This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 770

Number 1, 2013 June 10

Previous issue Next issue

1

, , , and

We present a study of the star formation (SF) region G38.9−0.4 using publicly available multiwavelength Galactic plane surveys from ground- and space-based observatories. This region is composed of four bright mid-IR bubbles and numerous infrared dark clouds. Two bubbles, N 74 and N 75, each host a star cluster anchored by a single O9.5V star. We identified 162 young stellar objects (YSOs) and classify 54 as stage I, 7 as stage II, 6 as stage III, and 32 as ambiguous. We do not detect the classical signposts of triggered SF, i.e., star-forming pillars or YSOs embedded within bubble rims. We conclude that feedback-triggered SF has not occurred in G38.9−0.4. The YSOs are preferentially coincident with infrared dark clouds. This leads to a strong correlation between areal YSO mass surface density and gas mass surface density with a power law slope near 1.3, which closely matches the Schmidt–Kennicutt Law. The correlation is similar inside and outside the bubbles and may mean that the SF efficiency is neither enhanced nor suppressed in regions potentially influenced by stellar feedback. This suggests that gas density, regardless of how it is collected, is a more important driver of SF than stellar feedback. Larger studies should be able to quantify the fraction of all SF that is feedback-triggered by determining the fraction SF, feedback-compressed gas surrounding H ii regions relative to that already present in molecular clouds.

2

, , , , , , , , , et al

The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

3

, , , , and

UM 625, previously identified as a narrow-line active galactic nucleus (AGN), actually exhibits broad Hα and Hβ lines whose width and luminosity indicate a low black hole (BH) mass of 1.6 × 106M. We present a detailed multiwavelength study of the nuclear and host galaxy properties of UM 625. Analysis of Chandra and XMM-Newton observations suggests that this system contains a heavily absorbed and intrinsically X-ray weak (αox = −1.72) nucleus. Although not strong enough to qualify as radio loud, UM 625 does belong to a minority of low-mass AGNs detected in the radio. The broadband spectral energy distribution constrains the bolometric luminosity to Lbol ≈ (0.5–3) × 1043 erg s−1 and Lbol/LEdd ≈ 0.02–0.15. A comprehensive analysis of Sloan Digital Sky Survey and Hubble Space Telescope images shows that UM 625 is a nearly face-on S0 galaxy with a prominent, relatively blue pseudobulge (Sérsic index n = 1.60) that accounts for ∼60% of the total light in the R band. The extended disk is featureless, but the central ∼150–400 pc contains a conspicuous semi-ring of bright, blue star-forming knots, whose integrated ultraviolet luminosity suggests a star formation rate of ∼0.3 M yr−1. The mass of the central BH roughly agrees with the value predicted from its bulge velocity dispersion but is significantly lower than that expected from its bulge luminosity.

4

, , and

It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 Å channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 × 1020 Mx, 2.0 × 1020 Mx, and 21.0 × 1020 Mx, respectively, resulting in free energy drops of 3.89 × 1030 erg, 2.62 × 1030 erg, and  1.68 × 1032 erg.

5

, , and

Recent models of black hole growth in a cosmological context have forwarded a paradigm in which the growth is self-regulated by feedback from the black hole itself. Here we use cosmological zoom simulations of galaxy formation down to z = 2 to show that such strong self-regulation is required in the popular spherical Bondi accretion model, but that a plausible alternative model in which black hole growth is limited by galaxy-scale torques does not require self-regulation. Instead, this torque-limited accretion model yields black holes and galaxies evolving on average along the observed scaling relations by relying only on a fixed, 5% mass retention rate onto the black hole from the radius at which the accretion flow is fed. Feedback from the black hole may (and likely does) occur, but does not need to couple to galaxy-scale gas in order to regulate black hole growth. We show that this result is insensitive to variations in the initial black hole mass, stellar feedback, or other implementation details. The torque-limited model allows for high accretion rates at very early epochs (unlike the Bondi case), which if viable can help explain the rapid early growth of black holes, while by z ∼ 2 it yields Eddington factors of ∼1%–10%. This model also yields a less direct correspondence between major merger events and rapid phases of black hole growth. Instead, growth is more closely tied to cosmological disk feeding, which may help explain observational studies showing that, at least at z ≳ 1, active galaxies do not preferentially show merger signatures.

6

, , , , , , , , , and

To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.

7

, , , , , and

Using albedos from WISE/NEOWISE to separate distinct albedo groups within the Main Belt asteroids, we apply the Hierarchical Clustering Method to these subpopulations and identify dynamically associated clusters of asteroids. While this survey is limited to the ∼35% of known Main Belt asteroids that were detected by NEOWISE, we present the families linked from these objects as higher confidence associations than can be obtained from dynamical linking alone. We find that over one-third of the observed population of the Main Belt is represented in the high-confidence cores of dynamical families. The albedo distribution of family members differs significantly from the albedo distribution of background objects in the same region of the Main Belt; however, interpretation of this effect is complicated by the incomplete identification of lower-confidence family members. In total we link 38,298 asteroids into 76 distinct families. This work represents a critical step necessary to debias the albedo and size distributions of asteroids in the Main Belt and understand the formation and history of small bodies in our solar system.

8

, , , , and

Metal-poor massive stars typically end their lives as blue supergiants (BSGs). Gamma-ray bursts (GRBs) from such progenitors could have an ultra-long duration of relativistic jets. For example, Population III (Pop III) GRBs at z ∼ 10–20 might be observable as X-ray-rich events with a typical duration of T90 ∼ 104(1 + z) s. The recent GRB111209A at z = 0.677 has an ultra-long duration of T90 ∼ 2.5 × 104 s and it has been suggested that its progenitor might have been a metal-poor BSG in the local universe. Here, we suggest that luminous UV/optical/infrared emission is associated with this new class of GRBs from metal-poor BSGs. Before the jet head breaks out of the progenitor envelope, the energy injected by the jet is stored in a hot plasma cocoon, which finally emerges and expands as a baryon-loaded fireball. We show that the photospheric emissions from the cocoon fireball could be intrinsically very bright (Lpeak ∼ 1042–1044 erg s−1) in UV/optical bands (εpeak ∼ 10 eV) with a typical duration of ∼100 days in the rest frame. Such cocoon emissions from Pop III GRBs might be detectable in infrared bands at ∼years after Pop III GRBs at up to z ∼ 15 by upcoming facilities such as the James Webb Space Telescope. We also suggest that GRB111209A might have been rebrightening in UV/optical bands up to an AB magnitude of ≲ 26. The cocoon emission from local metal-poor BSGs might have been observed previously as luminous supernovae without GRBs since they can be seen from the off-axis direction of the jet.

9

High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from ∼15 to ∼40 μs, between the 3–8 keV and 8–30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

10

, , , , , , , , and

Galactic black hole transients show many interesting phenomena during outburst decays. We present simultaneous X-ray (RXTE, Swift, and INTEGRAL), and optical/near-infrared (O/NIR) observations (SMARTS) of the X-ray transient XTE J1752−223 during its outburst decay in 2010. The multiwavelength observations over 150 days in 2010 cover the transition from soft to hard spectral state. We discuss the evolution of radio emission with respect to the O/NIR light curve which shows several flares. One of those flares is bright and long, starting about 60 days after the transition in X-ray timing properties. During this flare, the radio spectral index becomes harder. Other smaller flares occur along with the X-ray timing transition, and also right after the detection of the radio core. We discuss the significances of these flares. Furthermore, using the simultaneous broadband X-ray spectra including INTEGRAL, we find that a high energy cut-off with a folding energy near 250 keV is necessary around the time that the compact jet is forming. The broadband spectrum can be fitted equally well with a Comptonization model. In addition, using photoelectric absorption edges in the XMM-Newton Reflection Grating Spectrometer X-ray spectra and the extinction of red clump giants in the direction of the source, we find a lower limit on the distance of >5 kpc.

11

, , , , , , and

In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

12

and

The effect of the numerical spatial resolution in models of the solar corona and corona/chromosphere interface is examined for impulsive heating over a range of magnitudes using one-dimensional hydrodynamic simulations. It is demonstrated that the principal effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepancies in the decay phase. The temperature for underresolved loops is also lower indicating that lack of resolution does not "bottle up" the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in underresolved loops the heat flux "jumps across" the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasizes the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three-dimensional magnetohydrodynamic coronal models are discussed.

13

, , and

We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C ii] line emission in two z = 6.4 quasars with black hole masses of ≈108M. CFHQS J0210−0456 is detected in the continuum with a 1.2 mm flux of 120 ± 35 μJy, whereas CFHQS J2329−0301 is undetected at a similar noise level. J2329−0301 has a star formation rate limit of <40 M yr−1, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C ii] emission is also detected only in J0210−0456. The ratio of [C ii] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C ii] line of J0210−0456 is relatively narrow (FWHM = 189 ± 18 km s−1), indicating a dynamical mass substantially lower than expected from the local black hole–velocity dispersion correlation. The [C ii] line is marginally resolved at 0farcs7 resolution with the blue and red wings spatially offset by 0farcs5 (3 kpc) and a smooth velocity gradient of 100 km s−1 across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

14

, , and

We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

15

, , , , , , and

We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data. We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of O iii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii].

16

, , , , , and

Segue 2, discovered by Belokurov et al., is a galaxy with a luminosity of only 900 L. We present Keck/DEIMOS spectroscopy of 25 members of Segue 2—a threefold increase in spectroscopic sample size. The velocity dispersion is too small to be measured with our data. The upper limit with 90% (95%) confidence is σv < 2.2 (2.6) km s−1, the most stringent limit for any galaxy. The corresponding limit on the mass within the three-dimensional half-light radius (46 pc) is M1/2 < 1.5 (2.1) × 105M. Segue 2 is the least massive galaxy known. We identify Segue 2 as a galaxy rather than a star cluster based on the wide dispersion in [Fe/H] (from −2.85 to −1.33) among the member stars. The stars' [α/Fe] ratios decline with increasing [Fe/H], indicating that Segue 2 retained Type Ia supernova ejecta despite its presently small mass and that star formation lasted for at least 100 Myr. The mean metallicity, 〈[Fe/H]〉 = -2.22 ± 0.13 (about the same as the Ursa Minor galaxy, 330 times more luminous than Segue 2), is higher than expected from the luminosity–metallicity relation defined by more luminous dwarf galaxy satellites of the Milky Way. Segue 2 may be the barest remnant of a tidally stripped, Ursa Minor-sized galaxy. If so, it is the best example of an ultra-faint dwarf galaxy that came to be ultra-faint through tidal stripping. Alternatively, Segue 2 could have been born in a very low mass dark matter subhalo (vmax < 10 km s−1), below the atomic hydrogen cooling limit.

17

We report the discovery of a probable dwarf galaxy colliding with NGC 1232. This collision is visible only in the X-ray spectral band, and it is creating a region of shocked gas with a temperature of 5.8 MK covering an impact area 7.25 kpc in diameter. The X-ray luminosity is 3.7 × 1038 erg s−1. The long lifetime of this gas against radiative and adiabatic cooling should permit the use of the luminous afterglow from such collisions to be used as a way of estimating their importance in galaxy evolution.

18

and

The dynamics of a standing shock front in a Poynting-flux-dominated relativistic flow is investigated by using a one-dimensional, relativistic, two-fluid simulation. An upstream flow containing a circularly polarized, sinusoidal magnetic shear wave is considered, mimicking a wave driven by an obliquely rotating pulsar. It is demonstrated that this wave is converted into large-amplitude electromagnetic waves with superluminal phase speeds by interacting with the shock when the shock-frame frequency of the wave exceeds the proper plasma frequency. The superluminal waves propagate in the upstream, modify the shock structure substantially, and form a well-developed precursor region ahead of a subshock. Dissipation of Poynting flux occurs in the precursor as well as in the downstream region through a parametric instability driven by the superluminal waves. The Poynting flux remaining in the downstream region is carried entirely by the superluminal waves. The downstream plasma is therefore an essentially unmagnetized, relativistically hot plasma with a non-relativistic flow speed, as suggested by observations of pulsar wind nebulae.

19

, , , , , , , , , and

We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3–20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ∼2 to <1 × 10−11 erg cm−2 s−1 over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.

20

and

We present a measurement of the X-ray spectrum of the luminous X-ray binary in I Zw 18, the blue compact dwarf galaxy with the lowest known metallicity. We find the highest flux yet observed, corresponding to an intrinsic luminosity near 1 × 1040 erg s−1 establishing it as an ultraluminous X-ray source (ULX). The energy spectrum is dominated by disk emission with a weak or absent Compton component and there is no significant timing noise; both are indicative of the thermal state of stellar-mass black hole X-ray binaries and inconsistent with the Compton-dominated state typical of most ULX spectra. A previous measurement of the X-ray spectrum shows a harder spectrum that is well described by a power law. Thus, the binary appears to exhibit spectral states similar to those observed from stellar-mass black hole binaries. If the hard state occurs in the range of luminosities found for the hard state in stellar-mass black hole binaries, then the black hole mass must be at least 85 M. Spectral fitting of the thermal state shows that disk luminosities for which thin disk models are expected to be valid are produced only for relatively high disk inclinations, ≳ 60°, and rapid black hole spins. We find a* > 0.98 and M > 154 M for a disk inclination of 60°. Higher inclinations produce higher masses and somewhat lower spins.

21

, , , , and

We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf (WD) photosphere alone. Seven of these are previously known WDs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit WD models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known WDs with dust disks. It is possible that the current census of WDs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The WD dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

22

and

The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the ChandraX-RayObservatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO3 (enstatite) and Mg1.6Fe0.4SiO4 (olivine) provided the best fit to the O K edge, with $N(\rm {MgSiO_{3}})/N(\rm {Mg_{1.6}Fe_{0.4}SiO_{4}})$ = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

23

, , , and

Magnetic protection of potentially habitable planets plays a central role in determining their actual habitability and/or the chances of detecting atmospheric biosignatures. Here we develop a thermal evolution model of potentially habitable Earth-like planets and super-Earths (SEs). Using up-to-date dynamo-scaling laws, we predict the properties of core dynamo magnetic fields and study the influence of thermal evolution on their properties. The level of magnetic protection of tidally locked and unlocked planets is estimated by combining simplified models of the planetary magnetosphere and a phenomenological description of the stellar wind. Thermal evolution introduces a strong dependence of magnetic protection on planetary mass and rotation rate. Tidally locked terrestrial planets with an Earth-like composition would have early dayside magnetopause distances between 1.5 and 4.0 Rp, larger than previously estimated. Unlocked planets with periods of rotation ∼1 day are protected by magnetospheres extending between 3 and 8 Rp. Our results are robust in comparison with variations in planetary bulk composition and uncertainties in other critical model parameters. For illustration purposes, the thermal evolution and magnetic protection of the potentially habitable SEs GL 581d, GJ 667Cc, and HD 40307g were also studied. Assuming an Earth-like composition, we found that the dynamos of these planets are already extinct or close to being shut down. While GL 581d is the best protected, the protection of HD 40307g cannot be reliably estimated. GJ 667Cc, even under optimistic conditions, seems to be severely exposed to the stellar wind, and, under the conditions of our model, has probably suffered massive atmospheric losses.

24

, , and

The multiple-planet systems discovered by the Kepler mission exhibit the following feature: planet pairs near first-order mean-motion resonances prefer orbits just outside the nominal resonance, while avoiding those just inside the resonance. We explore an extremely simple dynamical model for planet formation, in which planets grow in mass at a prescribed rate without orbital migration or dissipation. We develop an analytic version of this model for two-planet systems in two limiting cases: the planet mass grows quickly or slowly relative to the characteristic resonant libration time. In both cases, the distribution of systems in period ratio develops a characteristic asymmetric peak–trough structure around the resonance, qualitatively similar to that observed in the Kepler sample. We verify this result with numerical integrations of the three-body problem. We show that for the 3 : 2 resonance, where the observed peak–trough structure is strongest, our simple model is consistent with the observations for a range of mean planet masses 20–100 M. This predicted mass range is higher—by at least a factor of three—than the range expected from the few Kepler planets with measured masses, but part of this discrepancy could be due to oversimplifications in the dynamical model or uncertainties in the planetary mass–radius relation.

25

, , , and

We investigate the momentum and energy budget of stellar feedback during different stages of stellar evolution, and study its impact on the interstellar medium (ISM) using simulations of local star-forming regions and galactic disks at the resolution affordable in modern cosmological zoom-in simulations. In particular, we present a novel subgrid model for the momentum injection due to radiation pressure and stellar winds from massive stars during early, pre-supernova (pre-SN) evolutionary stages of young star clusters. Early injection of momentum acts to clear out dense gas in star-forming regions, hence limiting star formation. The reduced gas density mitigates radiative losses of thermal feedback energy from subsequent SN explosions. The detailed impact of stellar feedback depends sensitively on the implementation and choice of parameters. Somewhat encouragingly, we find that implementations in which feedback is efficient lead to approximate self-regulation of the global star formation efficiency. We compare simulation results using our feedback implementation to other phenomenological feedback methods, where thermal feedback energy is allowed to dissipate over timescales longer than the formal gas cooling time. We find that simulations with maximal momentum injection suppress star formation to a similar degree as is found in simulations adopting adiabatic thermal feedback. However, different feedback schemes are found to produce significant differences in the density and thermodynamic structure of the ISM, and are hence expected to have a qualitatively different impact on galaxy evolution.

26

and

This paper outlines the rather narrow conditions on a radiatively decoupled plasma where a Maxwell–Boltzmann (MB) distribution can be assumed with confidence. The complementary non-thermal distribution with non-perturbative kurtosis is argued to have a much broader purview than has previously been accepted. These conditions are expressed in terms of the electron Knudsen number, Ke, the ratio of the electron mean free path to the scale length of electron pressure. Rather generally, f(v < v2(Ke)) will be Gaussian, so that MB atomic or wave particle effects controlled by speeds v < v2w(15/8Ke)1/4 will remain defensible, where w is the most probable speed. The sufficient condition for Spitzer–Braginskii plasma fluid closure at the energy equation requires globally Ke(s) ⩽ 0.01; this global condition pertains to the maximum value of Ke along the arc length s of the magnetic field (to its extremities) provided that contiguous plasma remains uncoupled from the radiation field. The non-thermal regime Ke > 0.01 is common in all main-sequence stellar atmospheres above approximately 0.05 stellar radii from the surface. The entire solar corona and wind are included in this regime where non-thermal distributions with kurtosis are shown to be ubiquitous, heat flux is not well modeled by Spitzer–Braginskii closure, and fluid modeling is qualitative at best.

27

and

Modern data of the extinction curve from the ultraviolet to the near-infrared are revisited to study properties of dust grains in the Milky Way (MW) and the Small Magellanic Cloud (SMC). We confirm that the graphite–silicate mixture of grains yields the observed extinction curve with the simple power-law distribution of the grain size but with a cutoff at some maximal size: the parameters are tightly constrained to be q = 3.5  ±  0.2 for the size distribution aq and the maximum radius amax = 0.24 ± 0.05 μm, for both MW and SMC. The abundance of grains, and hence the elemental abundance, is constrained from the reddening versus hydrogen column density, E(BV)/NH. If we take the solar elemental abundance as the standard for the MW, >56% of carbon should be in graphite dust, while it is <40% in the SMC using its available abundance estimate. This disparity and the relative abundance of C to Si explain the difference of the two curves. We find that 50%–60% of carbon may not necessarily be in graphite but in the amorphous or glassy phase. Iron may also be in the metallic phase or up to ∼80% in magnetite rather than in silicates, so that the Mg/Fe ratio in astronomical olivine is arbitrary. With these substitutions, the parameters of the grain size remain unchanged. The mass density of dust grains relative to hydrogen is $\rho _{\rm dust} / \rho _{\rm H} = 1 / (120^{+10}_{-16})$ for the MW and $1 / (760^{+70}_{-90})$ for the SMC under the elemental abundance constraints. We underline the importance of the wavelength dependence of the extinction curve in the near-infrared in constructing the dust model: if Aλ∝λ−γ with γ ≃ 1.6, the power-law grain-size model fails, whereas it works if γ ≃ 1.8–2.0.

28

, , , and

Time-series spectra of the near-infrared 1.6 μm region have been obtained for five of the six known D-type symbiotic novae. The spectra map the pulsation kinematics of the Mira component in the Mira–white dwarf binary system and provide the center-of-mass velocity for the Mira. No orbital motion is detected in agreement with previous estimates of orbital periods ≳100 yr and semimajor axes ∼50 AU. The 1–5 μm spectra of the Miras show line weakening during dust obscuration events. This results from scattering and continuum emission by 1000 K dust. In the heavily obscured HM Sge system the 4.6 μm CO spectrum formed in 1000 K gas is seen in emission against an optically thick dust continuum. Spectral features that are typically produced in either the cool molecular region or the expanding circumstellar region of late-type stars cannot be detected in the D-symbiotic novae. This is in accord with the colliding wind model for interaction between the white dwarf and Mira. Arguments are presented that the 1000 K gas and dust are not Mira circumstellar material but are in the wind interaction region of the colliding winds. CO is the first molecule detected in this region. We suggest that dust condensing in the intershock region is the origin of the dust obscuration. This model explains variations in the obscuration. Toward the highly obscured Mira in HM Sge the dust zone is estimated to be ∼0.1 AU thick. The intershock wind interaction zone appears thinnest in the most active systems. Drawing on multiple arguments masses are estimated for the system components. The Miras in most D-symbiotic novae have descended from intermediate mass progenitors. The large amount of mass lost from the Mira combined with the massive white dwarf companion suggests that these systems are supernova candidates. However, timescales and the number of objects make these rare events.

29

, , , , , , , , , et al

We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si ii λ6355 line that can be cleanly decoupled from the lower velocity "photospheric" component. This Si ii λ6355 HVF fades by phase −5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ∼12,000 km s−1 until at least five weeks after maximum brightness. The Ca ii infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s−1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s−1 two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the "low velocity gradient" group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

30

, , , and

We compare QSO emission-line spectra to predictions based on theoretical ionizing continua of accretion disks. The observed line intensities do not show the expected trend of higher ionization with theoretical accretion disk temperature as predicted from the black hole mass and accretion rate. Consistent with earlier studies, this suggests that the inner disk does not reach temperatures as high as expected from standard disk theory. Modified radial temperature profiles, taking account of winds or advection in the inner disk, achieve better agreement with observation. The emission lines of radio-detected and radio-undetected sources show different trends as a function of the theoretically predicted disk temperature.

31

, , , and

Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of ∼1%, the radio emission—a measure of the jet power—varies continuously with the hard X-ray (2–10 keV) luminosity, roughly as $L_{\rm R} \propto L_{\rm X}^{0.6\hbox{--}0.75}$. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

32

, , , , , , , , , et al

The short GRB 120323A had the highest flux ever detected with the Gamma-Ray Burst Monitor on board the Fermi Gamma-Ray Space Telescope. Here we study its remarkable spectral properties and their evolution using two spectral models: (1) a single emission component scenario, where the spectrum is modeled by the empirical Band function (a broken power law), and (2) a two-component scenario, where thermal (a Planck-like function) emission is observed simultaneously with a non-thermal component (a Band function). We find that the latter model fits the integrated burst spectrum significantly better than the former, and that their respective spectral parameters are dramatically different: when fit with a Band function only, the Epeak of the event is unusually soft for a short gamma-ray burst (GRB; 70 keV compared to an average of 300 keV), while adding a thermal component leads to more typical short GRB values (Epeak ∼ 300 keV). Our time-resolved spectral analysis produces similar results. We argue here that the two-component model is the preferred interpretation for GRB 120323A based on (1) the values and evolution of the Band function parameters of the two component scenario, which are more typical for a short GRB, and (2) the appearance in the data of a significant hardness–intensity correlation, commonly found in GRBs, when we employee two-component model fits; the correlation is non-existent in the Band-only fits. GRB 110721A, a long burst with an intense photospheric emission, exhibits the exact same behavior. We conclude that GRB 120323A has a strong photospheric emission contribution, observed for the first time in a short GRB. Magnetic dissipation models are difficult to reconcile with these results, which instead favor photospheric thermal emission and fast cooling synchrotron radiation from internal shocks. Finally, we derive a possibly universal hardness–luminosity relation in the source frame using a larger set of GRBs (${L_{\rm i}^{{\rm Band}}}={(1.59\pm 0.84) \times 10^{50} (E_{{\rm peak,i}}^{{\rm rest}})^{1.33\pm 0.07}\ {\rm erg\ s}^{-1}}$), which could be used as a possible redshift estimator for cosmology.

33

, , , , , and

Organosilicon species such as silicon carbide and silicon dicarbide are considered as key molecular building blocks in the chemical evolution of the interstellar medium and are associated with the formation of silicon-carbide dust grains in the outflow of circumstellar envelopes of carbon-rich asymptotic giant branch (AGB) stars. However, the formation mechanisms of even the simplest silicon-bearing organic molecules have remained elusive for decades. Here, we demonstrate in crossed molecular beam experiments combined with ab initio calculations that the silacyclopropenylidene molecule (c-SiC2H2) can be synthesized in the gas phase under single-collision conditions via the reaction of the silylidyne radical (SiH) with acetylene (C2H2). This system denotes the simplest representative of a previously overlooked reaction class, in which the formation of an organosilicon molecule can be initiated via barrierless and exoergic reactions of silylidyne radicals with hydrocarbon molecules in circumstellar envelopes of evolved carbon stars such as IRC+10216. Since organosilicon molecules like silacyclopropenylidene can be eventually photolyzed to carbon–silicon clusters such as silicon dicarbide (c-SiC2), silacyclopropenylidene might even represent the missing link between simple molecular precursors and silicon-carbide-rich interstellar grains.

34

, , , and

High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 ± 0.05 AU) and solar particle release time (01:29 ± 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released ∼10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of ∼1.12 GeV, are probably accelerated by the CME-driven shock when it travels to ∼3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

35

and

Prominences and cavities are ubiquitously observed together, but the physical link between these disparate structures has not been established. We address this issue by using dynamic emission in the extreme ultraviolet to probe the connections of these structures. The SDO/AIA observations show that the cavity exhibits excessive emission variability compared to the surrounding quiet-Sun streamer, particularly in the 171 Å bandpass. We find that this dynamic emission takes the form of coherent loop-like brightening structures which emanate from the prominence into the central cavity. The geometry of these structures, dubbed prominence horns, generally mimics the curvature of the cavity boundary. We use a space-time statistical analysis of two cavities in multiple AIA bandpasses to constrain the energetic properties of 45 horns. In general, we find there is a positive correlation between the light curves of the horns in the 171 Å and 193 Å bandpasses; however, the 193 Å emission is a factor of five weaker. There is also a strong correlation between structural changes to the prominence as viewed in the He ii 304 Å bandpass and the enhanced 171 Å emission. In that bandpass, the prominence appears to extend several megameters along the 171 Å horn where we observe co-spatial, co-temporal 304 Å and 171 Å emission dynamics. We present these observations as evidence of the magnetic and energetic connection between the prominence and the cavity. Further modeling work is necessary to explain the physical source and consequences of these events, particularly in the context of the traditional paradigm: the cavity is underdense because it supplies mass to the overdense prominence.

36

, , , , , , and

The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 10 transits of XO-2b over a period of 3 yr. We present measurements that confirm previous estimates of system parameters like the normalized semi-major axis (a/R), stellar density (ρ), impact parameter (b), and orbital inclination (iorb). Our errors on system parameters like a/R and ρ have improved by ∼40% compared to previous best ground-based measurements. Our study of the transit times show no evidence for transit timing variations (TTVs) and we are able to rule out co-planar companions with masses ⩾0.20  M in low order mean motion resonance with XO-2b. We also explored the stability of the XO-2 system given various orbital configurations of a hypothetical planet near the 2:1 mean motion resonance. We find that a wide range of orbits (including Earth-mass perturbers) are both dynamically stable and produce observable TTVs. We find that up to 51% of our stable simulations show TTVs that are smaller than the typical transit timing errors (∼20 s) measured for XO-2b, and hence remain undetectable.

37

, , , , and

The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2–5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.

38

, , , , , , , , , et al

The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

39

, , , , , , , , and

We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7fdg5 ⩽ ℓ ⩽ 65°. The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA) for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum–Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular cloud clumps is generally applicable to other dust-continuum Galactic plane surveys.

40

, , , , , , , , , and

We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg2. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that ∼75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to ∼90% when comparing against the deepest X-ray data, indicating that at most ∼10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

41

, , , , , and

Mapping Mg ii resonance emission scattered by galactic winds offers a means to determine the spatial extent and density of the warm outflow. Using Keck/LRIS spectroscopy, we have resolved scattered Mg ii emission to the east of 32016857, a star-forming galaxy at z = 0.9392 with an outflow. The Mg ii emission from this galaxy exhibits a P-Cygni profile, extends further than both the continuum and [O ii] emission along the eastern side of the slit, and has a constant Doppler shift along the slit which does not follow the velocity gradient of the nebular [O ii] emission. Using the Sobolev approximation, we derive the density of Mg+ ions at a radius of 12–18 kpc in the outflow. We model the ionization correction and find that much of the outflowing Mg is in Mg++. We estimate that the total mass flux could be as large as 330–500 M yr−1, with the largest uncertainties coming from the depletion of Mg onto grains and the clumpiness of the warm outflow. We show that confining the warm clouds with a hot wind reduces the estimated mass flux of the warm outflow and indicates a mass-loading factor near unity in the warm phase alone. Based on the high blue luminosities that distinguish 32016857 and TKRS 4389, described by Rubin et al., from other galaxies with P-Cygni emission, we suggest that, as sensitivity to diffuse emission improves, scattering halos may prove to be a generic property of star-forming galaxies at intermediate redshifts.

42

and

The ongoing characterization of hot Jupiters has motivated a variety of circulation models of their atmospheres. Such models must be integrated starting from an assumed initial state, which is typically taken to be a wind-free, rest state. Here, we investigate the sensitivity of hot-Jupiter atmospheric circulation to initial conditions with shallow-water models and full three-dimensional models. Those models are initialized with zonal jets, and we explore a variety of different initial jet profiles. We demonstrate that, in both classes of models, the final, equilibrated state is independent of initial condition—as long as frictional drag near the bottom of the domain and/or interaction with a specified planetary interior are included so that the atmosphere can adjust angular momentum over time relative to the interior. When such mechanisms are included, otherwise identical models initialized with vastly different initial conditions all converge to the same statistical steady state. In some cases, the models exhibit modest time variability; this variability results in random fluctuations about the statistical steady state, but we emphasize that, even in these cases, the statistical steady state itself does not depend on initial conditions. Although the outcome of hot-Jupiter circulation models depend on details of the radiative forcing and frictional drag, aspects of which remain uncertain, we conclude that the specification of initial conditions is not a source of uncertainty, at least over the parameter range explored in most current models.

43

, , , and

It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6σ confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

44

, , , , , , , and

We present the Submillimeter Array 157 pointing mosaic in 0.86 mm dust continuum emission with 5farcs1 × 4farcs2 angular resolution, and the National Radio Astronomy Observatory Green Bank 100 m Telescope (GBT) observations of the CS/C34S/13CS 1–0 and SiO 1–0 emission with ⩽20'' × 18'' angular resolution. The dust continuum image marginally resolves at least several tens of 10–102M dense clumps in the 5' field including the circumnuclear disk (CND) and the exterior gas streamers. There is very good agreement between the high resolution dust continuum map of the CND and all previous molecular line observations. As the dust emission is the most reliable optically thin tracer of the mass, free from most chemical and excitation effects, we demonstrate the reality of the abundant localized structures within the CND, and their connection to external gas structures. From the spectral line data, the velocity dispersions of the dense clumps and their parent molecular clouds are ∼10–20 times higher than their virial velocity dispersions. This supports the idea that the CND and its immediate environment may not be stationary or stable structures. Some of the dense gas clumps are associated with 22 GHz water masers and 36.2 GHz and 44.1 GHz CH3OH masers. However, we do not find clumps that are bound by the gravity of the enclosed molecular gas. Hence, the CH3OH or H2O maser emission may be due to strong (proto)stellar feedback, which may be dispersing some of the gas clumps.

45

, , , , , and

We present a combination of high-resolution Hubble Space Telescope and wide-field ground-based and Galaxy Evolution Explorer data of the Galactic globular cluster M10 (NGC 6254). By using this large data set, we determined the center of gravity of the cluster and we built its density profile from star counts over its entire radial extension. We find that the density profile is well reproduced by a single-mass King model with structural parameters c = 1.41 and rc = 41''. We also studied the blue straggler star (BSS) population and its radial distribution. We count a total number of 120 BSS within the tidal radius. Their radial distribution is bimodal: highly peaked in the cluster center, decreasing at intermediate distances, and rising again outward. We discuss these results in the context of the dynamical clock scheme presented by Ferraro et al. and of recent results about the radial distribution of binary systems in this cluster.

46

, , , , , , , and

The Optical Properties of Astronomical Silicates with Infrared Techniques program utilizes multiple instruments to provide spectral data over a wide range of temperatures and wavelengths. Experimental methods include Vector Network Analyzer and Fourier transform spectroscopy transmission, and reflection/scattering measurements. From this data, we can determine the optical parameters for the index of refraction, n, and the absorption coefficient, k. The analysis of the laboratory transmittance data for each sample type is based upon different mathematical models, which are applied to each data set according to their degree of coherence. Presented here are results from iron silicate dust grain analogs, in several sample preparations and at temperatures ranging from 5 to 300 K, across the infrared and millimeter portion of the spectrum (from 2.5 to 10,000 μm or 4000 to 1 cm−1).

47

, , , , and

We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev–Zel'dovich effect, and Lyα data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for nB ∈ (− 3; −1.5).

48

, , , , and

Results are presented from a survey for molecular anions in seven nearby Galactic star-forming cores and molecular clouds. The hydrocarbon anion C6H is detected in all seven target sources, including four sources where no anions have been previously detected: L1172, L1389, L1495B, and TMC-1C. The C6H/C6H column density ratio is ≳ 1.0% in every source, with a mean value of 3.0% (and standard deviation 0.92%). Combined with previous detections, our results show that anions are ubiquitous in dense clouds wherever C6H is present. The C6H/C6H ratio is found to show a positive correlation with molecular hydrogen number density, and with the apparent age of the cloud. We also report the first detection of C4H in TMC-1 (at 4.8σ confidence), and derive an anion-to-neutral ratio C4H/C4H =(1.2 ± 0.4) × 10−5(= 0.0012% ± 0.0004%). Such a low value compared with C6H highlights the need for a revised radiative electron attachment rate for C4H. Chemical model calculations show that the observed C4H could be produced as a result of reactions of oxygen atoms with C5H and C6H.

49

, , , and

We use 3d-pdr, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C+, C, H2, and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric problems. We compare our results with the work of Glover et al., who self-consistently followed the time evolution of molecule formation in hydrodynamic simulations using a reduced chemical network. In general, we find good agreement with this in situ approach for C and CO abundances. However, the temperature and H2 abundances are discrepant in the boundary regions (Av ⩽ 5), which is due to the different number of rays used by the two approaches.

50

, , , , and

Asteroid 21 Lutetia, seen by the Rosetta spacecraft, plays a crucial role in the reconstruction of primordial phases of planetary objects. Its high bulk density and its primitive chondritic crust suggest that Lutetia could be partially differentiated. We developed a numerical code, also used for studying the geophysical history of Vesta, to explore several scenarios of internal evolution of Lutetia. These scenarios differ in the strength of their radiogenic sources and in their global post-sintering porosity. The only significant heat source for partial differentiation is 26Al; the other possible sources (60Fe, accretion, and differentiation) are negligible. In scenarios in which Lutetia completed its accretion in less than 0.7 Myr from the injection of 26Al in the solar nebula and for post-sintering values of macroporosity not exceeding 30% by volume, the asteroid experienced only partial differentiation. The formation of the proto-core, a structure enriched in metals and also containing pristine silicates, requires 1–4 Myr and the size of the proto-core varies from 6–30 km.

51

and

A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf–Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf–Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of ∼10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

52

, , , , , , , and

We report the discovery of a transiting, gas giant circumbinary planet orbiting the eclipsing binary KIC 4862625 and describe our independent discovery of the two transiting planets orbiting Kepler-47. We describe a simple and semi-automated procedure for identifying individual transits in light curves and present our follow-up measurements of the two circumbinary systems. For the KIC 4862625 system, the 0.52 ± 0.018 RJupiter radius planet revolves every ∼138 days and occults the 1.47 ± 0.08 M, 1.7 ± 0.06 R F8 IV primary star producing aperiodic transits of variable durations commensurate with the configuration of the eclipsing binary star. Our best-fit model indicates the orbit has a semi-major axis of 0.64 AU and is slightly eccentric, e = 0.1. For the Kepler-47 system, we confirm the results of Orosz et al. Modulations in the radial velocity of KIC 4862625A are measured both spectroscopically and photometrically, i.e., via Doppler boosting, and produce similar results.

53

, , , , and

We report the discovery of planetary-mass companions to two red giants by the ongoing Penn State–Toruń Planet Search (PTPS) conducted with the 9.2 m Hobby–Eberly Telescope. The 1.1 M K0-giant, BD+15 2940, has a 1.1 MJ minimum mass companion orbiting the star at a 137.5 day period in a 0.54 AU orbit what makes it the closest—in planet around a giant and possible subject of engulfment as the consequence of stellar evolution. HD 233604, a 1.5 M K5-giant, is orbited by a 6.6 MJ minimum mass planet which has a period of 192 days and a semi-major axis of only 0.75 AU making it one of the least distant planets to a giant star. The chemical composition analysis of HD 233604 reveals a relatively high 7Li abundance which may be a sign of its early evolutionary stage or recent engulfment of another planet in the system. We also present independent detections of planetary-mass companions to HD 209458 and HD 88133, and stellar activity-induced radial velocity variations in HD 166435, as part of the discussion of the observing and data analysis methods used in the PTPS project.

54

and

The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

55

and

We present spectral calculations of non-LTE accretion disk models appropriate for high-luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency, and surface density with luminosity and radius according to the standard α-model. This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified blackbody to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/LEdd = 0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more dissipation per unit mass near the disk surface. The new dissipation profiles are qualitatively similar to the one found by Hirose et al., but produce strong near power-law spectral tails. Our models also include physically motivated magnetic acceleration support based once again on scaling the Hirose et al. results. We present three full-disk spectra, each based on one of the dissipation prescriptions. Our most aggressive dissipation profile results in a disk spectrum that is in approximate quantitative agreement with certain observations of the steep power-law spectral states from some black hole X-ray binaries.

56

, , , , , , , , , et al

We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, multi-object spectroscopy data from the literature, and Giant Metrewave Radio Telescope (GMRT) data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is a strong analogy between the X-ray and optical phenomenology of the IC 1860 group and that of two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment for studying this phenomenon.

57

, , and

We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo–subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012M are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ∼ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ∼ 1–1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass–halo mass relationship and SFRs are available for download online.

58

, , , , , , , , , et al

We study the environmental dependence of color, stellar mass, and morphology by comparing galaxies in a forming cluster to those in the field at z = 1.6 with Hubble Space Telescope near-infrared imaging in the CANDELS/UDS field. We quantify the morphology of the galaxies using the effective radius, reff, and Sérsic index, n. In both the cluster and field, approximately half of the bulge-dominated galaxies (n > 2) reside on the red sequence of the color–magnitude diagram, and most disk-dominated galaxies (n < 2) have colors expected for star-forming galaxies. There is weak evidence that cluster galaxies have redder rest-frame U − B colors and higher stellar masses compared to the field. Star-forming galaxies in both the cluster and field show no significant differences in their morphologies. In contrast, there is evidence that quiescent galaxies in the cluster have larger median effective radii and smaller Sérsic indices compared to the field with a significance of 2σ. These differences are most pronounced for galaxies at clustercentric distances 1 Mpc <Rproj < 1.5 Mpc, which have low Sérsic indices and possibly larger effective radii, more consistent with star-forming galaxies at this epoch and in contrast to other quiescent galaxies. We argue that star-forming galaxies are processed under the influence of the cluster environment at distances greater than the cluster-halo virial radius. Our results are consistent with models where gas accretion onto these galaxies is suppressed from processes associated with the cluster environment.

59

, , and

In this paper, we present for the first time the discovery of the disappearance of a narrow Mg ii λλ2796, 2803 absorption system from the spectra of the quasar SDSS J165501.31+260517.4 (ze = 1.8671). This absorber is located at zabs = 1.7877 and has a velocity offset of 8423 km s−1 with respect to the quasar. According to the velocity offset and the line variability, this narrow Mg ii λλ2796, 2803 absorption system is likely intrinsic to the quasar. Since the corresponding UV continuum emission and the absorption lines of another narrow Mg ii λλ2796, 2803 absorption system at zabs = 1.8656 are very stable, we believe that the disappearance of the absorption system is unlikely to be caused by the change in ionization of absorption gas. Instead, it likely arises from the motion of the absorption gas across the line of sight.

60

and

We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14–150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of ∼ − 1, consistent at low frequencies with previous studies in the 2–10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

61

, , , , , , , , , et al

The IMACS Cluster Building Survey uses the wide field spectroscopic capabilities of the IMACS spectrograph on the 6.5 m Baade Telescope to survey the large-scale environment surrounding rich intermediate-redshift clusters of galaxies. The goal is to understand the processes which may be transforming star-forming field galaxies into quiescent cluster members as groups and individual galaxies fall into the cluster from the surrounding supercluster. This first paper describes the survey: the data taking and reduction methods. We provide new calibrations of star formation rates (SFRs) derived from optical and infrared spectroscopy and photometry. We demonstrate that there is a tight relation between the observed SFR per unit B luminosity, and the ratio of the extinctions of the stellar continuum and the optical emission lines. With this, we can obtain accurate extinction-corrected colors of galaxies. Using these colors as well as other spectral measures, we determine new criteria for the existence of ongoing and recent starbursts in galaxies.

62

, , , , , and

The IMACS Cluster Building Survey (ICBS) provides spectra of ∼2200 galaxies 0.31 < z < 0.54 in five rich clusters (R ≲ 5 Mpc) and the field. Infalling, dynamically cold groups with tens of members account for approximately half of the supercluster population, contributing to a growth in cluster mass of ∼100% by the present day. The ICBS spectra distinguish non-star-forming (PAS) and poststarburst (PSB) from star-forming galaxies—continuously star-forming (CSF) or starbursts (SBH or SBO), identified by anomalously strong Hδ absorption or [O ii] emission. For the infalling cluster groups and similar field groups, we find a correlation between PAS+PSB fraction and group mass, indicating substantial "preprocessing" through quenching mechanisms that can turn star-forming galaxies into passive galaxies without the unique environment of rich clusters. SBH + SBO starburst galaxies are common, and they maintain an approximately constant ratio (SBH+SBO)/CSF ≈ 25% in all environments—from field, to groups, to rich clusters. Similarly, while PSB galaxies strongly favor denser environments, PSB/PAS ≈ 10%–20% for all environments. This result, and their timescale τ ∼ 500 Myr, indicates that starbursts are not signatures of a quenching mechanism that produces the majority of passive galaxies. We suggest instead that starbursts and poststarbursts signal minor mergers and accretions, in star-forming and passive galaxies, respectively, and that the principal mechanisms for producing passive systems are (1) early major mergers, for elliptical galaxies, and (2) later, less violent processes—such as starvation and tidal stripping, for S0 galaxies.

63

, , , , , , and

Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of $M_B^*$ consistent with that found in other deep surveys; at the present epoch $M_B^*$ is evolving at the rate of 0.38 Gyr−1, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both $M_B^*$ and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 × 1011M show a range of epochs of peak star formation, the fraction of "younger" galaxies falls from about 40% at a mass of 4 × 1010M to zero at a mass of 1.4 × 1011M. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

64

, , , , , and

We present here a simple model for the star formation history (SFH) of galaxies that is successful in describing both the star formation rate density (SFRD) over cosmic time, as well as the distribution of specific star formation rates (sSFRs) of galaxies at the current epoch, and the evolution of this quantity in galaxy populations to a redshift of z = 1. We show first that the cosmic SFRD is remarkably well described by a simple log-normal in time. We next postulate that this functional form for the ensemble is also a reasonable description for the SFHs of individual galaxies. Using the measured sSFRs for galaxies at z ∼ 0 from Paper III in this series, we then construct a realization of a universe populated by such galaxies in which the parameters of the log-normal SFH of each galaxy are adjusted to match the sSFRs at z ∼ 0 as well as fitting, in ensemble, the cosmic SFRD from z = 0 to z = 8. This model predicts, with striking fidelity, the distribution of sSFRs in mass-limited galaxy samples to z = 1; this match is not achieved by other models with a different functional form for the SFHs of individual galaxies, but with the same number of degrees of freedom, suggesting that the log-normal form is well matched to the likely actual histories of individual galaxies. We also impose the sSFR versus mass distributions at higher redshifts from Paper III as constraints on the model, and show that, as previously suggested, some galaxies in the field, particularly low mass galaxies, are quite young at intermediate redshifts. As emphasized in Paper III, starbursts are insufficient to explain the enhanced sSFRs in intermediate redshift galaxies; we show here that a model using only smoothly varying log-normal SFHs for galaxies, which allows for some fraction of the population to have peak star formation at late times, does however fully explain the observations. Finally, we show that this model, constrained in detail only at redshifts z < 1, also produces the main sequence of star-formation observed at 1.5 < z < 2.5, again suggesting that the log-normal SFHs are a close approximation to the actual histories of typical galaxies.

65

, , , , , , , , , et al

We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: $\dot{P}=4(1)\times 10^{-15}$ s s−1, significant at a ∼3.5σ confidence level. This leads to a surface dipolar magnetic field of Bdip ≃ 6 × 1012 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ∼1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ∼0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10−11 to 1.2 × 10−14 erg s−1 cm−2. Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ∼550 kyr, and a dipolar magnetic field at birth of ∼1014 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

66

, , , , and

The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the Prometheus-Vertex code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (ℓ = 1, m = 0, ±1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

67

, , and

The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

68

, , and

We perform global unstratified three-dimensional magnetohydrodynamic simulations of an astrophysical boundary layer (BL)—an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf—with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few, and remains subthermal.

69

, , and

We carry out an independent search of Kepler photometry for small transiting planets with sizes 0.5–8.0 times that of Earth and orbital periods between 5 and 50 days, with the goal of measuring the fraction of stars harboring such planets. We use a new transit search algorithm, TERRA, optimized to detect small planets around photometrically quiet stars. We restrict our stellar sample to include the 12,000 stars having the lowest photometric noise in the Kepler survey, thereby maximizing the detectability of Earth-size planets. We report 129 planet candidates having radii less than 6 RE found in three years of Kepler photometry (quarters 1–12). Forty-seven of these candidates are not in Batalha et al., which only analyzed photometry from quarters 1–6. We gather Keck HIRES spectra for the majority of these targets leading to precise stellar radii and hence precise planet radii. We make a detailed measurement of the completeness of our planet search. We inject synthetic dimmings from mock transiting planets into the actual Kepler photometry. We then analyze that injected photometry with our TERRA pipeline to assess our detection completeness for planets of different sizes and orbital periods. We compute the occurrence of planets as a function of planet radius and period, correcting for the detection completeness as well as the geometric probability of transit, R/a. The resulting distribution of planet sizes exhibits a power law rise in occurrence from 5.7 RE down to 2 RE, as found in Howard et al. That rise clearly ends at 2 RE. The occurrence of planets is consistent with constant from 2 RE toward 1 RE. This unexpected plateau in planet occurrence at 2 RE suggests distinct planet formation processes for planets above and below 2 RE. We find that $15.1^{+1.8}_{-2.7}$% of solar type stars—roughly one in six—has a 1–2 RE planet with P = 5–50 days.

70

, , , , , and

We report new detections of thermal emission from the transiting hot Jupiter WASP-43b in the H and Ks bands as observed at secondary eclipses. The observations were made with the WIRCam instrument on the Canada–France–Hawaii Telescope. We obtained a secondary eclipse depth of 0.103$_{-0.017}^{+0.017}\%$ and 0.194$_{-0.029}^{+0.029}\%$ in the H and Ks bands, respectively. The Ks-band depth is consistent with the previous measurement in the narrow band centered at 2.09 μm by Gillon et al. Our eclipse depths in both bands are consistent with a blackbody spectrum with a temperature of ∼1850 K, slightly higher than the dayside equilibrium temperature without day–night energy redistribution. Based on theoretical models of the dayside atmosphere of WASP-43b, our data constrain the day–night energy redistribution in the planet to be ≲ 15%–25%, depending on the metal content in the atmosphere. Combined with energy balance arguments, our data suggest that a strong temperature inversion is unlikely in the dayside atmosphere of WASP-43b. However, a weak inversion cannot be strictly ruled out at the current time. Future observations are required to place detailed constraints on the chemical composition of the atmosphere.

71

, , and

We investigate the formation process of self-gravitating protoplanetary disks in unmagnetized molecular clouds. The angular momentum is redistributed by the action of gravitational torques in the massive disk during its early formation. We develop a simplified one-dimensional accretion disk model that takes into account the infall of gas from the envelope onto the disk and the transfer of angular momentum in the disk with an effective viscosity. First we evaluate the gas accretion rate from the cloud core onto the disk by approximately estimating the effects of gas pressure and gravity acting on the cloud core. We formulate the effective viscosity as a function of the Toomre Q parameter that measures the local gravitational stability of the rotating thin disk. We use a function for viscosity that changes sensitively with Q when the disk is gravitationally unstable. We find a strong self-regulation mechanism in the disk evolution. During the formation stage of protoplanetary disks, the evolution of the surface density does not depend on the other details of the modeling of effective viscosity, such as the prefactor of the viscosity coefficient. Next, to verify our model, we compare the time evolution of the disk calculated with our formulation with that of three-dimensional hydrodynamical simulations. The structures of the resultant disks from the one-dimensional accretion disk model agree well with those of the three-dimensional simulations. Our model is a useful tool for the further modeling of chemistry, radiative transfer, and planet formation in protoplanetary disks.

72

, , and

Employing Fe xii images and line-of-sight magnetograms, we deduce the direction of the axial field in high-latitude filament channels from the orientation of the adjacent stalklike structures. Throughout the rising phase of the current solar cycle 24, filament channels poleward of latitude 30° overwhelmingly obeyed the hemispheric chirality rule, being dextral (sinistral) in the northern (southern) hemisphere, corresponding to negative (positive) helicity. During the deep minimum of 2007–2009, the orientation of the Fe xii stalks was often difficult to determine, but no obvious violations of the rule were found. Although the hemispheric trend was still present during the maximum and early declining phase of cycle 23 (2000–2003), several high-latitude exceptions were identified at that time. From the observation that dextral (sinistral) filament channels form through the decay of active regions whose Fe xii features show a counterclockwise (clockwise) whorl, we conclude that the axial field direction is determined by the intrinsic helicity of the active regions. In contrast, generation of the axial field component by the photospheric differential rotation is difficult to reconcile with the observed chirality of polar crown and circular filament channels, and with the presence of filament channels along the equator. The main role of differential rotation in filament channel formation is to expedite the cancellation of flux and thus the removal of the transverse field component. We propose further that, rather than being ejected into the heliosphere, the axial field is eventually resubmerged by flux cancellation as the adjacent unipolar regions become increasingly mixed.

73

, , , , , and

Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H i Lyα line.

74

and

We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

75

, , , and

Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfvén waves (AWs) can significantly influence the basic physics of wave–particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

76

, , and

The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He i and He ii ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He ii. We briefly discuss the implications of these results for recent observations of the He ii reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

77

, , , , , , and

The first statistically significant detection of the cosmic γ-ray horizon (CGRH) that is independent of any extragalactic background light (EBL) model is presented. The CGRH is a fundamental quantity in cosmology. It gives an estimate of the opacity of the universe to very high energy (VHE) γ-ray photons due to photon–photon pair production with the EBL. The only estimations of the CGRH to date are predictions from EBL models and lower limits from γ-ray observations of cosmological blazars and γ-ray bursts. Here, we present homogeneous synchrotron/synchrotron self-Compton (SSC) models of the spectral energy distributions of 15 blazars based on (almost) simultaneous observations from radio up to the highest energy γ-rays taken with the Fermi satellite. These synchrotron/SSC models predict the unattenuated VHE fluxes, which are compared with the observations by imaging atmospheric Cherenkov telescopes. This comparison provides an estimate of the optical depth of the EBL, which allows us a derivation of the CGRH through a maximum likelihood analysis that is EBL-model independent. We find that the observed CGRH is compatible with the current knowledge of the EBL.

78

, , , and

Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 μm) and aliphatic (3.4 μm) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp2 bonds can be measured in astronomical spectra using the 6.2 μm CC aromatic stretch feature, whereas the 3.4 μm aliphatic feature can be used to quantify the fraction of sp3 bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp3 content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

79

, , , , and

We study the three-dimensional magnetic structure of the solar active region 11158, which produced one X-class and several M-class flares on 2011 February 13–16. We focus on the magnetic twist in four flare events, M6.6, X2.2, M1.0, and M1.1. The magnetic twist is estimated from the nonlinear force-free field extrapolated from the vector fields obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory using the magnetohydrodynamic relaxation method developed by Inoue et al. We found that strongly twisted lines ranging from half-turn to one-turn twists were built up just before the M6.6 and X2.2 flares and disappeared after that. Because most of the twists remaining after these flares were less than a half-turn twist, this result suggests that the buildup of magnetic twist over the half-turn twist is a key process in the production of large flares. On the other hand, even though these strong twists were also built up just before the M1.0 and M1.1 flares, most of them remained afterward. Careful topological analysis before the M1.0 and M1.1 flares shows that the strongly twisted lines were surrounded mostly by the weakly twisted lines formed in accordance with the clockwise motion of the positive sunspot, whose footpoints are rooted in strong magnetic flux regions. These results imply that these weakly twisted lines might suppress the activity of the strongly twisted lines in the last two M-class flares.

80

, , , and

We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant ζ Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (≲ 40%) are allowed if moderate porosity effects (hR*) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.

82
The following article is Free article

, , , , , , , , , and