCI Latitude

0.71 −113◦ 22◦ 67.◦8
1.1 −105◦ 31◦ 59.◦1
1.7 −80◦ 48◦ 42.◦3
2.7 −37◦ 55◦ 34.◦7
4.3 −18◦ 53◦ 36.◦6

Table 4 also lists the tilt angle of the symmetry plane relative
to the HGI equator. Because the symmetry plane contains the
ribbon center, the tilt angle must always lie between a maximum
value of 90◦, which corresponds to a symmetry plane that
contains the HGI poles, and a minimum value of 34.◦6, which
corresponds to the HCI latitude of the ribbon center. The derived
tilt angles of the symmetry plane systematically shift from
a maximum of 68◦ at low energies to ∼35◦ at 2.7 keV and
4.3 keV.

Since the ribbon center direction indicates, in principle, the
interstellar field direction, this result suggests that the symmetry
planes define stages in the deformation of the interstellar
magnetic field around the heliosphere. The mean free path
of ENAs sampled by IBEX is larger at higher ENA energies,
thus higher energy ENAs contain information of ENA emission
from larger distances from the Sun compared to lower energy
ENAs. Therefore, the energy-dependent deflection of the ribbon
center (Funsten et al. 2013) and energy-dependent symmetry
axes locations are both likely signatures of the magnetic field
deformation at different distances from the Sun, with the higher
energy ENAs sampling deeper into the ISM where the ISM
magnetic field is less perturbed by the heliosphere.

We find an interesting heliospheric latitudinal ordering at 2.7
and 4.3 keV that was qualitatively discovered in Figure 9, in
which the tilt angle of the symmetry plane lies within 2◦ of the
heliographic latitude of the ribbon center. Thus, the symmetry
plane corresponds closely to the heliographic equator tilted up
to the location of the ribbon center. The bilateral flux lobes at
these energies therefore lie at the most southern and northern
latitudes scribed by the ribbon and may provide insight into
the deformed interstellar magnetic field at comparatively large
distances from the heliosphere.

Figure 11 shows simulations of the ENA flux that would
be measured in the inner heliosphere based on the secondary
emission hypothesis (McComas et al. 2009b; Chalov et al.
2010; Heerikhuisen et al. 2010; Schwadron & McComas 2013;
Möbius et al. 2013). The ENA flux results are computed
by post-processing 3D, time-dependent, MHD-plasma/kinetic-
neutral simulation results of the heliosphere based on the Multi-
Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) frame-
work (Pogorelov et al. 2008b, 2009; Heerikhuisen et al. 2013;
Zirnstein et al. 2014). The interstellar magnetic field magnitude
and direction at the simulation boundary (∼1000 AU) are 3 μG
and ecliptic (45◦, −44◦), respectively. The results are simulated
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at a measurement time of 2009.5, with solar wind boundary con-
ditions derived from latitudinal and time-dependent equations
from Sokół et al. (2013), while accounting for the delay times
between primary ENA creation and secondary ENA detection
at 1 AU (see Zirnstein et al. 2014 for more explanation).

The simulations show circular arcs of ENA flux that generally
coincide with the location of the ribbon in the IBEX ENA flux
maps. At 1.1 keV shown in Figure 11(a), the ribbon flux is
distinctly unimodal and peaked close to the BV-plane, which
lies along the ribbon center–heliospheric nose direction. The
unimodal ribbon flux distribution that is a dominant feature in
the simulation output is directly attributed to the slow solar
wind as the primary source population. Furthermore, alignment
with the BV-plane indicates the strong, coupled influences of
hydrodynamic interactions that are ordered by the direction of
the Sun’s motion through the ISM and processes that are driven
by the ISM magnetic field.

By 2.7 keV, the ribbon flux is distinctly bimodal, with
partially opposing bilateral lobes as shown in Figure 11(b).
In the simulation, these bilateral flux lobes result from fast
solar wind that is associated with higher heliographic latitudes
feeding the high latitude extents of the ribbon. The substantial
difference between the bilateral lobe flux magnitudes of the
simulation results are based on the solar wind properties for the
selected epoch up to 2009.5. For example, simulation results
using solar wind boundary conditions at time 2013.5 indicate
an opposite flux magnitude asymmetry in which the northern
lobe is brighter than the southern lobe (see Figure 4 in Zirnstein
et al. 2014). These results, which are the subject of a future
study, predict that the intensities of bilateral lobes change with
the evolution of the solar wind structure and properties over the
solar cycle. Nevertheless, this flux magnitude asymmetry of the
lobes is notably different than the observations, for which the
lobe fluxes are similar in both shape and magnitude. We note that
the Figure 1 flux maps used for this study have been acquired
over five years, during which the asymmetric brightness of the
bilateral lobe fluxes may dynamically change.

Also shown in Figure 11(b) is the equatorial plane (solid
yellow line) as projected in the ribbon-centered frame. The
bilateral flux lobes appear to be symmetric at the dashed
yellow line, which connects the ribbon center and the point of
intersection of the equatorial plane and the ribbon. This dashed
line marks the inferred symmetry axis and lies below the BV-
plane. This is consistent with the 2.7 and 4.3 keV results of
Figure 10 in which the symmetry axis corresponds to a tilt of
the HCI equator to the ribbon center and suggests a heliographic
ordering of the ribbon at high energies.

The ribbon flux is extraordinarily circular and large, spanning
∼150◦ as projected in the sky (Funsten et al. 2013). This study
reveals strong, spectral-dependent reflection symmetry in which
the ribbon flux distribution is predominantly unimodal at low
energies and predominantly bilateral lobes at high energies.
While we find symmetry signatures associated with the HCI
reference frame that might be associated with a deformed
interstellar magnetic field outside the heliosphere, we do not
find symmetry signatures uniquely associated with slow and
fast solar wind. This suggests that the ribbon flux is governed
by at least one strong spectral filtration process that acts on
ENAs between their origin in a source plasma population and
their eventual detection by IBEX.

Outside of the ribbon, the spectral information of IBEX mea-
surements may contain more direct signatures of the source
plasma properties; for example, ENA spectral measurements at

the locations of Voyager 1 and 2, whose locations projected in
the sky are largely outside of the ribbon, suggest contributions
from multiple plasma populations (Desai et al. 2014). However,
the spectral content within the ribbon, which may also contain
the combined signatures of multiple plasma populations, are
substantially altered by spectral filtration. Thus, understanding
the source plasma populations inferred by ENA spectral mea-
surements within the ribbon requires a global understanding
of the kinematic processes and energy-dependent transmittance
that underlie this spectral filtration.

Key Conclusions:

1. The ribbon of ENA flux observed by IBEX has strong
reflection symmetry from 0.7 to 4.3 keV, and the primary
(sagittal) symmetry axis is a strong function of ENA energy.
This study only examines the intrinsic symmetry of the
circular ribbon in which the symmetry axis traverses the
ribbon center.

2. The ribbon ENA flux distribution is predominantly uni-
modal at 0.7 and 1.1 keV and strongly bimodal, with par-
tially opposing bilateral flux lobes of similar magnitude, at
2.7 and 4.3 keV. The bimodal flux lobes emerge at 1.7 keV.
Simulations attribute the slow solar wind as the source
plasma for the unimodal flux distribution and the fast solar
wind as the source plasma for the bilateral flux lobes.

3. The simulations predict asymmetric variability of the flux
magnitudes of the bilateral flux lobes over a solar cycle.
While the observed flux magnitudes of the bilateral flux
lobes are similar, the IBEX flux maps are an integral mea-
surement over a five-year acquisition, which is sufficiently
long to mask temporal variability on the time scale of the
solar cycle. Flux variability of the bilateral lobes will be
an important test for the “secondary” hypothesis of ribbon
formation.

4. The ribbon center–heliospheric nose vector (and thus the
BV plane if the ribbon center defines B̂ISM) appears to
be an organizing direction for some symmetry observa-
tions. This may indicate the superposition of symmetries
associated with the hydrodynamic interaction of the Sun’s
motion through the ISM, which is ordered by v̂Sun, and
the interstellar magnetic field, which is ordered by the di-
rection to the ribbon center. The sagittal symmetry axis
appears to be ordered according to the log of the ENA
energy, and this ordering appears to be centered at the rib-
bon center–heliospheric nose direction. First, the sagittal
symmetry axes of the unimodal flux distribution at 0.7 and
bilateral lobes at 4.3 keV are offset ∼30◦ in azimuth but in
opposite directions from the BV-plane. Second, the sagittal
symmetry axis at 1.7 keV, the transition energy between
unimodal and bilateral lobe flux distributions, lies in close
proximity to the BV-plane. Additionally, the flux centroid
analysis indicates that asymmetric flux contributions to the
ribbon are biased at ribbon locations in the vicinity of the
ribbon center–heliospheric nose vector.

5. The most striking association of ribbon symmetry with the
heliocentric inertial (HCI) reference frame is that the sagit-
tal symmetry planes at 2.7 and 4.3 keV correspond to a
tilt of the HCI equator to the ribbon center, such that the
bilateral flux lobes are located at the northernmost lati-
tudes (ΨHCI ∼ +71◦) and extreme southernmost latitudes
(ΨHCI ∼ −40◦) scribed by the ribbon. The shapes, magni-
tudes and locations of the bilateral lobes are similar at each
energy (with the exception of a flux notch at the transverse
axis in the northern lobe).
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6. The energy dependence of the unimodal and bimodal flux
distributions, their locations around the ribbon, and the
lack of direct correspondence of symmetry features with
fast and slow solar wind strongly suggest the presence
of one or more spectral filtration processes that occur
between the initial formation of an ENA in the source
plasma and its eventual detection at IBEX. The strong
dependence of ribbon symmetry on ENA energy may
reflect the evolving structure of the perturbed interstellar
magnetic field with distance from the Sun. Understanding
the underlying processes of spectral filtration is critical for
interpreting the observed ENA spectral distributions within
the ribbon.

7. The different symmetries observed at low (0.7 and 1.1 keV)
versus high (2.7 and 4.3 keV) energies may change over
time as the structure and properties of the solar wind evolve
through the solar cycle.
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