Recent advances in experimental and computational methods are increasing the quantity and complexity of generated data. This massive amount of raw data needs to be stored and interpreted in order to advance the materials science field. Identifying correlations and patterns from large amounts of complex data is being performed by machine learning algorithms for decades. Recently, the materials science community started to invest in these methodologies to extract knowledge and insights from the accumulated data. This review follows a logical sequence starting from density functional theory as the representative instance of electronic structure methods, to the subsequent high-throughput approach, used to generate large amounts of data. Ultimately, data-driven strategies which include data mining, screening, and machine learning techniques, employ the data generated. We show how these approaches to modern computational materials science are being used to uncover complexities and design novel materials with enhanced properties. Finally, we point to the present research problems, challenges, and potential future perspectives of this new exciting field.
JPhys Materials is a new open access journal highlighting the most significant and exciting advances in materials science. The journal brings together scientists from a range of disciplines, with a particular focus on interdisciplinary and multidisciplinary research.
Most read
Open all abstracts, in this tab
Gabriel R Schleder et al 2019 J. Phys. Mater. 2 032001
Magda Titirici et al 2022 J. Phys. Mater. 5 032001
Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently 'critical materials' are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as 'critical' by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.
Feliciano Giustino et al 2020 J. Phys. Mater. 3 042006
In recent years, the notion of 'Quantum Materials' has emerged as a powerful unifying concept across diverse fields of science and engineering, from condensed-matter and coldatom physics to materials science and quantum computing. Beyond traditional quantum materials such as unconventional superconductors, heavy fermions, and multiferroics, the field has significantly expanded to encompass topological quantum matter, two-dimensional materials and their van der Waals heterostructures, Moiré materials, Floquet time crystals, as well as materials and devices for quantum computation with Majorana fermions. In this Roadmap collection we aim to capture a snapshot of the most recent developments in the field, and to identify outstanding challenges and emerging opportunities. The format of the Roadmap, whereby experts in each discipline share their viewpoint and articulate their vision for quantum materials, reflects the dynamic and multifaceted nature of this research area, and is meant to encourage exchanges and discussions across traditional disciplinary boundaries. It is our hope that this collective vision will contribute to sparking new fascinating questions and activities at the intersection of materials science, condensed matter physics, device engineering, and quantum information, and to shaping a clearer landscape of quantum materials science as a new frontier of interdisciplinary scientific inquiry. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research on quantum materials with a minimal number of references focusing on the latest developments.
Barnaby D A Levin 2021 J. Phys. Mater. 4 042005
The past decade has seen rapid advances in direct detector technology for electron microscopy. Direct detectors are now having an impact on a number of techniques in transmission electron microscopy (TEM), scanning electron microscopy, and scanning TEM (STEM), including single particle cryogenic electron microscopy, in situ TEM, electron backscatter diffraction, four-dimensional STEM, and electron energy loss spectroscopy. This article is intended to serve as an introduction to direct detector technology and an overview of the range of electron microscopy techniques that direct detectors are now being applied to.
Shaoyang Wang et al 2023 J. Phys. Mater. 6 024004
Recent years have witnessed the emergence of indoor photovoltaic (PV) devices with the rapid development of the Internet of things technology field. Among the candidates for indoor PVs, halide perovskites are attracting enormous attention due to their outstanding optoelectronic properties suitable for indoor light harvesting. Here we investigated the indoor PV properties of CH3NH3PbI3-based devices using Spiro-OMeTAD and P3HT as the hole transport layers. The Spiro-OMeTAD-based devices show a consistently higher power conversion efficiency under indoor illumination and 1 sun, with the champion devices showing a power conversion efficiency of 21.0% and 30.1% for the forward and reverse scan under 1000 lux warm white LED illumination. Fewer trap states and higher carrier lifetime were revealed for Spiro-OMeTAD based devices compared to P3HT. The best-performed Spiro-OMeTAD-based devices are used to self-power a wearable motion sensor, which could detect human motion in real-time, to create a primary sensor system with independent power management. By attaching the Spiro-OMeTAD indoor PV device to the strain sensor, the sensor exhibits an accurate and sensitive response with finger bending movements with good repeatability and negligible degradation of mechanical stability, which indicates the success of sensor powering with the indoor PV device.
J Cayssol and J N Fuchs 2021 J. Phys. Mater. 4 034007
This paper provides a pedagogical introduction to recent developments in geometrical and topological band theory following the discovery of graphene and topological insulators. Amusingly, many of these developments have a connection to contributions in high-energy physics by Dirac. The review starts by a presentation of the Dirac magnetic monopole, goes on with the Berry phase in a two-level system and the geometrical/topological band theory for Bloch electrons in crystals. Next, specific examples of tight-binding models giving rise to lattice versions of the Dirac equation in various space dimension are presented: in 1D (Su–Schrieffer–Heeger (SSH) and Rice–Mele models), 2D (graphene, boron nitride, Haldane model) and 3D (Weyl semi-metals). The focus is on topological insulators and topological semi-metals. The latter have a Fermi surface that is characterized as a topological defect. For topological insulators, the two alternative view points of twisted fiber bundles and of topological textures are developed. The minimal mathematical background in topology (essentially on homotopy groups and fiber bundles) is provided when needed. Topics rarely reviewed include: periodic versus canonical Bloch Hamiltonian (basis I/II issue), Zak versus Berry phase, the vanishing electric polarization of the SSH model and Dirac insulators.
Kenna L Salvatore et al 2023 J. Phys. Mater. 6 024005
The syntheses of FeS2 and Fe3S4 nanomaterials were optimized using a novel facile, surfactant-free, and microwave-assisted, one-pot synthesis method, run under ambient and reasonably mild reaction conditions. Synthetic parameters, such as metal precursor salt identity, reaction time, reaction temperature, metal:sulfur molar ratios, and solvent combinations, were all systematically investigated and optimized. A series of FeS2 (pyrite) samples was initially fabricated using thioacetamide (TAA) as the sulfur precursor to generate a distinctive, uniform octahedra-based morphology. Switching the sulfur precursor from TAA to L-cysteine resulted in a corresponding transformation in not only chemical composition from FeS2 to an iron thiospinel structure, Fe3S4 (otherwise known as greigite), but also an associated morphological evolution from octahedra to nanosheet aggregates. The study of these materials has enabled crucial insights into the formation mechanisms of these materials under a relatively non-conventional microwave-assisted setting. Furthermore, in separate experiments, multi-walled carbon nanotubes (MWNTs) and graphene were added in with underlying metal sulfide species to create conductive Fe–S/MWNT composites and Fe–S/graphene composites, respectively. The method of addition of either MWNTs or graphene was also explored, wherein an 'ex-situ' synthetic procedure was found to be the least disruptive means of attachment and immobilization onto iron sulfide co-reagents as a means of preserving the latter's inherent composition and morphology. The redox acidity for the parent material and associated composites demonstrates the utility of our as-developed synthetic methods for creating motifs relevant for electrochemical applications, such as energy storage.
Rajiv Kumar Pandey et al 2021 J. Phys. Mater. 4 044011
Among various piezoelectric materials, ZnO has attracted a great deal of attention due to facile preparations and exceptional semiconductor characteristics compared to other conventional piezoceramics or organic piezoelectric materials. One of the issues hindering ZnO from progressing into applications is the screening effect, where the intrinsic piezopotential generated upon mechanical deformations is screened and becomes waned or even diminished by the presence of intrinsic free carriers in ZnO. Consequently, ZnO-based piezoelectric devices often suffer from low output voltages, resulting in low total output power generation even though the output current could be larger than those made of insulating piezoelectric materials, such as PZT, polyvinylidene fluoride, and barium titanate. It is therefore vital to fully understand the impact of the screening effect and produce strategies to handle this issue in the context of piezotronics and piezoelectric nanogenerators (PENG). Therefore, this article presents a comprehensive review of growth methodologies for various ZnO nanostructures, structure modifications, effects of free carriers on the screening effect and strategies for device applications, including strain-gated transistors, PENG and piezotronic sensors for gas, humidity and bio-molecules etc.
Aurélie Champagne and Jean-Christophe Charlier 2021 J. Phys. Mater. 3 032006
The family of 2D materials has expanded quite rapidly, especially with the addition of transition metal carbides and nitrides called MXenes, in the last decade. Since their discovery in 2011, about 30 different MXenes have been synthesized, and the structure and properties of several dozens have been predicted by first-principles approaches. Given the outstanding advances in the MXene field, it is thus appropriate to review the most relevant properties of these MXenes and point out their potential applications. In this article, the structural, transport, magnetic, vibrational, mechanical, and electrochemical properties of MXenes are overviewed. The goal is to illustrate how the chemical versatility in the intrinsic composition and surface terminations combined with the potential addition of a fourth element enable to tune MXenes properties to meet the targeted applications.
Latest articles
Open all abstracts, in this tab
Klara Lünser et al 2023 J. Phys. Mater. 6 035002
Understanding the martensitic microstructure in nickel–titanium (NiTi) thin films helps to optimize their properties for applications in microsystems. Epitaxial and single-crystalline films can serve as model systems to understand the microstructure, as well as to exploit the anisotropic mechanical properties of NiTi. Here, we analyze the growth of NiTi on single-crystalline MgO(100) and Al2O3(0001) substrates and optimize film and buffer deposition conditions to achieve epitaxial films in (100)- and (111)-orientation. On MgO(100), we compare the transformation behavior and crystal quality of (100)-oriented NiTi films on different buffer layers. We demonstrate that a vanadium buffer layer helps to decrease the low-angle grain boundary density in the NiTi film, which inhibits undesired growth twins and leads to higher transformation temperatures. On Al2O3(0001), we analyze the orientation of a chromium buffer layer and find that it grows (111)-oriented only in a narrow temperature range around 500 ∘C. By depositing the Cr buffer below the NiTi film, we can prepare (111)-oriented, epitaxial films with transformation temperatures above room temperature. Transmission electron microscopy confirms a martensitic microstructure with Guinier Preston-zone precipitates at room temperature. We identify the deposition conditions to approach the ideal single crystalline state, which is beneficial for the analysis of the martensitic microstructure and anisotropic mechanical properties in different film orientations.
single crystals with a triangular-lattice antiferromagnetic structure
Catherine Witteveen et al 2023 J. Phys. Mater. 6 035001
We report on the synthesis of LiCrTe
single crystals and on their anisotropic magnetic properties. We have obtained these single crystals by employing a Te/Li-flux synthesis method. We find LiCrTe
to crystallize in a TlCdS
-type structure with cell parameters of a = 3.9512(5) Å and c = 6.6196(7) Å at T = 175 K. The content of lithium in these crystals was determined to be neary stoichiometric by means of neutron diffraction. We find a pronounced magnetic transition at
= 144 K and
= 148 K, respectively. These transition temperatures are substantially higher than earlier reports on polycrystalline samples. We have performed neutron powder diffraction measurements that reveal that the long-range low-temperature magnetic structure of single crystalline LiCrTe
is an A-type antiferromagnetic structure. Our DFT calculations are in good agreement with these experimental observations. We find the system to be easy axis with moments oriented along the c-direction experimentally as well as in our calculations. Thereby, the magnetic Hamiltonian can be written as
with
K (where
). We find LiCrTe
to be highly anisotropic, with a pronounced metamagnetic transition for
with a critical field of
(5 K) ≈ 2.5 T. Using detailed orientation-dependent magnetization measurements, we have determined the magnetic phase diagram of this material. Our findings suggest that LiCrTe
is a promising material for exploring the interplay between crystal structure and magnetism, and could have potential applications in spin-based 2D devices.
David Fernández-Fernández et al 2023 J. Phys. Mater. 6 034004
We investigate the effect of spin–orbit interaction on the intra- and interdot particle dynamics of a double quantum dot (QD) under ac electric fields. The former is modeled as an effective ac magnetic field that produces electric-dipole spin resonance transitions, while the latter is introduced via spin-flip tunneling amplitudes. We observe the appearance of non-trivial spin-polarized dark states (DSs), arising from an ac-induced interference between photo-assisted spin-conserving and spin-flip tunneling processes. These DSs can be employed to precisely measure the spin–orbit coupling in QD systems. Furthermore, we show that the interplay between photo-assisted transitions and spin-flip tunneling enables the system to operate as a highly tunable spin filter. Finally, we investigate the operation of the system as a resonant flopping-mode qubit for arbitrary ac voltage amplitudes, allowing for high tunability and enhanced qubit control possibilities.
Jon Ander Arregi et al 2023 J. Phys. Mater. 6 034003
Magnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic–ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses.
M Solzi et al 2023 J. Phys. Mater. 6 034002
Nanoparticles of Li–Ni, Li–(Ni, Cu) and Li–Cr layered oxides, with potential applications as cathode materials in lithium batteries, were prepared by solid-state reaction and sol-gel method. The combination of structural analysis and magnetic characterization allowed the clear identification of the phases present in the synthesized nanoparticles. The main component of Li–Ni oxide nanoparticles is the electrochemically active and ferrimagnetic phase Li1−zNi1+zO2, whereas those of Li–Cr oxide are the antiferromagnetic phases LiCrO2 and Cr2O3. A small substitution of Cu for Ni in Li–Ni oxide determines the formation of nanoparticles in which the main phase is the antiferromagnetic phase Li1−zNi1+zO2. Operation tests in lithium batteries and post-mortem analysis, aimed at assessing the potential of metal oxide nanoparticles as cathode materials, were performed on all samples.
Review articles
Open all abstracts, in this tab
Gianni Ciofani et al 2023 J. Phys. Mater. 6 022501
In recent years, a great deal of effort has been undertaken with regards to treatment of pathologies at the level of the central nervous system (CNS). Here, the presence of the blood-brain barrier acts as an obstacle to the delivery of potentially effective drugs and makes accessibility to, and treatment of, the CNS one of the most significant challenges in medicine. In this Roadmap article, we present the status of the timeliest developments in the field, and identify the outstanding challenges and opportunities that exist. The format of the Roadmap, whereby experts in each discipline share their viewpoint and present their vision, reflects the dynamic and multidisciplinary nature of this research area, and is intended to generate dialogue and collaboration across traditional subject areas. It is stressed here that this article is not intended to act as a comprehensive review article, but rather an up-to-date and forward-looking summary of research methodologies pertaining to the treatment of pathologies at the level of the CNS.
João Rocha Maia et al 2023 J. Phys. Mater. 6 012002
Three-dimensional printing has risen in recent years as a promising approach that fast-tracked the biofabrication of tissue engineering constructs that most resemble utopian tissue/organ replacements for precision medicine. Additionally, by using human-sourced biomaterials engineered towards optimal rheological proprieties of extrudable inks, the best possible scaffolds can be created. These can encompass native structure and function with a low risk of rejection, enhancing overall clinical outcomes; and even be further optimized by engaging in information- and computer-driven design workflows. This paper provides an overview of the current efforts in achieving ink's necessary rheological and print performance proprieties towards biofabrication from human-derived biomaterials. The most notable step for arranging such characteristics to make biomaterials inks are the employed crosslinking strategies, for which examples are discussed. Lastly, this paper illuminates the state-of-the-art of the most recent literature on already used human-sourced inks; with a final emphasis on future perspectives on the field.
Kaitlin Fogg et al 2023 J. Phys. Mater. 6 012501
The application of engineering tools and techniques to studying women's health, including biomaterials-based approaches, is a research field experiencing robust growth. Biomaterials are natural or synthetic materials used to repair or replace damaged tissues or organs or replicate an organ's physiological function. However, in addition to in vivo applications, there has been substantial recent interest in biomaterials for in vitro systems. Such artificial tissues and organs are employed in drug discovery, functional cell biological investigations, and basic research that would be ethically impossible to conduct in living women. This Roadmap is a collection of 11 sections written by leading and up-and-coming experts in this field who review and discuss four aspects of biomaterials for women's health. These include conditions that disproportionately but not exclusively affect women (e.g. breast cancer), conditions unique to female reproductive organs, in both non-pregnant and pregnant states, and sex differences in non-reproductive tissues (e.g. the cardiovascular system). There is a strong need to develop this exciting field, with the potential to materially influence women's lives worldwide.
Caterina Cocchi et al 2023 J. Phys. Mater. 6 012001
Modeling the electronic and optical properties of organic semiconductors remains a challenge for theory, despite the remarkable progress achieved in the last three decades. The complexity of these systems, including structural (dis)order and the still debated doping mechanisms, has been engaging theorists with different background. Regardless of the common interest across the various communities active in this field, these efforts have not led so far to a truly interdisciplinary research. In the attempt to move further in this direction, we present our perspective as solid-state theorists for the study of molecular materials in different states of matter, ranging from gas-phase compounds to crystalline samples. Considering exemplary systems belonging to the well-known families of oligo-acenes and -thiophenes, we provide a quantitative description of electronic properties and optical excitations obtained with state-of-the-art first-principles methods such as density-functional theory and many-body perturbation theory. Simulating the systems as gas-phase molecules, clusters, and periodic lattices, we are able to identify short- and long-range effects in their electronic structure. While the latter are usually dominant in organic crystals, the former play an important role, too, especially in the case of donor/accepetor complexes. To mitigate the numerical complexity of fully atomistic calculations on organic crystals, we demonstrate the viability of implicit schemes to evaluate band gaps of molecules embedded in isotropic and even anisotropic environments, in quantitative agreement with experiments. In the context of doped organic semiconductors, we show how the crystalline packing enhances the favorable characteristics of these systems for opto-electronic applications. The counter-intuitive behavior predicted for their electronic and optical properties is deciphered with the aid of a tight-binding model, which represents a connection to the most common approaches to evaluate transport properties in these materials.
Magda Titirici et al 2022 J. Phys. Mater. 5 032001
Over the past 150 years, our ability to produce and transform engineered materials has been responsible for our current high standards of living, especially in developed economies. However, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of the economy, energy, and climate. We are at the point where something must drastically change, and it must change now. We must create more sustainable materials alternatives using natural raw materials and inspiration from nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments (LCAs) based on reliable and relevant data to quantify sustainability. We need to seriously start thinking of where our future materials will come from and how could we track them, given that we are confronted with resource scarcity and geographical constrains. This is particularly important for the development of new and sustainable energy technologies, key to our transition to net zero. Currently 'critical materials' are central components of sustainable energy systems because they are the best performing. A few examples include the permanent magnets based on rare earth metals (Dy, Nd, Pr) used in wind turbines, Li and Co in Li-ion batteries, Pt and Ir in fuel cells and electrolysers, Si in solar cells just to mention a few. These materials are classified as 'critical' by the European Union and Department of Energy. Except in sustainable energy, materials are also key components in packaging, construction, and textile industry along with many other industrial sectors. This roadmap authored by prominent researchers working across disciplines in the very important field of sustainable materials is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the sustainable materials community. In compiling this roadmap, we hope to aid the development of the wider sustainable materials research community, providing a guide for academia, industry, government, and funding agencies in this critically important and rapidly developing research space which is key to future sustainability.
Accepted manuscripts
Open all abstracts, in this tab
Murugesan et al
The size dependent interaction of Cun (n = 1‒5) clusters with pristine and defective (C-vacancy) graphene is studied by employing density functional theory. The computed binding energies are in the range of ~0.5 eV for pristine graphene and ~3.5 eV for defective graphene, indicating a much stronger interaction in the later system. The induced spin-orbit coupling interaction, due to the proximity of the Cun cluster, is studied with non-collinear spin-polarized simulations. The clusters cause a spin splitting in the order of few meV. The resultant low energy bands spin textures are also computed, and a spin-valley coupling in the case of even atom clusters on pristine graphene is predicted, leading to the emergence of a spin lifetime anisotropy. For defective graphene, a complete out-of-plane spin texture and a large spin splitting of 40-100 meV is obtained for Cun (n = 1, 2, 3, 5) clusters due to local magnetic moment. On the other hand, for Cu4/defective graphene, having no net magnetic moment, the spin-valley coupling prevails close to the band edges.
Kazemi et al
Halogenated MXenes have been experimentally demonstrated to be promising two-dimensional materials for a wide range of applicability. However, their physicochemical properties are largely unknown at the atomic level. In this study, we applied density functional theory (DFT) to theoretically investigate the halogenation effects on the structural, electronic, and mechanical characteristics of Ti3C2, which is the most studied MXene material. Three atomic configurations with different adsorption sites for four kinds of halogen terminals (fluorine, chlorine, bromine, and iodine) were considered. Our DFT results reveal that the adsorption site of terminals has a considerable impact on the properties of MXene. This can be ascribed to the different coordination environments of the surface Ti atoms, which change d-orbital splitting configurations of surface Ti atoms and the stabilities of systems. According to the density of states, crystal orbital Hamilton population, and charge analyses, all the considered halogenated MXenes are metallic. The electronic and mechanical properties of the halogenated MXenes are strongly dependent on the electronegativity of the halogen terminal group. The Ti-F bond has more ionic characteristics, which causes Ti3C2F2 mechanically behave in a more ductile manner. Our DFT results, therefore, suggest that the physicochemical properties of MXenes can be tuned for practical applications by selecting specific halogen terminal groups.
Fomichev et al
Motivated to understand phonon spectrum renormalization in the ground state of the half-filled Su-Schrieffer-Heeger model, we use the Born-Oppenheimer approximation together with the harmonic approximation to evaluate semi-analytically the all-to-all real-space ionic force constants generated through both linear and quadratic electron-phonon coupling. We then compute the renormalized phonon spectrum and the corresponding lattice zero-point energy as a function of the lattice dimerization. Crucially, the latter is included in the system's total energy, and thus has a direct effect on the equilibrium dimerization. We find that inclusion of a small quadratic coupling leads to very significant changes in the predicted equilibrium dimerization, calling into question the use of the linear approximation for this model. We also argue that inclusion of the zero-point energy is key for systems with comparable lattice and electronic energies, and/or for finite size chains. Our method can be straightforwardly generalized to study similar problems in higher dimensions.
Molina-Garcia et al
The incorporation of inorganic nanofillers into polymeric matrices represents an effective strategy for the development of smart coatings for corrosion protection of metallic substrates. In this work, wet-jet milling (WJM) exfoliation was used to massively produce few-layer hexagonal boron nitride (h-BN) flakes as corrosion-protection pigment in polyisobutylene (PIB)-based composite coatings for marine applications. This approach represents an innovative advance in the application of two-dimensional (2D) material-based composites as corrosion protection systems at the industrial scale. Although rarely used as an organic coating, PIB was selected as a ground-breaking polymeric matrix for our h-BN-based composite coating thanks to its excellent barrier properties. The optimization of the coating indicates that 5 wt.% is the most effective h-BN content, yielding a corrosion rate of the protected structural steel as low as 7.4 × 10-6 mm year-1. The 2D morphology and hydrophobicity of the h-BN flakes, together with the capability of PIB to act as a moisture barrier, are the main reasons behind the excellent anticorrosion performance of our composite coating.
Feng et al
Perovskite solar cells represent one of the most promising emerging photovoltaic technologies due to their high power conversion efficiency. However, despite of the huge progress made not only in terms of the efficiency achieved, but also fundamental understanding of relevant physics of the devices and issues which affect their efficiency and stability, there are still unresolved problems and obstacles on the path towards commercialization of this promising technology. In this roadmap, we aim to provide a concise and up to date summary of outstanding issues and challenges, and progress made towards addressing these issues. While the format of this article is not meant to be a comprehensive review of the topic, it provides a collection of the viewpoints of the experts in the field which covers a broad range of topics related to perovskite solar cell commercialization, including those relevant for manufacturing (scaling up, different types of devices), operation and stability (various factors), and environmental issues (in particular the use of lead). We hope that the article will provide a useful resource for researchers in the field and that it will facilitate discussions and moving forward towards addressing the outstanding challenges in this fast developing field.