Table of contents

Volume 9

Number 2, January 2014

Previous issue Next issue

Buy this issue in print

Perspective

021001
The following article is Open access

The recent study reported by McCright et al (2013 Environ. Res. Lett. 8 044029) extends current research on conservatives' distrust of science by distinguishing between public trust in production versus impact scientists (i.e. those whose work yields new technologies and marketable products versus those assessing the health and environmental impacts of such technologies and products). As expected, they find that conservatives are significantly less trustful of impact scientists but somewhat more trustful of production scientists. In the process they provide support for the Anti-Reflexivity Thesis, a perspective that attributes conservatives' (and Republicans') denial of anthropogenic climate change (ACC) and other environmental problems and attacks on climate/environmental science to their staunch commitment to protecting the current system of economic production. McCright et al's innovative study deserves replication, and their approach should prove useful in accounting for divergent views of ACC. It is also important to keep in mind that anti-reflexivity is an institutional and structural issue, becoming more consequential when it is employed by political elites such as the George W Bush Administration in the US. Institutional anti-reflexivity is further illustrated by the widespread denial of ACC and a range of other problems among current Republican members of the US Congress.

Letters

024001
The following article is Open access

, , and

Our understanding of how engineered nanoparticles (NPs) migrate through soil and affect microbial communities is scarce. In the current study we examined how metal NPs, including those from the iron triad (iron, cobalt and nickel), moved through pots of soil maintained under winter field conditions for 50 days, when mesophilic bacteria may not be dividing. Based on total metal analysis, cobalt and nickel were localized in the top layer of soil, even after exposure to high precipitation and freeze–thaw cycles. In contrast, a bimodal distribution of silver was observed. Due to high endogenous levels of iron, the migration pattern of these NPs could not be determined. Pyrosequence analysis of the bacterial communities revealed that there was no significant engineered NP-mediated decline in microbial richness. However, analysis of individual genera showed that Sphingomonas and Lysobacter were represented by fewer sequences in horizons containing elevated metal levels whereas there was an increase in the numbers of Flavobacterium and Niastella. Collectively, the results indicate that along with the differential migration behavior of NPs in the soil matrix, their impact on soil bacterial diversity appears to be dependent on environmental parameters.

024002
The following article is Open access

and

Forests provide important climate forcing through biogeochemical and biogeophysical processes. In this study, we investigated the climatic effects of forest disturbances due to changes in forest biomass and surface albedo in terms of radiative forcing over northeastern China. Four types of forest disturbances were considered: fires, insect damage, logging, and afforestation and reforestation. The mechanisms of the influence of forest disturbances on climate were different. 'Instantaneous' net radiative forcings caused by fires, insect damage, logging, and afforestation and reforestation were estimated at 0.53 ± 0.08 W m−2, 1.09 ± 0.14 W m−2, 2.23 ± 0.27 W m−2, and 0.14 ± 0.04 W m−2, respectively. Trajectories of CO2-driven radiative forcing, albedo-driven radiative forcing, and net forcing were different with time for each type of disturbance. Over a decade, the estimated net forcings were 2.24 ± 0.11 W m−2, 0.20 ± 0.31 W m−2, 1.06 ± 0.41 W m−2, and −0.47 ± 0.07 W m−2, respectively. These estimated radiative forcings from satellite observations provided evidence for the mechanisms of the influences of forest disturbances on climate.

024003
The following article is Open access

, , and

Northern peatlands are important carbon (C) sinks and while the patterns of C accumulation have been frequently investigated, nitrogen (N) and phosphorus (P) accumulation are often neglected. Here we link the C:N:P stoichiometry from foliar plant tissues, through senescent litters to peat, and determine C, N and P accumulation rates at Mer Bleue Bog, eastern Canada. Average C:N:P ratios changed from 794:17:1 in the foliar tissues to 911:10:1 in litter and 1285:32:1 in acrotelm peat. The increase in C:N and C:P ratios from mature to senescent tissues is related to nutrient resorption. The increase in C:P and N:P ratios in peat, which was contrary to that observed in Canadian forest soils, may be related to plant/mycorrhizae uptake of P. The long-term apparent rates of C, N and P accumulation were 29.5 ± 2.1 (SE) g C, 0.87 ± 0.01 g N and 0.017 ± 0.002 g P m−2 yr−1, respectively. The significant correlation between the accumulation rates of N and P and that of C suggests more attention be placed on C:N:P stoichiometry in peatland biogeochemistry, in particular in understanding why C:P ratios are so large in the lower parts of the profile.

024004

, , and

We investigate the role of the 11-year solar cycle in modulating the Pacific–North American (PNA) influence on North American winter climate. The PNA appears to play an important conduit between solar forcing and surface climate. The low solar (LS) activity may induce an atmospheric circulation pattern that resembles the positive phase of the PNA, resulting in a significant warming over northwestern North America and significant dry conditions in the Pacific Northwest, Canadian Prairies and the Ohio-Tennessee-lower Mississippi River Valley. The solar-induced changes in surface climate share more than 67% and 14% of spatial variances in the PNA-induced temperature and precipitation changes for 1950–2010 and 1901–2010 periods, respectively. These distinct solar signatures in North American climate may contribute to deconvolving modern and past continental-scale climate changes and improve our ability to interpret paleoclimate records in the region.

024005
The following article is Open access

, , and

Solar radiation management (SRM) has been proposed as a means to alleviate the climate impacts of ongoing anthropogenic greenhouse gas (GHG) emissions. However, its efficacy depends on its indefinite maintenance, without interruption from a variety of possible sources, such as technological failure or global cooperation breakdown. Here, we consider the scenario in which SRM—via stratospheric aerosol injection—is terminated abruptly following an implementation period during which anthropogenic GHG emissions have continued. We show that upon cessation of SRM, an abrupt, spatially broad, and sustained warming over land occurs that is well outside 20th century climate variability bounds. Global mean precipitation also increases rapidly following cessation, however spatial patterns are less coherent than temperature, with almost half of land areas experiencing drying trends. We further show that the rate of warming—of critical importance for ecological and human systems—is principally controlled by background GHG levels. Thus, a risk of abrupt and dangerous warming is inherent to the large-scale implementation of SRM, and can be diminished only through concurrent strong reductions in anthropogenic GHG emissions.

024006
The following article is Open access

, , and

Multiple economic and geologic factors are driving fundamental changes in the nation's energy system, weakening coal's dominance as a fuel for electricity generation, with significant implications for places like West Virginia that are heavily dependent on coal for economic activity. Some of these factors include low natural gas prices, rising labor costs and declining productivity, economic competition with other coal mining regions, environmental regulations to reduce pollution and safeguard public health, state energy efficiency and renewable electricity standards, falling costs of renewable energy resources like wind and solar, and the likely prospect of future limits on greenhouse gas emissions. This analysis uses an input–output model to examine the effects on West Virginia's economy from these multiple factors by exploring a range of scenarios for coal production through 2020. In addition to changes in the coal industry, hypothetical investments in additional sectors of the economy are considered as a way to gauge potential alternative economic opportunities. This paper offers recommendations to policymakers for alternative economic development strategies needed to create new jobs and diversify the state's economy, and highlights the importance of transition assistance at the federal level.

024007
The following article is Open access

, , and

Power utility companies in the United Kingdom are using imported wood pellets from the southern region of the United States for electricity generation to meet the legally binding mandate of sourcing 15% of the nation's total energy consumption from renewable sources by 2020. This study ascertains relative savings in greenhouse gas (GHG) emissions for a unit of electricity generated using imported wood pellet in the United Kingdom under 930 different scenarios: three woody feedstocks (logging residues, pulpwood, and logging residues and pulpwood combined), two forest management choices (intensive and non-intensive), 31 plantation rotation ages (year 10 to year 40 in steps of 1 year), and five power plant capacities (20–100 MW in steps of 20 MW). Relative savings in GHG emissions with respect to a unit of electricity derived from fossil fuels in the United Kingdom range between 50% and 68% depending upon the capacity of power plant and rotation age. Relative savings in GHG emissions increase with higher power plant capacity. GHG emissions related to wood pellet production and transatlantic shipment of wood pellets typically contribute about 48% and 31% of total GHG emissions, respectively. Overall, use of imported wood pellets for electricity generation could help in reducing the United Kingdom's GHG emissions. We suggest that future research be directed to evaluation of the impacts of additional forest management practices, changing climate, and soil carbon on the overall savings in GHG emissions related to transatlantic wood pellet trade.

024008
The following article is Open access

and

It has long been recognized that compact versus more sprawling urban forms can have very different environmental impacts. As the Chinese population continues to rapidly urbanize, the size, shape, and configuration of cities in China will undoubtedly change to accommodate expansion of housing, industry, and commerce, causing direct and indirect environmental impacts at multiple scales. It is therefore imperative to understand how urban areas are evolving as socio-economic reforms in China are implemented across different regions. This paper compares trends in 142 Chinese cities (including 17 agglomerations) to understand urban expansion and population growth following reforms, 1978–2010. The results show that cities tripled in size, while doubling in population over the same period. In coastal areas targeted by early policies, urban land increased 4–5 times since 1978, for all city sizes. Large agglomerations are the primary consumers of land in coastal and western regions, each adding an average of 450 km2 during the study period, while small-medium cities consumed an average 20 km2. Although populations in these agglomerations increased an average 1.3 million, 2000–2010, cities within 100 km of each agglomeration grew >1.8 million collectively. Proximity to large agglomerations contributed to the growth of small-medium cities, especially in western regions.

024009
The following article is Open access

and

Water scientists and managers currently face the question of whether trends in climate variables that affect water supplies and hazards can be anticipated. We investigate to what extent climate model simulations may provide accurate forecasts of future hydrologic nonstationarity in the form of changes in precipitation amount. We compare gridded station observations (GPCC Full Data Product, 1901–2010) and climate model outputs (CMIP5 Historical and RCP8.5 simulations, 1901–2100) in real and synthetic-data hindcast experiments. The hindcast experiments show that imputing precipitation trends based on the climate model mean reduced the root mean square error of precipitation trend estimates for 1961–2010 by 9% compared to making the assumption (implied by hydrologic stationarity) of no trend in precipitation. Given the accelerating pace of climate change, the benefits of incorporating climate model assessments of precipitation trends in water resource planning are projected to increase for future decades. The distribution of climate models' simulated precipitation trends shows substantial spatially coherent biases, suggesting that there may be room for further improvement in how climate models are parametrized and used for precipitation estimation. Linear extrapolation of observed trends in long precipitation records may also be useful, particularly for lead times shorter than about 25 years. Overall, our findings suggest that simulations by current global climate models, combined with the continued maintenance of in situ hydrologic observations, can provide useful information on future changes in the hydrologic cycle.

024010
The following article is Open access

, , , , , and

Primary PM2.5 emissions contributed significantly to poor air quality in China. We present an interdisciplinary study to measure the magnitudes of socioeconomic factors in driving primary PM2.5 emission changes in China between 1997–2010, by using a regional emission inventory as input into an environmentally extended input–output framework and applying structural decomposition analysis. Our results show that China's significant efficiency gains fully offset emissions growth triggered by economic growth and other drivers. Capital formation is the largest final demand category in contributing annual PM2.5 emissions, but the associated emission level is steadily declining. Exports is the only final demand category that drives emission growth between 1997–2010. The production of exports led to emissions of 638 thousand tonnes of PM2.5, half of the EU27 annual total, and six times that of Germany. Embodied emissions in Chinese exports are largely driven by consumption in OECD countries.

024011
The following article is Open access

, , , and

Globally, the further expansion of cropland is limited by the availability of adequate land and by the necessity to spare land for nature conservation and carbon sequestration. Analyzing the causes of past land-use changes can help to better understand the potential drivers of land scarcities of the future. Using the FAOSTAT database, we quantify the contribution of four major factors, namely human population growth, rising per-capita caloric consumption (including food intake and household waste), processing losses (including conversion of vegetal into animal products and non-food use of crops), and yield gains, to cropland expansion rates of the past (1961–2007). We employ a Kaya-type decomposition method that we have adapted to be applicable to drivers of cropland expansion at global and national level. Our results indicate that, all else equal, without the yield gains observed globally since 1961, additional land of the size of Australia would have been put under the plough by 2007. Under this scenario the planetary boundary on global cropland use would have already been transgressed today. By contrast, without rising per-capita caloric consumption and population growth since 1961, an area as large as nearly half and all of Australia could have been spared, respectively. Yield gains, with strongest contributions from maize, wheat and rice, have approximately offset the increasing demand of a growing world population. Analyses at the national scale reveal different modes of land-use transitions dependent on development stage, dietary standards, and international trade intensity of the countries. Despite some well-acknowledged caveats regarding the non-independence of decomposition factors, these results contribute to the empirical ranking of different drivers needed to set research priorities and prepare well-informed projections of land-use change until 2050 and beyond.

024012
The following article is Open access

, , and

We perform coupled climate–carbon cycle model simulations to examine changes in ocean acidity in response to idealized change of atmospheric CO2. Atmospheric CO2 increases at a rate of 1% per year to four times its pre-industrial level of 280 ppm and then decreases at the same rate to the pre-industrial level. Our simulations show that changes in surface ocean chemistry largely follow changes in atmospheric CO2. However, changes in deep ocean chemistry in general lag behind the change in atmospheric CO2 because of the long time scale associated with the penetration of excess CO2 into the deep ocean. In our simulations with the effect of climate change, when atmospheric CO2 reaches four times its pre-industrial level, global mean aragonite saturation horizon (ASH) shoals from the pre-industrial value of 1288 to 143 m. When atmospheric CO2 returns from the peak value of 1120 ppm to pre-industrial level, ASH is 630 m, which is approximately the value of ASH when atmospheric CO2 first increases to 719 ppm. At pre-industrial CO2 9% deep-sea cold-water corals are surrounded by seawater that is undersaturated with aragonite. When atmospheric CO2 reaches 1120 ppm, 73% cold-water coral locations are surrounded by seawater with aragonite undersaturation, and when atmospheric CO2 returns to the pre-industrial level, 18% cold-water coral locations are surrounded by seawater with aragonite undersaturation. Our analysis indicates the difficulty for some marine ecosystems to recover to their natural chemical habitats even if atmospheric CO2 content can be lowered in the future.

024013
The following article is Open access

and

Weibull distribution parameters (scale and shape) of wind speeds at 85 stations over the eastern USA are downscaled from distribution parameters of large-scale climate variables drawn from both global and regional models. A probabilistic statistical downscaling approach when applied in hybrid downscaling (combining dynamical and statistical downscaling), exhibits skill in reproducing the macro-scale variability in wind climates in independent data. However, use of predictors from a regional climate model (RCM) run at 50 km resolution does not substantially improve the downscaling results over those obtained when direct output from the parent atmosphere ocean general circulation model (AOGCM) run at approximately 200 km resolution is used for the predictors. The technique is applied to develop projections of mean and 90th percentile wind speeds based on output from six sets of RCM simulations. Projected differences in the mean and 90th percentile wind speeds over the eastern USA for 2041–2060 relative to 1981–1998 are of very modest magnitude (i.e. <5% of the value during 1981–1998), and are smaller than the inherent downscaling uncertainty. The implied near-term stability of wind climates is consistent with analysis of wind speeds directly simulated by RCMs.

024014
The following article is Open access

, and

The El Niño–Southern Oscillation (ENSO) is a major driver of Northern Hemisphere wintertime variability and, generally, the key ingredient used in seasonal forecasts of wintertime surface climate. Modeling studies have recently suggested that ENSO teleconnections might involve both a tropospheric pathway and a stratospheric one. Here, using reanalysis data, we carefully distinguish between the two. We first note that the temperature and circulation anomalies associated with the tropospheric pathway are nearly equal and opposite during the warm (El Niño) and cold (La Niña) phases of ENSO, whereas those associated with the stratospheric pathway are of the same sign, irrespective of the ENSO phase. We then exploit this fact to isolate the two pathways. Our decomposition reveals that ENSOs climate impacts over North America are largely associated with the tropospheric pathway, whereas ENSOs climate impacts over the North Atlantic and Eurasia are greatly affected by the stratospheric pathway. The stratospheric pathway, which we here define on the basis of the occurrence of one or more sudden stratospheric warmings in a given winter, and whose signature projects very strongly on the North Atlantic Oscillation, is found to be present 60% of the time during ENSO winters (of either phase): it therefore likely plays an important role in improving seasonal forecasts, notably over the North Atlantic and the Eurasian continent.

024015
The following article is Open access

, , , , and

Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to − 161 gCO2e/MJ, or − 28% and − 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.

024016
The following article is Open access

, , and

Throughout the world, herbicides and fertilizers change species composition in agricultural communities, but how do the cumulative effects of these chemicals impact the functional and phylogenetic structure of non-targeted communities when they drift into adjacent semi-natural habitats? Based on long-term experiment we show that fertilizer and herbicides (glyphosate) have contrasting effects on functional structure, but can increase phylogenetic diversity in semi-natural plant communities. We found that an increase in nitrogen promoted an increase in the average specific leaf area and canopy height at the community level, but an increase in glyphosate promoted a decrease in those traits. Phylogenetic diversity of plant communities increased when herbicide and fertilizer were applied together, likely because functional traits facilitating plant success in those conditions were not phylogenetically conserved. Species richness also decreased with increasing levels of nitrogen and glyphosate. Our results suggest that predicting the cumulative effects of agrochemicals is more complex than anticipated due to their distinct selection of traits that may or may not be conserved phylogenetically. Precautionary efforts to mitigate drift of agricultural chemicals into semi-natural habitats are warranted to prevent unforeseeable biodiversity shifts.

024017
The following article is Open access

and

Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from −$130 to $35 t−1 CO2(eq). Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO2(eq)) are found to exceed California Air Resources Board's estimate for energy efficiency improvements in the state's water infrastructure.

024018
The following article is Open access

, , and

The authors examine daily tornado counts in the United States over the period 1994–2012 and find strong evidence for a power-law relationship in the distribution frequency. The scaling exponent is estimated at 1.64 (0.019 s.e.) giving a per tornado-day probability of 0.014% (return period of 71 years) that a tornado day produces 145 tornadoes as was observed on 27 April 2011. They also find that the total number of tornadoes by damage category on days with at least one violent tornado follows an exponential rule. On average, the daily number of tornadoes in the next lowest damage category is approximately twice the number in the current category. These findings are important and timely for tornado hazard models and for seasonal and sub-seasonal forecasts of tornado activity.

Focus Issue Letters

025001
The following article is Open access

, , and

Focus on Changing Permafrost in a Warming World: Observation and Implication

Warming of the arctic landscape results in permafrost thaw, which causes ground subsidence or thermokarst. Thermokarst formation on hillslopes leads to the formation of thermal erosion features that dramatically alter soil properties and likely affect soil carbon emissions, but such features have received little study in this regard. In order to assess the magnitude and persistence of altered emissions, we use a space-for-time substitution (thaw slump chronosequence) to quantify and compare peak growing season soil carbon dioxide (CO2) fluxes from undisturbed tundra, active, and stabilized thermal erosion features over two seasons. Measurements of soil temperature and moisture, soil organic matter, and bulk density are used to evaluate the factors controlling soil CO2 emissions from each of the three chronosequence stages. Soil CO2 efflux from the active slump is consistently less than half that observed in the undisturbed tundra or stabilized slump (1.8 versus 5.2 g CO2−C m−2 d−1 in 2011; 0.9 versus 3.2 g CO2−C m−2 d−1 in 2012), despite soil temperatures on the floor of the active slump that are 10–15 °C warmer than the tundra and stabilized slump. Environmental factors such as soil temperature and moisture do not exert a strong control on CO2 efflux, rather, local soil physical and chemical properties such as soil organic matter and bulk density, are strongly and inversely related among these chronosequence stages (r2 = 0.97), and explain ∼50% of the variation in soil CO2 efflux. Thus, despite profound soil warming and rapid exposure of buried carbon in the active slump, the low organic matter content, lack of stable vegetation, and large increases in the bulk densities in the uppermost portion of active slump soils (up to ∼2.2 g−1 cm−3) appear to limit CO2 efflux from the active slump. Future studies should assess seasonal fluxes across these features and determine whether soil CO2 fluxes from active features with high organic content are similarly low.

025002

, and

Focus on Cryospheric Ecosystems

Bare soils in the area of retreating glaciers are ideal environments to study the role of microorganisms in the early soil formation and in processes of mineral weathering. The aim of our study was to investigate whether the source of carbohydrate would influence the patterns of organic acids exuded by fungal species. Three pioneering fungus species, isolated from fine granitic sediments in front of the Damma glacier from the central Swiss Alps, have previously been found to have the capability to exude organic acids and dissolve granite powder. In batch experiments, various carbohydrates, including glucose, cellulose, pectin, pollen, and cell remnants of cyanobacteria, fungi, and algae, were applied as carbohydrate sources and the patterns of exuded organic acids recorded. The results showed that two fungi, the zygomycete fungus Mucor hiemalis and the ascomycete fungus Penicillium chrysogenum, released a significantly higher amount of organic acids in dependence on specific carbohydrate sources. Pollen and algae as carbohydrate sources triggered significantly the exudation of malate in M. hiemalis, and pollen and cellulose that of oxalate in P. chrysogenum. We conclude that the occurrence of complex carbohydrate sources in nutrient-deficient deglaciated soils may positively influence the exudation of organic acids of fungi. In particular, pollen and remnants of other microorganisms can trigger the exudation of organic acids of fungi in order to promote the weathering of minerals and to make nutrients available that would otherwise be trapped in that cryospheric environment.

025003
The following article is Open access

Focus on Northern Eurasia in the Global Earth System: Changes and Interactions

Precipitation durations and intensities over the period 1950–2008 are analysed using daily rain gauge data from the Deutsche Wetterdienst raingauge network—one of the densest and most properly maintained precipitation observational networks in Europe. Truncated geometric distribution of the family of discrete distributions was applied for quantifying probability distribution of the durations of wet spells. Further intensities of wet spells of different durations were analysed along with wet spell lengths. During the cold season (October–March) wet periods over the whole of Germany demonstrate a robust pattern of lengthening by about 2–3% for the mean durations of wet spells and up to 6% for extremely long wet periods. This tendency is clearly associated with growing (up to 10% per decade in Eastern Germany) intensity of precipitation during long wet periods (more than 5 days) and the weakening of precipitation events associated with short and moderately long wet periods with both signals being statistically significant. Trends are superimposed with interdecadal variability, which is the strongest in Northern and Central Germany. In the warm season (April–September) there is no robust pan-German trend pattern in the wet spell durations and associated precipitation intensities. Strong structural changes in winter precipitation over Germany potentially imply growing rates of winter ground water recharge over Germany and increasing probability of winter flash and river flooding.

025004
The following article is Open access

, and

Focus on Northern Eurasia in the Global Earth System: Changes and Interactions

Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends ('greening') in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands.