Focus on Negative Emissions Scenarios and Technologies

Guest Editors

Robert Jackson Stanford University
Pep Canadell CSIRO
Sabine Fuss Mercator Research Institute on Global Commons and Climate Change
Jennifer Milne Stanford University
Nebojsa Nakicenovic The International Institute for Applied Systems Analysis
Massimo Tavoni Fondazione Eni Enrico Mattei




Synthesis and Review

Scope

The latest IPCC Assessment Report (AR5) concludes that achieving climate stabilization at safe levels (i.e., below 2°C) will require sustained emission reductions, leading to near-zero or negative emissions (NE) towards the end of this century. During the past decade, however, emissions from fossil fuel combustion and cement production have continued to rise. Emissions in 2013 reached 10 Pg C year-1, a 61% increase compared to the 1990 value.

Keeping global average temperature below 2°C or higher average temperatures in a cost-effective manner will require a suite of mitigation options, particularly if mitigation is delayed further. One option increasingly invoked in integrated assessment models (IAMs) is negative emissions, defined as the net removal of CO2 from the atmosphere. Two of the most commonly proposed alternatives are biomass energy with carbon capture and sequestration (BECCS) and direct air capture (DAC). However, little is known about the global potential of emerging and future negative emissions technologies, the sustainability and cost of large-scale deployment needed to meet "safe" climate stabilization targets, and the carbon-climate feedbacks of entering a new carbon-negative world. These knowledge-gaps are the focus of the proposed special issue:

  • Available, emerging and future negative emissions technologies, emphasizing BECCS and DAC technologies.
  • The behavior of natural land and ocean carbon sinks under a negative carbon balance.
  • The sustainability of large-scale deployment relative to other goals such as food security, timber production, water availability, and biodiversity conservation.
  • A specific focus on the production of sustainable Bioenergy with Carbon Capture and Storage (BECCS) globally and through research in specific regions, including Brazil; BECCS is the most-used technology in current integrative assessment models to achieve the 2°C climate stabilization target.
  • Socio-institutional barriers, including governance and public acceptance, of new technologies.
  • Risks and opportunities in investing heavily in research and development for NE technologies over the coming decades.

The list below forms the complete collection.

Research

Open access
Potential for negative emissions of greenhouse gases (CO2, CH4 and N2O) through coastal peatland re-establishment: Novel insights from high frequency flux data at meter and kilometer scales

Lisamarie Windham-Myers et al 2018 Environ. Res. Lett. 13 045005

High productivity temperate wetlands that accrete peat via belowground biomass (peatlands) may be managed for climate mitigation benefits due to their global distribution and notably negative emissions of atmospheric carbon dioxide (CO2) through rapid storage of carbon (C) in anoxic soils. Net emissions of additional greenhouse gases (GHG)—methane (CH4) and nitrous oxide (N2O)—are more difficult to predict and monitor due to fine-scale temporal and spatial variability, but can potentially reverse the climate mitigation benefits resulting from CO2 uptake. To support management decisions and modeling, we collected continuous 96 hour high frequency GHG flux data for CO2, CH4 and N2O at multiple scales—static chambers (1 Hz) and eddy covariance (10 Hz)—during peak productivity in a well-studied, impounded coastal peatland in California's Sacramento Delta with high annual rates of C fluxes, sequestering 2065 ± 150 g CO2 m−2 y−1 and emitting 64.5 ± 2.4 g CH4 m−2 y−1. Chambers (n = 6) showed strong spatial variability along a hydrologic gradient from inlet to interior plots. Daily (24 hour) net CO2 uptake (NEE) was highest near inlet locations and fell dramatically along the flowpath (−25 to −3.8 to +2.64 g CO2 m−2 d−1). In contrast, daily net CH4 flux increased along the flowpath (0.39 to 0.62 to 0.88 g CH4 m−2 d−1), such that sites of high daily CO2 uptake were sites of low CH4 emission. Distributed, continuous chamber data exposed five novel insights, and at least two important datagaps for wetland GHG management, including: (1) increasing dominance of CH4 ebullition fluxes (15%–32% of total) along the flowpath and (2) net negative N2O flux across all sites as measured during a 4 day period of peak biomass (−1.7 mg N2O m−2 d−1; 0.51 g CO2 eq m−2 d−1). The net negative emissions of re-established peat-accreting wetlands are notably high, but may be poorly estimated by models that do not consider within-wetland spatial variability due to water flowpaths.

Open access
Federal research, development, and demonstration priorities for carbon dioxide removal in the United States

Daniel L Sanchez et al 2018 Environ. Res. Lett. 13 015005

Atmospheric carbon dioxide removal (CDR) technologies may be critical to achieving deep decarbonization. Yet a lack of technical and commercial maturity of CDR technologies hinders potential deployment. Needs for commercialization span research, development, and demonstration (RD&D) activities, including development of new materials, reactors, and processes, and rigorous monitoring of a portfolio of demonstration projects. As a world leader in supporting science and engineering, the United States (US) can play an important role in reducing costs and clarifying the sustainable scale of CDR. To date, federal agencies have focused on voluntary or piecemeal CDR programs.

Here, we present a synthesis of research and developement needs, relevant agency authority, barriers to coordination, and interventions to enhance RD&D across the federal government of the US. On the basis of agency authority and expertise, the Department of Energy, Department of Agriculture, Department of the Interior, National Oceanic and Atmospheric Administration, and National Science Foundation are most central to conducting research, funding projects, monitoring effects, and promulgating regulations. Key enablers for successful programs include embracing technological diversity and administrative efficiency, fostering agency buy-in, and achieving commercial deployment. Based on these criteria, the executive branch could effectively coordinate RD&D strategy through two complementary pathways: (1) renewing intra-agency commitment to CDR in five primary agencies, including both research and demonstration, and (2) coordinating research prioritization and outcomes across agencies, led by the Office of Science and Technology Policy and loosely based on the National Nanotechnology Initiative. Both pathways can be stimulated by executive order or Congressional mandate. Executive branch implementation can begin at any time; future Farm and Energy Bills provide legislative vehicles for enhancing programs.

Open access
Reducing greenhouse gas emissions in agriculture without compromising food security?

Stefan Frank et al 2017 Environ. Res. Lett. 12 105004

To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110–285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80–300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20–75 million people, and storing significant amounts of carbon in soils.

Open access
Assessment of reasonable opportunities for direct air capture

Jennifer Wilcox et al 2017 Environ. Res. Lett. 12 065001

This work explores the possibility of using CO2 captured directly from the atmosphere for several applications that require low to moderate purities. Comparisons of the minimum and real work for separating CO2 from air, natural gas combined cycle flue gas and pulverized coal combustion flue gas are proposed and discussed. Although it is widely accepted that the separation of CO2 from air to high purity is more energy-intensive than separating CO2 from more concentrated sources, this study presents select cases where the separation of CO2 from air to low and moderate purities is energetically equivalent with the work required for flue gas CO2 separation. These energetically-competitive cases are shown to be dependent on the percent capture and final CO2 purity desired. In particular, several technologies can be considered as CO2 utilization opportunities in which dilute CO2 may be an adequate feedstock. Specifically, this study is focused on enhanced oil recovery and microalgae cultivation technologies, which appear to be the most beneficial near-term applications for utilization of CO2 from direct air capture.

Open access
Inefficient power generation as an optimal route to negative emissions via BECCS?

Niall Mac Dowell and Mathilde Fajardy 2017 Environ. Res. Lett. 12 045004

Current ambitions to limit climate change to no more than 1.5 °C–2 °C by the end of the 21st century rely heavily on the availability of negative emissions technologies (NETs)—bioenergy with CO2 capture and storage (BECCS) and direct air capture in particular. In this context, these NETs are providing a specific service by removing CO2 from the atmosphere, and therefore investors would expect an appropriate risk-adjusted rate of return, varying as a function of the quantity of public money involved. Uniquely, BECCS facilities have the possibility to generate both low carbon power and remove CO2 from the atmosphere, but in an energy system characterised by high penetration of intermittent renewable energy such as wind and solar power plants, the dispatch load factor of such BECCS facilities may be small relative to their capacity. This has the potential to significantly under utilise these assets for their primary purpose of removing CO2 from the atmosphere. In this study, we present a techno-economic environmental evaluation of BECCS plants with a range of operating efficiencies, considering their full- and part-load operation relative to a national-scale annual CO2 removal target. We find that in all cases, a lower capital cost, lower efficiency BECCS plant is superior to a higher cost, higher efficiency facility from both environmental and economic perspectives. We show that it may be preferable to operate the BECCS facility in base-load fashion, constantly removing CO2 from the atmosphere and dispatching electricity on an as-needed basis. We show that the use of this 'spare capacity' to produce hydrogen for, e.g. injection to a natural gas system for the provision of low carbon heating can add to the overall environmental and economic benefit of such a system. The only point where this hypothesis appears to break down is where the CO2 emissions associated with the biomass supply chain are sufficiently large so as to eliminate the service of CO2 removal.

Open access
Fast growing research on negative emissions

Jan C Minx et al 2017 Environ. Res. Lett. 12 035007

Generating negative emissions by removing carbon dioxide from the atmosphere is a key requirement for limiting global warming to well below 2 °C, or even 1.5 °C, and therefore for achieving the long-term climate goals of the recent Paris Agreement. Despite being a relatively young topic, negative emission technologies (NETs) have attracted growing attention in climate change research over the last decade. A sizeable body of evidence on NETs has accumulated across different fields that is by today too large and too diverse to be comprehensively tracked by individuals. Yet, understanding the size, composition and thematic structure of this literature corpus is a crucial pre-condition for effective scientific assessments of NETs as, for example, required for the new special report on the 1.5 °C by the Intergovernmental Panel on Climate Change (IPCC). In this paper we use scientometric methods and topic modelling to identify and characterize the available evidence on NETs as recorded in the Web of Science. We find that the development of the literature on NETs has started later than for climate change as a whole, but proceeds more quickly by now. A total number of about 2900 studies have accumulated between 1991 and 2016 with almost 500 new publications in 2016. The discourse on NETs takes place in distinct communities around energy systems, forests as well as biochar and other soil carbon options. Integrated analysis of NET portfolios—though crucial for understanding how much NETs are possible at what costs and risks—are still in their infancy and do not feature as a theme across the literature corpus. Overall, our analysis suggests that NETs research is relatively marginal in the wider climate change discourse despite its importance for global climate policy.

Open access
Global negative emissions capacity of ocean macronutrient fertilization

Daniel P Harrison 2017 Environ. Res. Lett. 12 035001

In order to meet the goal of limiting global average temperature increase to less than 2 °C, it is increasingly apparent that negative emissions technologies of up to 10 Pg C yr−1 will be needed before the end of the century. Recent research indicates that fertilization of the ocean with the macronutrients nitrogen and phosphorus where they limit primary production, may have sequestration advantages over fertilizing iron limited regions. Utilizing global datasets of oceanographic field measurements, and output from a high resolution global circulation model, the current study provides the first comprehensive assessment of the global potential for carbon sequestration from ocean macronutrient fertilization (OMF). Sufficient excess phosphate exists outside the iron limited surface ocean to support once-off sequestration of up to 3.6 Pg C by fertilization with nitrogen. Ongoing maximum capacity of nitrogen only fertilization is estimated at 0.7 ± 0.4 Pg C yr−1. Sequestration capacity is expected to decrease from the upper toward the lower bound over time under continued intense fertilization. If N and P were used in combination the capacity is ultimately limited by societies willingness to utilize phosphate resources. Doubling current phosphate production would allow an additional 0.9 Pg C yr−1 and consume 0.07% yr−1 of known global resources. Therefore offsetting up to around 15% (1.5 Pg C yr−1) of annual global CO2 emissions is assessed as being technically plausible. Environmental risks which to date have received little quantitative evaluation, could also limit the scale of implementation. These results reinforce the need to consider a multi-faceted approach to greenhouse gasses, including a reduction in emissions coupled with further research into negative emissions technologies.

Open access
Carbon dioxide removal and the futures market

D'Maris Coffman and Andrew Lockley 2017 Environ. Res. Lett. 12 015003

Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.

Open access
Research priorities for negative emissions

S Fuss et al 2016 Environ. Res. Lett. 11 115007

Carbon dioxide removal from the atmosphere (CDR)—also known as 'negative emissions'—features prominently in most 2 °C scenarios and has been under increased scrutiny by scientists, citizens, and policymakers. Critics argue that 'negative emission technologies' (NETs) are insufficiently mature to rely on them for climate stabilization. Some even argue that 2 °C is no longer feasible or might have unacceptable social and environmental costs. Nonetheless, the Paris Agreement endorsed an aspirational goal of limiting global warming to even lower levels, arguing that climate impacts—especially for vulnerable nations such as small island states—will be unacceptably severe in a 2 °C world. While there are few pathways to 2 °C that do not rely on negative emissions, 1.5 °C scenarios are barely conceivable without them. Building on previous assessments of NETs, we identify some urgent research needs to provide a more complete picture for reaching ambitious climate targets, and the role that NETs can play in reaching them.

Open access
Investigations into the effects of volatile biomass tar on the performance of Fe-based CLC oxygen carrier materials

Matthew E Boot-Handford et al 2016 Environ. Res. Lett. 11 115001

In this study we present findings from investigations into interactions between biomass tar and two iron based oxygen carrier materials (OCMs) designed for chemical-looping applications: a 100% Fe2O3 (100Fe) OCM and a 60 wt% Fe2O3/40 wt% Al2O3 (60Fe40Al) OCM. A novel 6 kWe two-stage, fixed-bed reactor was designed and constructed to simulate a chemical-looping combustion (CLC) process with ex situ gasification of biomass. Beech wood was pyrolysed in the first stage of the reactor at 773 K to produce a tar-containing fuel gas that was used to reduce the OCM loaded into the 2nd stage at 973 K. The presence of either OCM was found to significantly reduce the amount of biomass tars exiting the reactor by up to 71 wt% compared with analogous experiments in which the biomass tar compounds were exposed to an inert bed of sand. The tar cracking effect of the 60Fe40Al OCM was slightly greater than the 100Fe OCM although the reduction in the tar yield was roughly equivalent to the increase in carbon deposition observed for the 60Fe40Al OCM compared with the 100Fe OCM. In both cases, the tar cracking effect of the OCMs appeared to be independent of the oxidation state in which the OCM was exposed to the volatile biomass pyrolysis products (i.e. Fe2O3 or Fe3O4). Exposing the pyrolysis vapours to the OCMs in their oxidised (Fe2O3) form favoured the production of CO2. The production of CO was favoured when the OCMs were in their reduced (Fe3O4) form. Carbon deposition was removed in the subsequent oxidation phase with no obvious deleterious effects on the reactivity in subsequent CLC cycles with reduction by 3 mol% CO.

Open access
Simulating the Earth system response to negative emissions

C D Jones et al 2016 Environ. Res. Lett. 11 095012

Natural carbon sinks currently absorb approximately half of the anthropogenic CO2 emitted by fossil fuel burning, cement production and land-use change. However, this airborne fraction may change in the future depending on the emissions scenario. An important issue in developing carbon budgets to achieve climate stabilisation targets is the behaviour of natural carbon sinks, particularly under low emissions mitigation scenarios as required to meet the goals of the Paris Agreement. A key requirement for low carbon pathways is to quantify the effectiveness of negative emissions technologies which will be strongly affected by carbon cycle feedbacks. Here we find that Earth system models suggest significant weakening, even potential reversal, of the ocean and land sinks under future low emission scenarios. For the RCP2.6 concentration pathway, models project land and ocean sinks to weaken to 0.8 ± 0.9 and 1.1 ± 0.3 GtC yr−1 respectively for the second half of the 21st century and to −0.4 ± 0.4 and 0.1 ± 0.2 GtC yr−1 respectively for the second half of the 23rd century. Weakening of natural carbon sinks will hinder the effectiveness of negative emissions technologies and therefore increase their required deployment to achieve a given climate stabilisation target. We introduce a new metric, the perturbation airborne fraction, to measure and assess the effectiveness of negative emissions.

Open access
Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations

L R Boysen et al 2016 Environ. Res. Lett. 11 095010

Large-scale biomass plantations (BPs) are often considered a feasible and safe climate engineering proposal for extracting carbon from the atmosphere and, thereby, reducing global mean temperatures. However, the capacity of such terrestrial carbon dioxide removal (tCDR) strategies and their larger Earth system impacts remain to be comprehensively studied—even more so under higher carbon emissions and progressing climate change. Here, we use a spatially explicit process-based biosphere model to systematically quantify the potentials and trade-offs of a range of BP scenarios dedicated to tCDR, representing different assumptions about which areas are convertible. Based on a moderate CO2 concentration pathway resulting in a global mean warming of 2.5 °C above preindustrial level by the end of this century—similar to the Representative Concentration Pathway (RCP) 4.5—we assume tCDR to be implemented when a warming of 1.5 °C is reached in year 2038. Our results show that BPs can slow down the progression of increasing cumulative carbon in the atmosphere only sufficiently if emissions are reduced simultaneously like in the underlying RCP4.5 trajectory. The potential of tCDR to balance additional, unabated emissions leading towards a business-as-usual pathway alike RCP8.5 is therefore very limited. Furthermore, in the required large-scale applications, these plantations would induce significant trade-offs with food production and biodiversity and exert impacts on forest extent, biogeochemical cycles and biogeophysical properties.

Open access
Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)

Matteo Muratori et al 2016 Environ. Res. Lett. 11 095004

Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.

Open access
Expert assessment concludes negative emissions scenarios may not deliver

Naomi E Vaughan and Clair Gough 2016 Environ. Res. Lett. 11 095003

Many integrated assessment models (IAMs) rely on the availability and extensive use of biomass energy with carbon capture and storage (BECCS) to deliver emissions scenarios consistent with limiting climate change to below 2 °C average temperature rise. BECCS has the potential to remove carbon dioxide (CO2) from the atmosphere, delivering 'negative emissions'. The deployment of BECCS at the scale assumed in IAM scenarios is highly uncertain: biomass energy is commonly used but not at such a scale, and CCS technologies have been demonstrated but not commercially established. Here we present the results of an expert elicitation process that explores the explicit and implicit assumptions underpinning the feasibility of BECCS in IAM scenarios. Our results show that the assumptions are considered realistic regarding technical aspects of CCS but unrealistic regarding the extent of bioenergy deployment, and development of adequate societal support and governance structures for BECCS. The results highlight concerns about the assumed magnitude of carbon dioxide removal achieved across a full BECCS supply chain, with the greatest uncertainty in bioenergy production. Unrealistically optimistic assumptions regarding the future availability of BECCS in IAM scenarios could lead to the overshoot of critical warming limits and have significant impacts on near-term mitigation options.

Open access
Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

Ulrich Kreidenweis et al 2016 Environ. Res. Lett. 11 085001

Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.