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ABSTRACT

We present here a simple model for the star formation history (SFH) of galaxies that is successful in describing
both the star formation rate density (SFRD) over cosmic time, as well as the distribution of specific star formation
rates (sSFRs) of galaxies at the current epoch, and the evolution of this quantity in galaxy populations to a redshift
of z = 1. We show first that the cosmic SFRD is remarkably well described by a simple log-normal in time. We
next postulate that this functional form for the ensemble is also a reasonable description for the SFHs of individual
galaxies. Using the measured sSFRs for galaxies at z ∼ 0 from Paper III in this series, we then construct a realization
of a universe populated by such galaxies in which the parameters of the log-normal SFH of each galaxy are adjusted
to match the sSFRs at z ∼ 0 as well as fitting, in ensemble, the cosmic SFRD from z = 0 to z = 8. This model
predicts, with striking fidelity, the distribution of sSFRs in mass-limited galaxy samples to z = 1; this match is not
achieved by other models with a different functional form for the SFHs of individual galaxies, but with the same
number of degrees of freedom, suggesting that the log-normal form is well matched to the likely actual histories
of individual galaxies. We also impose the sSFR versus mass distributions at higher redshifts from Paper III as
constraints on the model, and show that, as previously suggested, some galaxies in the field, particularly low mass
galaxies, are quite young at intermediate redshifts. As emphasized in Paper III, starbursts are insufficient to explain
the enhanced sSFRs in intermediate redshift galaxies; we show here that a model using only smoothly varying
log-normal SFHs for galaxies, which allows for some fraction of the population to have peak star formation at late
times, does however fully explain the observations. Finally, we show that this model, constrained in detail only at
redshifts z < 1, also produces the main sequence of star-formation observed at 1.5 < z < 2.5, again suggesting
that the log-normal SFHs are a close approximation to the actual histories of typical galaxies.
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1. INTRODUCTION

Simple analytic models for the star formation histories (SFHs)
of galaxies have been explored for decades, and a number of
basic SFHs have found common usage in a variety of analyses.
These SFHs range from utilitarian models such as continuous
star formation or true simple stellar populations (i.e., a delta-
function burst), through to more complex histories such as
truncated continuous star formation (Larson & Tinsley 1978),
exponentially declining star formation (Searle et al. 1973), and
the delayed exponential SFH (e.g., Gavazzi et al. 2002) as first
proposed by Sandage (1986).

Of course, all such simple models of entire galaxies are con-
sidered to be time-averaged representations of a multitude of
star formation events occurring in individual star forming re-
gions on timescales much smaller than the dynamical timescale
of a typical galaxy. In detail the SFH of a galaxy is almost cer-
tainly not easily described by a simple function, but rather as the
accumulation of a large number of brief star formation episodes
associated to some extent with the merger history of that galaxy
and its parent dark matter halo. An appreciation of the impor-
tance of the effect of secondary bursts on various observables

4 Current address: Brinson Fellow at the Observatories of the Carnegie
Institution of Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA.

has been present in the literature for decades (cf. Larson &
Tinsley 1978); secondary bursts are particularly critical when
predicting the observed properties of early type galaxies, where
bursts involving only a few percent of the galaxies total stellar
mass can significantly alter some spectroscopic and photometric
observables (e.g., Kaviraj et al. 2009).

Paper III of this series (Oemler et al. 2013b) presents a
detailed look at the measured star formation rates in field galaxy
populations from z = 0 to z = 1, and notes in particular
that the observed evolution of the specific star formation rate
(sSFR; the star formation rate per unit stellar mass) cannot
be explained by simple models in which galaxies are coeval
populations, and furthermore that starbursts cannot modify the
sSFR distribution in such a model to match the observed values.
The data suggest that some galaxies must form the bulk of their
stars reasonably quickly at late times, from which we conclude
that any successful analytic model for the SFHs of individual
galaxies must control both the onset time and timescale of
star formation; single parameter models such as exponentially
declining SFHs are insufficient.

In this paper we present a treatment of galaxy SFHs in which
we use a fit to the cosmic star formation rate density (SFRD) as
the basis for a functional form for the SFH of typical galaxies.
The SFRD is a measure of star formation as a function of
lookback time and as such is the SFH of the hypothetical average
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galaxy. We explore the ability of aggregate populations of this
simple SFH to match fundamental observables such as the local
and intermediate redshift distribution of sSFRs in galaxies. The
sSFR distribution encodes the mass (i.e., the integrated SFH)
and the current star formation rate, and the relationship between
these. We motivate the functional form of the SFH—simply a
log-normal in time—in Section 2, and provide simple fits to the
data from Paper III using only the SFRD and the z = 0 sSFR
distribution.

In Section 3 we attempt to connect a suite of log-normal
histories to individual galaxies and add additional constraints
from the measured sSFR distribution of galaxies out to z = 1.
In Section 4 we discuss the implications of this modeling in the
context of the conclusions of Paper III, noting that this model
successfully produces some young galaxies at late times without
starbursts. In Section 5 we discuss the broader implications of
the apparent efficacy of the log-normal SFHs. We summarize
our main results and suggest some future tests of this model in
Section 6.

2. THE LOG-NORMAL SFH

The ubiquity of the log-normal distribution in nature is well
known (e.g., Limpert et al. 2001). Skewed distributions such
as this will arise with physical processes where negative values
are not permitted. Star formation, like many other “growth”
processes, is such a process; negative values of star formation
do not occur. It is thus reasonable to suppose that the SFH of a
typical galaxy might appear log-normal. Further, the history of
star formation in the universe—the SFRD—is strongly skewed
in time (e.g., Bouwens et al. 2009) and is at least reminiscent
of a log-normal distribution, with a rapid rise at early times,
and long slow decline at late times. The log-normal distribution
is also a two-parameter function, and so at least in principle
can provide sufficient flexibility to match the sSFR evolution
highlighted in Paper III. This fact, the shape of the SFRD,
and the apparent ubiquity of log-normal distributions in nature
motivates the current analysis.

2.1. The Log-normal Cosmic Star Formation Rate Density

Current data (see, for example, the compilation in Cucciati
et al. 2012) clearly show both a rise and fall in the SFRD
over cosmic time. More specifically, the rise in the SFRD is
fast at early times, with a long continuing but declining tail
of star formation to the present epoch. Ignoring mergers, the
shape of the SFRD should represent the shape of the SFH of
the mean galaxy in the universe. Of course, the actual SFH of
any recognized single galaxy at z = 0 will likely not fit this
description, not least because a typical z = 0 galaxy is thought
to represent the merger of a number of smaller systems over
cosmic time.

Putting aside this complexity for the moment, we note that the
presence of both a rise and fall in the SFRD also indicates that
simple SFH models which decline from initially high star forma-
tion rates (i.e., exponentially declining models—referred to as τ
models—commonly used in modeling the spectrophotometric
properties of galaxies at later times) cannot easily describe the
overall SFRD evolution; a delay time must be allowed—such
as in the delayed exponential SFH of Sandage (1986)—in order
to even approximate current data. The rise in the SFRD from
high redshift can be produced by an ensemble of simple τ mod-
els if a second parameter—the time at which such a SFH “turns
on”—is allowed and is appropriately distributed at early times.

Recent analysis of the photometric properties of distant
galaxies also argues for a SFH in individual galaxies that is
smoothly rising at early times (Maraston et al. 2010). They
found that an SFH of SFR = Ae−(t−to)/τ , a so-called inverted-τ
model, produced a better fit to the photometric properties of a
sample of z ∼ 2 actively star forming galaxies than did the more
typically used declining-τ models. A similar result, for galaxies
with a fixed comoving number density of 2 × 10−4 Mpc−3, was
found to hold from z = 8 z to z = 3 by Papovich et al. (2011);
Reddy et al. (2012) find that rising SFHs at 7 > z > 2 are the
preferred history for a sample of galaxies observed at z ∼ 2.
Maraston et al. also note that the results of Cimatti et al. (2008)
from a study of z ∼ 1.6 elliptical galaxies also argue for an early
SFH that is rising in time. Additionally, some studies suggest
that the sSFR of galaxies is flat beyond the peak of the SFRD at
z ∼ 2 out to at least z ∼ 7 (e.g., Stark et al. 2009; González et al.
2010), though see de Barros et al. (2012) for an alternate view;
one simple interpretation of such a flattening is that individual
galaxies at these redshifts have SFHs with a star formation rate
smoothly increasing to later times. This overall picture of rising
SFHs in individual galaxies at high redshift is also found in
recent cosmological hydrodynamic simulations (Finlator et al.
2011; Jaacks et al. 2012).

Maraston et al. point out that the remarkably ubiquitous use of
declining τ models in the literature over the past few decades is
not well justified, and has become thoroughly divorced from the
original aim of these models of measuring the age of early-type
galaxies at z ∼ 0. It thus seems reasonable to seek a new simple
model which captures both the rising early-time and declining
late-time behavior of galaxy SFHs.

In seeking a functional form to describe the SFRD over cos-
mic time, we have explored a number of possible descriptions,
and have found that a remarkably simple one—a log-normal
in time—works extremely well. We describe the scale free
log-normal distribution of the star formation rate as

SFR(t, t0, τ ) = 1

t
√

2πτ 2
e
− (ln t−t0)2

2τ2 , (1)

where t is the elapsed time since the big bang, t0 is the
logarithmic delay time, and τ sets the rise and decay timescale.
One great advantage of such a form over some other models—
such as the inverted-τ model of Maraston et al. (2010) is that
it naturally subsumes both a rising and falling SFH at different
times; simple τ models—inverted or otherwise—are aphysical,
whereas a log-normal in time could arguably describe the SFH
of a galaxy (or at least a galaxy’s components) at all times.
A further advantage is that the delay time is de-coupled from
the width of the SFH, unlike the delayed exponential model of
Sandage (1986). Behroozi et al. (2013) have recently suggested
two other functional forms—a double power law, or a hybrid
exponential+powerlaw—which we will explore further below.

Figure 1 shows a fit to the SFRD with a single log-normal.
This simple functional form produces an reasonable fit, with a
χ2 of 2.1. It is worth re-emphasizing that the log-normal, besides
providing an good fit, is a functional form that emerges again
and again in the analysis of distributions in natural systems.
From the failure rate of electronic components (Salemi et al.
2008) to the latency periods of infectious diseases (Kondo 1977)
and many other systems, the log-normal distribution appears
as the preferred rate model. Log-normal distributions occur
when multiplicative effects dominate; that the cosmic SFRD is
log-normal in time suggests a deeper meaning than that it is
simply a good fit.
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Figure 1. SFRD measurements are from the literature, as compiled in Cucciati et al. (2012), plotted vs. elapsed time. Magenta diamonds are the measurements of
Cucciati et al. (2012); orange squares are from Bouwens et al. (2009), blue diamonds from van der Burg et al. (2010), cyan squares from Reddy & Steidel (2009), and
the single low-z measurement in black is from Wyder et al. (2005). Uncertainties are as reported in Cucciati et al. (2012); horizontal lines indicate the redshift range
over which each measurement was made. The left panel shows the best fit log-normal (t0 = 1.539; τ = 0.574); this simple form appears to be an apt description of
the cosmic SFRD. The center panel shows the best fits using two SFH models from the literature—the power-law+exponential from Behroozi et al. (2013) and the
delayed exponential (Gavazzi et al. 2002)—neither of which is a good fit to the data. The right panel shows the fit achieved with two more complex models—the
double power-law from Behroozi et al. (2013) and a double log-normal (t0 = 1.394, 2.803; τ = 0.459, 1.187). In all panels the number of shape parameters in each
fitting function is indicated parenthetically.

(A color version of this figure is available in the online journal.)

Figure 1 also shows fits to several other functional forms
suggested in the literature:

1. the best fitting delayed exponential SFH, given by the
SFH ∝ t/τ 2 exp(−t2/2τ 2); the fit is obviously poor—with
a χ2 of 10.2. This result is not unexpected, given the
coupling of delay time and width in this model with a
single shape parameter;

2. the best fitting exponential + power-law (Behroozi et al.
2013), given by SFH ∝ tA exp(−t/τ ); this model, with
the same number of parameters as the single log-normal,
produces a poorer fit, with a χ2 of 4.3;

3. the best fitting double power-law (Behroozi et al. 2013),
given by SFH ∝ ((t/τ )A +(t/τ )−B)−1; this three-parameter
model fits the distribution extremely well, with a χ2 of 1.7.

The apparent agreement between different datasets seen
in Figure 1 suggests that the uncertainties on the data as
reported are overestimated—or include a significant correlated
systematic component. We caution that a reduced χ2 is thus not
trivial to compute; however the relative χ2 of models with the
same number of parameters—i.e., the single log-normal and the
exponential + power-law is still informative. In this comparison
the log-normal is clearly preferred.

Figure 1 also shows the result of a double log-normal fit
(where each log-normal component has equal weight). This
fit resolves any lingering tension between the peak height and
late-time SFRD present in the single log-normal fit. The χ2 of
this fit is 1.6. We include the double log-normal fit here primarily
because it yields an interesting physical interpretation; one of the
fitted SFHs is characterized as an early onset with a fast decline
and the other as a somewhat later onset with a slower decline.
These two basic SFHs could be interpreted as corresponding
to early- and late-type galaxies, or even the bulge and disk
components of the typical galaxy. We also use the double
log-normal fit as a smooth description of the cosmic SFRD.

The simple model fits above have been computed using a
downhill simplex, but in general in this paper we fit ensembles of
parameterized SFH models to data using a simulated annealing
algorithm; the choice of simulated annealing to thoroughly
explore the parameter space for large aggregate samples of SFHs
will become apparent in the next section.

2.2. The Specific Star Formation Rate at z = 0

The z = 0 sSFR of a given galaxy is the current star formation
rate divided by total mass, and the total mass is the integral of
the SFH for that galaxy, adjusted for stellar mass loss. The z =
0 sSFR distribution is thus a reasonably orthogonal measure to
the SFRD over cosmic time, and a potentially useful constraint
on a SFH model. We illustrate this point in Figure 2, which
shows the τ , t0 parameter plane for a log-normal SFH, with
lines of constant z = 0 sSFR and lines of constant time of peak
star formation shown. The displayed range of sSFRs brackets
values seen in several samples of galaxies discussed below. Over
much of that range, lines of constant sSFR and lines of constant
peak time are approximately orthogonal—i.e., imposing both a
history and a current sSFR selects one particular curve for most
galaxies. Only galaxies with large sSFRs at the present epoch
are poorly constrained in this way.

As discussed in Paper III, an evolution in the rate of starbursts
in galaxies is insufficient to explain the observed evolution in the
sSFR distributions from low to high redshift. The presence of a
main sequence of star formation at both low and high redshifts
has led numerous authors (e.g., Noeske et al. 2007; Rodighiero
et al. 2011) to conclude that starbursts are subdominant in
affecting the observed evolution in star formation in galaxies,
as is also seen in simulations (Di Matteo et al. 2008). While it
is apparent that secondary starbursts do happen, our aim in this
paper is to explore the ability—or lack thereof—of smooth SFH
models to reproduce the observed trends in sSFR, completely
absent any starbursts.
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Figure 2. Center panel: lines of constant z = 0 sSFR (red, orange) and constant time of peak star formation (blue, cyan) in the τ , t0 parameter plane. Constant sSFR
lines are shown at 5%, 15%, . . . , 95% of the non-zero sSFR rates in the dataset described later in Section 2.2. Galaxies with no measured star formation will appear
to the bottom left of this figure. Blue lines show the location of τ , t0 parameter values for redshifts of 10.5, 2.0 and 0.0 (the nominal epoch of reionization from the
Wilkinson Microwave Anisotropy Probe (Larson et al. 2011), the peak of the cosmic SFRD, and the present, respectively), with cyan lines spaced by 1 Gyr centered
earlier and later than z = 2.0. Secondary panels: individual log-normal SFHs are shown along the heavier lines in the main panel, at the intersections of the heavy lines
as picked out by black point and labeled both in the main panel and in secondary panels; panels to the right show log-normal distributions along lines of constant time
of peak star formation (for example, the middle of these three panels, colored blue, shows SHFs which peak at z = 2, along the heavy blue line in the main panel) and
panels to the left show log-normal distributions along lines of constant z = 0 sSFR (for example, the middle of these three panels, colored red, shows SHFs with a
fixed z = 0 sSFR along the heavy red line in the main panel). All secondary panels are scaled to the same arbitrary peak SFR.

(A color version of this figure is available in the online journal.)

Motivated by Figure 2, we consider the z ∼ 0 sSFR
distribution for galaxies, for which we use the local galaxy
sample described in Paper III. Two sub-samples are included.
The first, taken from the PG2MC survey (Calvi et al. 2011),
covers a larger volume, but has a higher mass limit of 4 ×
1010 M�, with minimum and maximum redshifts of 0.03 and
0.11 and a median redshift of 0.0918. The second, from the
Sloan Digital Sky Survey (SDSS) observations of the northern
galactic cap, is more restricted in redshift, with minimum and
maximum redshifts of 0.035 and 0.045 and a median redshift
of 0.0401. This second sub-sample has a lower mass limit of
1 × 1010 M�, and is cut at the upper end at the lower limit of the
first sub-sample. Galaxies are weighted to bring the two sub-
samples to a common volume. As described in Oemler et al.
(2013a; Paper I of this sequence) masses for this second sub-
sample have been computed using a variant of the technique in
Bell & de Jong (2001) with delayed exponential models (see
Section 2.1) as the underlying form of the SFH.

The total sample is 2094 galaxies, distributed in sSFR versus
mass as shown in Figure 3, with a mean weighted redshift of
0.0678. The sSFR values are computed from Hα fluxes. The
detectability of star formation depends on Hα equivalent widths
and as a result the sSFR limit is not trivial to describe, as it
relies both on the flux of the Hα line in emission, as well as
the continuum strength, including the depth of the Hα line
in absorption. The resulting incompleteness does not appear
exactly fixed in either star formation rate (this would be the
expected result if only the Hα line flux were relevant, for
example) or sSFR (which would be expected if only the Hα
equivalent width were relevant). Figure 3 also shows the fraction
of galaxies which are measured as having a sSFR identically
zero as a function of mass; as expected early-type systems with
no measurable Hα emission are proportionately more common
at the high mass end. For the purposes of this paper, we estimate
the threshold sSFR—i.e., the allowed upper limit of the actual
value of the sSFR for a galaxy of a given mass measured in
the data in Paper III to have sSFR = 0—as simply a fixed
star formation rate of 0.05 M� yr−1. Note that the exact choice

of limits does not significantly affect any of the results which
follow.

To create a sample of SFHs that match both the z ∼ 0
sSFR distribution and the cosmic SFRD, we proceed as follows.
We consider a simulated sample of 2094 galaxies with masses
identical to the sSFR data discussed above. The SFH for each
galaxy is described by two parameters, τ and t0. We jointly
solve for these parameters for each galaxy in the ensemble
using simulated annealing, requiring at the same time that the
mass- and sample-weighted sum of the individual SFHs match
the shape of the double log-normal model fit to the cosmic
SFRD as detailed in Figures 1 and 2. We do not use the raw
SFRD data detailed in Figure 1, but the smooth fit to these
data, since this modeling process produces an under-constrained
realization rather than a unique best-fit model. Galaxies with a
sSFR measured to be zero in the data are allowed to take any
value up to the mass-dependent threshold shown in Figure 3.

The sSFR value for each simulated galaxy at its measured
redshift is computed simply as the ratio of the star formation
rate divided by the mass, where the latter is the integral of the
former from early times to the time of observation, modified
downward by stellar mass loss that occurs over the galaxy’s
history. We take the functional form of this mass loss from
Jungwiert et al. (2001) and as in Maraston et al. (2010) scale
the mass loss so that the total loss at 10 Gyr is 40%. We do
not attempt to compute the mass loss individually for each
galaxy, convolved across its SFH; rather, for computational
simplicity and efficiency we simply compute the mass loss from
the peak of the SFRD at z ∼ 2 to the epoch of observation for
each galaxy. The differences between this approach and a more
refined computation are in general small because much of the
mass loss that occurs at early times, and by z ∼ 0 the bulk of
the star formation in galaxies is well in the past.

The resulting distribution of sSFR values, and the distribution
of τ and t0 parameters, is shown in Figure 4. The fit is reasonable;
however, Figure 4 reveals a certain amount of tension between
the SFRD constraints and the z = 0 sSFR constraints when
fitting each galaxy with a log-normal SFH. Specifically, the
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Figure 3. The top two panels show the distribution of star formation rates (top)
and sSFRs (middle) vs. mass at z ∼ 0 for the z ∼ 0 data from Paper III.
Objects reported as having an sSFR identically equal to zero are not shown.
The data are drawn from two regions with differing volumes, and hence objects
have differing relative weights in the combined sample (indicated by different
symbols). Dashed lines are lines of constant sSFR (very approximately these
are lines of constant Hα equivalent width) at limits of 2×10−13, 4×10−13, and
1 × 10−12 yr−1. Solid lines are lines of constant star formation rate (effectively
lines of constant Hα flux) at limits of 0.01, 0.02, and 0.05 M� yr−1. The thicker
solid line indicates the adopted threshold for galaxies with sSFRs identically
equal to zero, as discussed in the main text. The bottom panel shows the fraction
of these galaxies as a function of mass, in logarithmically spaced bins.

SFRD shape prefers a somewhat higher normalization of the
z = 0 sSFR distribution than the actual measurements suggest.
This is apparent in the fit shown in Figure 4 in two ways: (1) the
final fitted values of the sSFR for each galaxy are on average
slightly high, and (2) the galaxies with sSFRs that are nominally
zero in the data are fit with sSFR values that pile up at the adopted
upper threshold for the allowed sSFR values.

The source of this tension is, effectively, the mass limitation
of the input z ∼ 0 dataset, coupled to the changing contribu-
tion of galaxies of various luminosities to the cosmic SFRD
as a function of redshift. Cucciati et al. (2012) explore the
contribution of galaxies of varying far-ultraviolet luminosities
and find that fainter galaxies contribute more significantly at
lower redshifts. This is the expected result from an overall

downsizing in the star formation in galaxies, with more mas-
sive (and generally more luminous) galaxies forming their stars
earlier, as first noted by Cowie et al. (1996). The consequence
of this effect in our analysis is that the contribution of the least
massive and faintest galaxies that are not included in our z ∼ 0
sample varies as a function of redshift, and hence the nominal
shape of the cosmic SFRD as reported in Cucciati et al. (2012) is
not completely appropriate to the particular set of z ∼ 0 galaxies
we are considering here.

However, we might reasonably expect that any subset of
galaxies drawn from the overall population would itself have
a cosmic SFRD that is also well described by a log-normal
function in time. Indeed the SFRDs in Cucciati et al. (2012)
decomposed by luminosity appear to make a homologous set.
Figure 5 demonstrates a model very similar to Figure 4, except
that we have allowed for an additional log-normal component
designed to mimic the contribution of the faintest galaxies to the
cosmic SFRD. We include this as a component whose mass is
set at 5×109 M� (a factor of two below the lower mass threshold
of the data) and with an sSFR set from the mean mass–sSFR
relation apparent in Figure 3. The total weight of this component
(i.e., equivalent to setting the number of such galaxies) is
such that it produces 20% of the total star formation in the
SRFD diagram. This extra component—designed to mimic the
contribution of the faintest and least massive galaxies—is fit
as part of the modeling and behaves exactly as expected; i.e.,
interpreted as individual galaxies these are somewhat later-
forming systems with a peak of star formation at z = 1.0,
which contributes most significantly to the SFRD at z = 0. This
component is shown in Figure 5. The addition of this component
resolves the tension in the model noted above.

Finally, note that measured precisely from the model in
Figure 5 at the weighted mean redshift of the input sSFR
sample, this component produces 43% of the star formation
at that redshift. Figure 6 shows the mass-sorted cumulative star
formation in the input data, as well as the nominal asymptote that
this additional component suggests. This extra amount of star
formation appears perfectly reasonable. Note that this agreement
is at least somewhat arbitrary, as our choice of weight for this
extra component does affect (and was informed by) Figure 6.

3. COMPARISON TO SPECIFIC STAR FORMATION
RATES TO z = 1

3.1. An Unconstrained Model to z = 1

That the realization of a galaxy population described above
matches both the SFRD as well as the z ∼ 0 sSFR distribution
does not in itself clearly validate the choice of a log-normal
SFH for individual galaxies. For example, one could in principle
assemble the SFRD from a large ensemble of galaxies and from
a large range of functional forms (simple tophat or Gaussian
SFHs, for example), and one can imagine that at least some of
these may very well reproduce both the SFRD and the z ∼ 0
sSFR distributions.

To provide some insight on this point, we next compare the
results of the above log-normal realization to the data from
Paper III on galaxy populations at intermediate redshifts; specif-
ically we compare the predicted sSFR distributions to the mea-
sured values. In this first analysis we simply compare the pre-
dictions of the model to that data; a model using the higher-z
data as a constraint is presented in Section 3.2. Data are drawn
from two sources, as described in Paper III: the field sample
from the IMACS Cluster Building Survey (ICBS), and the
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Figure 4. Left panel: the fit to the cosmic SFRD from a model realization which jointly fits these data as well as the z ∼ 0 sSFR distribution. Data, symbols, and colors
are as in Figure 1. Center panel, top: the corresponding fitted sSFR values for galaxies with a measured non-zero sSFR (black) and those which are reported with an
sSFR of exactly zero (red). The allowed maximum value of the sSFR for these nominally non-star-forming galaxies, described in Figure 3, is shown by the green line.
This model realization does not include any allowance for missing low-mass but high-sSFR galaxies; note the pile-up of nominally non-star-forming systems (the red
symbols along a single line) at the upper limit. Center panel, bottom: the ratio of the fitted sSFR values to the measured sSFR values for the black points (galaxies
with measured non-zero sSFR) in the upper panel; again note the tendency toward higher sSFRs in the model. Right panel: the distribution of log-normal parameters
t0 and τ . Symbols are individual galaxies with colors having the same meaning as the top center panel, and symbol size is proportional to the galaxy mass. The lines
are as in Figure 2, though simplified.

(A color version of this figure is available in the online journal.)

Figure 5. Similar to Figure 4, except for the addition of a single extra log-normal component which accounts for the low-mass but high-sSFR galaxies not present in
the z ∼ 0 sSFR data, and which effectively resolves the tension between the cosmic SFRD and the z ∼ 0 data.

(A color version of this figure is available in the online journal.)

All-wavelength Extended Groth Strip International Survey
(AEGIS; Davis et al. 2007). SFRs in the ICBS are computed
from a hierarchy of methods calibrated against 24 μm fluxes,
with Hα used where available, then Hβ, or [O ii] λ3727 when
not. 24 μm fluxes are used for the brightest such objects (see
Paper I and III for further details). As described in Paper III,
the SFRs in the AEGIS sample have been recalibrated to our
measurements and our calibration by reconsidering their 24 μm
fluxes and also measuring and calibrating emission lines in a
set of DEEP2 spectra (upon which the AEGIS sample is based)
using our own tools. All SFRs at all redshift are thus measured,
as best possible, on the same calibrated system.

We compare the model predictions to data in four redshift
bins: 0.2 < z < 0.4 and 0.4 < z < 0.6 from the ICBS field

galaxy sample, and 0.6 < z < 0.8 and 0.8 < z < 1.0 from
AEGIS. The mass limits, the approximate sSFR limits for 100%
completeness, the total number of galaxies, and the fraction
above the sSFR 100% completeness limit in each redshift bin are
given in Table 1. Masses for the ICBS samples are as described in
Paper I, computed in a manner akin to Bell & de Jong (2001) but
with delayed exponential SFHs as the underlying star formation
model. Masses for the AEGIS subsamples are taken from Davis
et al. (2007) but converted to a Saltpeter initial mass function to
match the other samples.

Before comparing the log-normal modeled sSFR distributions
to the galaxy data two further corrections are necessary. First,
note that the modeling as constructed does not explicitly account
for merging; the individual SFHs tagged to individual galaxies
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Table 1
Field Galaxy Data at Intermediate Redshifts

Sample Redshift Range Mass Limit sSFR Limit No. of Galaxies Fraction Above
(M�) (yr−1) sSFR Limit

ICBS 0.2 < z < 0.4 1 × 1010 2 × 10−11 466 0.534
ICBS 0.4 < z < 0.6 4 × 1010 4 × 10−11 296 0.405
AEGIS 0.6 < z < 0.8 1 × 1010 6 × 10−11 843 0.604
AEGIS 0.8 < z < 1.0 2 × 1010 5 × 10−11 706 0.704

Figure 6. The cumulative total star formation in the z ∼ 0 galaxy sample, down
to a given mass limit. At the lower mass limit it is clear that not all of the
local star formation is accounted for. The horizontal line shows the implied total
star formation in the sample including the missing component included in the
extra low-mass log-normal component shown in detail in Figure 5; this total is
a reasonable asymptote given the measured data.

at z ∼ 0 must be unmerged as one goes to higher redshift,
since local galaxies are built up, to some extent, from smaller
components over cosmic time. We will compare the model
realization to the actual data by integrating the model over mass
down to the appropriate mass limit, so a simple treatment of the
merger history of the model galaxies is sufficient. Specifically
we wish to know whether any individual galaxy in the z ∼ 0
sample remains above the mass limit in a higher redshift
sample, or has “un-merged” and one or more of its un-merged
components have been removed from the higher redshift sample
by virtue of now falling individually below the mass limit. We
draw a description of the mass-dependent rate for major mergers
from Xu et al. (2012) and from this compute the merger rate over
redshift for each z ∼ 0 galaxy from the present epoch back to a
redshift assigned at random from the redshifts measured in the
higher redshift bin. There are no strong trends in mass or sSFR
versus redshift in these higher redshift datasets, so this simple
process should adequately model the higher redshift data, and
intra-bin variations in merger rates and sSFRs, without overly
complicating this computation of a best-fit realization. Using
this merger rate from Xu et al. we construct many realizations of
the merger history of each galaxy, allowing for mergers, if they
occur, with mass ratios up to a 3:1 split, and allowing mergers up

to two steps deep in the merger tree for each z ∼ 0 galaxy. From
this ensemble of mock histories we compute the likelihood that
each z ∼ 0 galaxy (or a portion thereof) remains in the sample
in the higher redshift bin when cut at the appropriate mass
limit, and use these likelihoods as weights when computing the
final sSFR distributions for the model. Note the correction due
to accounting for merging in this way is not dramatic; in the
highest redshift bin the variation in weights across the entire
mass range is less than a factor of two.

The second correction is straightforward; when assessing a
given SFH at higher redshifts (closer in time to the peak of the
star formation in a given galaxy) somewhat less stellar mass has
been lost. We adjust the galaxy masses and sSFRs appropriately.

Figure 7 shows the comparison of the sSFR distributions
measured from the data reported in Table 1 and for the model
realization shown in Figure 5. Modeled galaxies are assessed
at the same redshift in the higher redshift bin used to compute
the merger histories. The agreement is remarkably good. That
the overall scaling matches—i.e., that the model tracks the
movement of the sSFR distributions to higher values at earlier
times—is not in itself surprising, as this is implicit in the fact
that the model matches the cosmic SFRD. However, the fact
that the shapes of the distributions at sSFRs higher than the
100% completeness limit agree rather well with the measured
distributions—in all four redshift bins, comprising some 60% of
the total timeline of star formation in the universe—is striking.
The agreement is not perfect—for example in the highest
redshift bin the model somewhat overpredicts the abundance
of the highest sSFR galaxies—but nevertheless it suggests quite
strongly that the choice of a log-normal SFH for each galaxy is
well motivated. This agreement need not have happened; it is
not explicit in the modeling process, as we will explore further
in Section 5 below.

3.2. A Constrained Model to z = 1

The next step in our analysis is to create a model realization
that uses the higher redshift sSFR data as an explicit constraint,
in addition to the z ∼ 0 sSFRs. In this realization we retain
the mass distribution given by the z ∼ 0 galaxies. An explicit
galaxy-by-galaxy comparison to the higher redshift data is not
possible, since the different datasets described in Paper III
sample different co-moving volumes to different mass and sSFR
limits in each redshift bin, and moreover a methodology to
account in detail for the merging of galaxies across redshift
bins—beyond the simple calculation sketched above—is not
apparent. Thus any constraint must, to some extent, integrate
across mass to ameliorate differences in the galaxy mass
functions between the various datasets, and then compare
distributions of sSFR values or related quantities, rather than
making a galaxy-by-galaxy comparison. Indeed the comparison
of model outputs to sSFR distributions in Section 3.1 does
exactly that, integrating across mass directly, down to the mass
limit of each redshift bin, and then simply comparing histograms
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Figure 7. The comparison between the measured sSFR distribution (black) and the model prediction (red) for the model realization shown in detail in Figure 5, in four
distinct redshift bins. Mass limits for each redshift range are as indicated. Thick lines show the sSFR range thought to be complete; thin dashed lines show the region
that is incomplete. Many of the measured galaxies in this latter region have sSFRs which are nominally zero, and so do not contribute to these plots. The fraction of
galaxies above the fiducial completeness sSFR is shown in each panel for both the measured galaxies and the model realization. Uncertainties reported on the data
are simple 1σ counting errors. Given the somewhat arbitrary details of the treatment of the galaxies with sSFRs nominally zero, and the uncertainty in the actual
sSFR completeness value, we anticipate that the actual uncertainty on the reported fractions is a factor of several times higher than reported and likely dominated by
systematic effects. For example, modifying the sSFR completeness limits by on the order of 10% produces a change comparable to the quoted random uncertainty.
Overall the fit between the data and the model prediction is remarkably good.

(A color version of this figure is available in the online journal.)

of the logarithm of the sSFRs. This is likely not an optimal
approach for constraining the model, however.

A closer look at the sSFR versus mass distribution for each
redshift bin of the data, shown in Figure 8, illustrates the model-
to-data comparison we have chosen to impose as a constraint
on the model. Specifically, note that the sSFR versus mass
values form a linear sequence in log–log space: this is the star-
formation main sequence described by many authors at many
redshifts (see Rodighiero et al. 2011 for a recent summary).
This sequence appears to have an approximately constant width
with mass. Over the redshift interval considered here, there is
also no strong evidence for an evolution in the slope of this
linear sequence; the zeropoint clearly evolves to higher values
of sSFR at higher redshift but the slope remains approximately
constant. To construct a distribution of sSFR-like values to
constrain the model we thus consider the cumulative distribution
of the difference between log(sSFR) at various redshifts and this
relation at z = 0, over the appropriate mass range in each redshift
bin. The resulting cumulative distributions for the data are given
in Figure 8.

As in Section 3.1 above, the effect of mergers is computed as
a weight for each z ∼ 0 galaxy, and appropriately used when
computing the cumulative distribution of residual sSFRs in the

model. This final realization of the model, now additionally
using the sSFR data in the higher redshift bins as a constraint,
is shown in Figure 9.

We remind the reader that all galaxies in these final model
realizations have only smooth SFHs described by log-normal
functions. No starburst activity is included. Starbursts might
induce rapid—albeit temporary—changes in a given galaxy’s
sSFR, and we might expect to see this reflected as a tension
between the sSFR distributions at low and high redshift, when
attempting to connect the low and high redshift datasets using
a smoothly varying SFH. However, the model in Figure 9
successfully incorporates all of the sSFR distributions to z = 1
without including any starbursts, a point discussed at length in
the next section.

4. THE STAR FORMATION HISTORIES OF GALAXIES
TO z = 1 AND BEYOND

In Paper III we highlighted several important aspects of
the SFH of galaxies required by the redshift evolution of the
sSFR distribution of intermediate redshift galaxies. In particular,
Paper III illustrates that even at these intermediate redshifts some
galaxies must be surprisingly young, having formed the bulk of
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Figure 8. Top panels: sSFR vs. mass for the data summarized in Table 1; redshift bins increase in redshift to the right from the z ∼ 0 sample on the left. The solid line
shows the nominal z ∼ 0 star formation main sequence, fit using these data, and reproduced in the other panels for comparison. The two bottom panels show residual
distributions of log(sSFR) minus this trend, computed to the limiting mass of each redshift bin (left panel) or to a common limit of 4 × 1010 M� (right panel). The
distributions on the bottom left are taken as constraints on the final model, down to the estimated completeness limit in sSFR in each redshift bin. Below this limit, the
cumulative fraction in the fitted model is required to be at least as large as the measured (incomplete) fraction.

Figure 9. The distribution of t0 and τ parameters for the final model realization,
using the cumulative sSFR residuals as in Figure 8 as constraints. Colors and
symbols are as in Figures 4 and 5.

(A color version of this figure is available in the online journal.)

their stellar populations in their recent past, and moreover that
starbursts, or a change in the prevalence thereof, cannot explain
the enhancement of sSFR values seen toward higher redshifts.
The final model realization above provides some further insight
into the age distribution.

First, consider Figure 10, which shows the cumulative sSFR
fraction in each redshift bin in the model, akin to Figure 4
in Paper III. Note that the model does an excellent job of

Figure 10. The cumulative sSFR distribution for all five redshift intervals
considered, limited to M � 4 × 1010 M� as in Figure 4 of Paper III. Thin solid
lines show the distributions from the data; heavier dashed lines are the results
from the final model realization discussed in Section 3.2. Redshift increases
from left to right.

reproducing the main trends seen in the data. This model
has no starbursts, yet can reproduce the observed data with
great fidelity. This provides a companion datum to previous
statements regarding starbursts; not only can starbursts not
readily produce the observed evolution, we show here that
a population of galaxies with SFHs that have only a smooth
component in time can in principle produce the measured sSFR
distributions. This does not argue that starbursts do not change
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Figure 11. The lookback time at which each modeled galaxy has completed
50% of its star formation (heavy symbols), for the final model using the higher
redshift sSFR distributions as a constraint, against galaxy mass at z ∼ 0. Only
some galaxies are plotted, for clarity. Vertical lines show the time interval over
which each galaxy forms 10% to 90% of its stars. Overplotted curves show the
typical value of the 10% and 90% times (thin dotted lines), the 25% and 75%
times (heavier dashed lines), and the 50% time (heavy solid line). These typical
values are computed as the mean in a running window across mass, 150 galaxies
wide. Note that unlike most other times discussed elsewhere in this paper, this
figure uses lookback time from z = 0.

the observed distributions of sSFR—they clearly must do so, for
a small subset of all galaxies observed at any epoch. However,
the broad trends in sSFR over a Hubble time can be reproduced
completely absent a starbursting component.

Figure 11 shows the modeled ages of galaxies across galaxy
mass. Note that, as suggested in Paper III, some galaxies are
indeed young overall, having formed only half their stars within
the past few Gyr. Moreover there is a general trend toward lower
masses for more star formation at later times; the mean lookback
time for galaxies at 2 × 1011 M� to have formed half their stars
is about ∼9 Gyr ago, with 90% of the star formation typically
completed by ∼7 Gyr ago, whereas for a 2 × 1010 M� galaxy
these numbers are ∼7 and ∼2 Gyr ago, respectively.

5. THE SIGNIFICANCE OF THE LOG-NORMAL SFH

The ubiquity of log-normal distributions in nature, and the
apparently excellent fit of the log-normal distribution to the
cosmic SFRD, and its utility even as a description of the SFH
of individual galaxies, leads unavoidably to speculation on
whether this distribution is somehow special in the context of
star formation, or more simply provides a reasonable fit because
it has the required basic properties; i.e., it rises at early times,
falls at later times, and provides a two-parameter family of
curves with both a duration and onset of star formation that
are independent (unlike, for example, a delayed exponential in

Figure 12. As Figure 7, except that the model used has Gaussian SHFs for galaxies rather than log-normal SFHs. The model is constrained by the z ∼ 0 sSFR
distribution and the cosmic SFRD as for the model shown in Figures 5 and 7. The higher redshift predictions for this model are poor by comparison to the log-normal
model.

(A color version of this figure is available in the online journal.)
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Figure 13. Star formation rates vs. stellar mass for the final model (squares)
evaluated in the redshift interval 1.5 < z < 2.5. The figure is formatted as for
Figure 1 from Rodighiero et al. (2011) to facilitate comparison to that updated
work on the measured SFR-mass distribution at z ∼ 2. The solid line in the
main plot shows the star-formation main sequence from Daddi et al. (2007),
and the dashed and dotted lines are 4 and 10 times that relation (in SFR). As in
Rodighiero et al. (2011) we also show the sSFR vs. mass relation for the same
data in the inset plot; we use the same overplotted lines as in that paper (these
are not exactly the main sequence line and multiples shown in the main plot).

which the rise time and peak time are described by a single
parameter).

To further explore this question, we next consider a model
constructed identically to that in Section 2.2, except that the
log-normal SFH for each galaxy is replaced with a Gaussian
SFH. This model has the same number of degrees of freedom
as the log-normal model discussed in Section 3.1. As before,
the ensemble of 2094 z ∼ 0 galaxies is fit jointly with the
cosmic SFRD, producing a realization that matches both of
these constraints. As in Section 3.1 we then compute the model
sSFR distributions in the higher redshift intervals and compare
to the measured data; the comparison is shown in Figure 12,
with identical scaling as Figure 7 to facilitate comparison. The
lack of agreement achieved by this Gaussian SFH is striking—it
clearly does not describe the higher redshift galaxy population
with any significant fidelity, completely unlike the log-normal
model. This implies that it is not simply that the log-normal
model contains two independent parameters that provides the
agreement seen in Figure 7, but rather that the functional form
is itself important.

As a further illustration of the efficacy of the log-normal SFH
in describing most galaxies, consider Figure 13. This shows the
computed star formation rate versus stellar mass for the final
model from Section 3.2, but now evaluated over the redshift
interval 1.5 < z < 2.5. Our aim here is to compare to the z ∼ 2
star forming main-sequence from Daddi et al. (2007); the figure
is formatted as for Figure 1 from Rodighiero et al. (2011) to
facilitate comparison to that updated work. As in Section 3.1
we draw a redshift of evaluation for each z ∼ 0 galaxy from the
higher redshift interval considered; lacking detailed information
about the high-sample we draw redshifts with equal probability
from that interval. Also as in Section 3.1 we have computed the
effect of mergers using merger rates from Xu et al. (2012);
in this particular application we allow mergers up to three

Figure 14. The cumulative star formation vs. redshift diagram from Panter et al.
(2007). Solid points show their measurements, and their scaled version of the
predicted measurement from Croton et al. (2006) is shown as a dotted line. The
solid line shows the best fit log-normal to these cumulative data, and the dashed
line is the best fit power law + exponential. The best fit log-normal is given by
t0 = 1.564 and τ = 1.728.

deep into the merger tree, so that any one z ∼ 0 galaxy can
be broken into up to eight components in the higher-z bin.
As before, we do not attempt to compute individual histories
for each component; all un-merged pieces of a z ∼ 0 galaxy
have the same SFH. Nevertheless, the model data shown in
Figure 13 are a reasonable match to the z ∼ 2 star-forming main
sequence of Daddi et al. (2007)—despite no direct constraint
being applied to the model at these redshifts apart from the
integrated cosmic SFRD constraint. The fidelity with which this
model can reproduce this higher redshift data on star formation,
when constrained in detail only at lower redshifts, argues again
that the underlying log-normal SFHs are a close approximation
to the actual SFHs of individual galaxies.

Detailed analyses of the shape of SFH of galaxies, at both high
and low redshifts, from both observational data and theoretical
modeling, can also be described by a log-normal. For example,
the recent literature includes archeological efforts to measure the
SFH of local galaxies by resolved color–magnitude diagrams of
their stellar populations (e.g., Williams et al. 2011; Dolphin
2002). In a larger but still reasonably local volume Panter et al.
(2007) have analyzed the SFH of galaxies taken from the SDSS
by a careful comparison of spectra to spectral synthesis models.
The aggregate analyses (Panter et al. 2007; Williams et al. 2011)
effectively reproduce an SFRD that looks similar to the data used
in Figure 1 and elsewhere and so presumably can be fit by a
log-normal; interestingly the analysis of Williams et al. (2011)
sees the same elevated local SFRD from very low-mass galaxies
that we were forced to include in Section 2.2. In Figure 14 we
show a log-normal fit to the measured cumulative star formation
from Panter et al. (2007); the fit is excellent. This fit is distinct
from the fit presented in Figure 1, but of similar overall shape.
Our goal here is not argue the exact match or lack thereof
between the analysis of Panter et al. (2007) and direct in situ
measurements of the cosmic SFRD but simply to note that the
SFH suggested by those independent local data can indeed also
be well fit by a log-normal SFH. For comparison Figure 14 also
shows a fit using the power law + exponential form of Behroozi
et al. (2013)—as in the fit to the cosmic SFRD (cf. Figure 1) this
functional form is a reasonable description of the data, though
it provides a poorer fit than a single log-normal.

At redshifts earlier than the peak in the cosmic SFRD
Papovich et al. (2011) present the SFH of galaxies with a fixed
comoving number density of 2×10−4 Mpc−3 and show that their
SFR rises with time; they argue for a power-law description
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Figure 15. The simulated mean SFH of galaxies in the early universe (z > 5.5)
from (Finlator et al. 2011; solid lines) in mass bins centered, from top to bottom,
at masses of log M∗/M� = 9.7, 9.2, 8.7, and 8.2. The dashed lines show the
best-fitting log-normal function to each of these mean SFHs.

of the SHF of these galaxies over the interval 3 < z < 8,
although they note that an inverted-τ model is statistically
indistinguishable from the power-law fit. We have fit the SFH
data from Papovich et al. (2011) using a log-normal SFH in
addition and find that it is also statistically indistinguishable
from a power law as well (and is formally a better fit).

Finally, Figure 15 shows one further illustration of the utility
of the log-normal SFH. We have fit the mean SHFs derived from
cosmological hydrodynamic simulations in Figure 1 of Finlator
et al. (2011) using log-normals. The rising mean SFHs for each
mass bin from Finlator et al. are extremely well described by a
log-normal function in each case.

6. FUTURE WORK AND CONCLUSIONS

The modeling effort presented above can be significantly
expanded in several ways. Though we defer such work to further
papers, we note here for reference some future tests which
may be applied to the log-normal SFH framework that we have
proposed.

1. The computation of spectrophotometric properties across
galaxy type and redshift. Such calculations were one of
the main drivers for the development of stellar population
modeling. For example, the simplest measure (broadband
galaxy colors) are strongly correlated to sSFRs; absent
dust, colors are driven by the bluer light of the current
star formation overlaid on the redder light of the SFH. The
mapping between observed color and star formation rate is
however non-linear, and instantaneous changes in the star
formation rate of a given galaxy take several gigayears
to be fully expressed in the galaxy’s colors, and so a
comparison of predicted and observed color distributions
may provide additional model constraints, and may indicate
the prevalence of processes outside the star formation
regime considered here (e.g., rapid changes—bursts or
truncations—in the SFH of individual galaxies).

2. The apparent plateau in the sSFRs of galaxies at redshifts
beyond z ∼ 2. Comparing models to observed galaxies
will require a more robust treatment of mergers than we
have used in this initial paper, since the strong relation
between sSFR and mass in galaxy populations requires that
models and data are compared over precisely the same mass
range. The model proposed here may have the appropriate
properties to produce the observed trend, however; in the

model realizations above most galaxies at times earlier than
the peak of the cosmic SFRD have smoothly increasing
SFHs and will not have the extremely high sSFRs one would
expect from alternate models which start at a high SFR and
then decline (such as a declining τ model with a delayed
start).

We also envision a further refinement to the model—simply
that of modeling each galaxy as a pair of log-normal distribu-
tions, with an adjustable weight between the two components.
Such a complication is motivated by the typical morphological
structure of most galaxies, with an old spheroidal component,
and a disky component with a more extend SFH. Though this
would more than double the number of adjustable parameters
in the resulting model realizations, it would also allow for addi-
tional constraints to be brought to bear. For example by requir-
ing that one of the two components have an sSFR at the current
epoch that is essentially zero (i.e., has an SFH appropriate for
the spheroidal component of a galaxy, but with a varying weight
set by the model) the model would produce (and could be con-
strained by) measurements of the bulge/disk ratio in galaxies.

Regardless, the efficacy with which log-normal SFHs repro-
duce the ensemble sSFRs of observed galaxies across a broad
range of redshift and mass, and the utility of the log-normal form
in describing the SFHs of a number of specific observed and
simulated galaxy populations, demonstrates that at minimum
these SFHs are a useful addition to the stellar population mod-
eling toolkit. Moreover, the apparent ability of log-normal SFHs
to predict the sSFR distributions of distant galaxies from only
sSFR data at lower redshifts, coupled to the integral constraint
of the cosmic SFRD, suggests a deeper significance—namely
that the log normal SFH is a close approximation to the actual
SFHs of most galaxies. This conclusion is strengthened by the
inability of a normal (rather than log-normal) SFH model to
reproduce the sSFR data; the shape of the distribution matters.
Individual galaxies aside, the simple conclusion that the cosmic
SFRD is lognormal in time seems to have not been previously
recognized, and likely has a physical significance.

Finally, given the overall success of the log-normal SFH
modeling, this paper provides further support to several of
the conclusions of Paper III, namely that some galaxies, even
at intermediate redshifts, are surprisingly young, and that the
enhanced sSFRs of these objects are not due primarily to
starbursts. The model realizations above show that the sSFR
distributions to z = 1 can be fit with SFHs that are only smoothly
varying, completely absent any bursting component.

M.D.G. thanks the Research Corporation for support of this
work through a Cottrell Scholars award. We thank an anonymous
referee for two rigorous and eminently helpful readings of the
manuscript; their effort and advice improved the final paper
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