Brought to you by:

Table of contents

Volume 16

Number 1, January 2021

Previous issue Next issue

Buy this issue in print

Editorial

Topical Review

012001

, and

Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.

012002

, , , , , , and

Mesenchymal stem cell-derived extracellular matrix (mECM) has received increased attention in the fields of tissue engineering and scaffold-assisted regeneration. mECM exhibits many unique characteristics, such as robust bioactivity, biocompatibility, ease of use, and the potential for autologous tissue engineering. As the use of mECM has increased in musculoskeletal tissue engineering, it should be noted that mECM generated from current methods has inherited insufficiencies, such as low mechanical properties and lack of internal architecture. In this review, we first summarize the development and use of mECM as a scaffold for musculoskeletal tissue regeneration and highlight our current progress on moving this technology toward clinical application. Then we review recent methods to improve the properties of mECM that will overcome current weaknesses. Lastly, we propose future studies that will pave the road for mECM application in regenerating tissues in humans.

Special Issue: Article

014101

, , , , and

Special Issue on Advances in Nanomedicine

In the past few decades, various vanadium compounds have displayed potential in cancer treatment. However, fast clearness in the body and possible toxicity of vanadium compounds has hindered their further development. Vanadium-based nanomaterials not only overcome these limitations, but take advantage of the internal properties of vanadium in photics and magnetics, which enable them as a multimodal platform for cancer diagnosis and treatment. In this paper, we first introduced the basic biological and pharmacological functions of vanadium compounds in treating cancer. Then, the synthesis routes of three vanadium-based nanomaterials were discussed, including vanadium oxides, 2D vanadium sulfides, carbides and nitrides: VmXn (X = S, C, N) and water-insoluble vanadium salts. Finally, we highlighted the applications of these vanadium-based nanomaterials as tumor therapeutic and diagnostic agents.

Papers

015001

, , , , , , , , , et al

It has been established that scar acellular matrices (AMs), which allow cell proliferation, have similar characteristics. The aim of this study was to investigate the repair effect of scar AMs on animals, thus providing a reference for clinical application. Selected mature and immature scar AMs were implanted into animals, and then a negative control group was set for comparison. The effect of scar AMs on wound healing was observed through tissue staining, RT-qPCR, and immunohistochemistry. The materials showed milder inflammation and faster extracellular matrix (ECM) deposition than the negative control group. The ECM deposition and new vessels increased over time. However, the arrangement of ECM in mature scar AM was more regular than in immature scar AM and the negative control group, and more new vessels grew in the mature scar AM group than in the immature scar AM group and negative control group over the same period. The transforming growth factor-β level was elevated at one month, two months, and six months. COLA1 and vimentin levels all peaked at six months. Matrix metalloproteinase and TIMP1 were also elevated at different months. Collectively, scar AMs can effectively promote wound healing and vascularization. Mature scar AMs have a better regeneration effect.

015002

, , , , and

The skin is a combination of two different types of tissue—epithelial and connective (mesenchymal). The outer protective layer of the skin, the epidermis, consists of multiple layers of keratinocytes residing on the basement membrane that separates them from the underlying dermis, which consists of a well-vascularized fibrous extracellular matrix seeded mainly by fibroblasts and mesenchymal stromal cells. These skin features suggest that the development of a fibroblast-friendly porous scaffold covered with a flat dense sheath mimicking the basement membrane, and sufficient to support keratinocyte attachment, would be a reasonable approach in the generation of clinically-relevant skin substitutes useful for reconstructive dermatology and burn treatment. Therefore, we developed a procedure to obtain biocompatible composite bilayer scaffolds comprising a spongy dermis-like body (supporting vascularization and appropriate fibroblast and multipotent stromal cell activity) fused with a film-like cover (supporting keratinocyte attachment, growth and differentiation). The sodium alginate (SA), an algae-derived biopolymer, has been used as a base component for these scaffolds while collagen (CL) and fibrinogen (FG) were used as minor additives in variable concentrations. The slow rates of composite SA-based scaffold biodegradation were achieved by using Ba2+ as cross-linking cations. By manipulating the SA/CL/FG ratio we managed to obtain sponge scaffolds with highly interconnected porous structures, with an average pore size ranging from 60 to 300 μm, and sufficient tensile strength (3.12–5.26 MPa). The scaffolds biocompatibility with the major human skin cell types was confirmed by seeding the scaffold sponge compartment with primary skin fibroblasts and subcutaneous adipose-derived stromal cells while the film side biocompatibility was tested using primary human keratinocytes. The obtained results have shown that bilayer alginate-based scaffolds have biological and mechanical properties comparable with CL scaffolds but surpass them in cost efficiency and vascularization ability in the subcutaneous implantation model in laboratory mice.

015003

, , and

For extrusion-based bioprinting, the inks must be printable and rapidly present sufficient mechanical properties to support additional layers and provide a cohesive, manipulable structure. Thermosensitive hydrogels may be interesting candidates. However, the use of these materials is particularly challenging, since their rheological properties evolve with time and temperature. In this work, a rheological approach to characterize the printability of chitosan-based thermosensitive inks was developed. The method consists of evaluating: (1) the gelation kinetic at room temperature and at 37 °C; (2) shear-thinning behavior to estimate the shear rate applied during printing as a function of printing parameters; and (3) the viscosity after shear removal (recovery test) to simulate behaviour after biomaterial deposition. Hydrogels containing 2 and 3% w v−1 chitosan, combined with different gelling agents (sodium hydrogen carbonate (SHC), phosphate buffer, beta-glycerophosphate (BGP)) were tested, and compared with alginate/gelatin bioink as controls. To correlate the rheological studies with real printing conditions, a 3D-Discovery bioprinter was used to print hydrogels and the visual aspect of the printed structure was observed. Unconfined compressive tests were carried out to study the impact of applied shear rate during printing on the mechanical properties of printed structures. All pre-hydrogel solutions presented shear-thinning properties. The recovery of viscosity was found to depend on the hydrogel formulation, as well as the level of shear rate and the state of gelation at the time of printing. Formulations made with SHC and phosphate buffer presented too rapid gelation and phase separation, leading to poor printing results. One particularly promising formulation composed of SHC and BGP, when printed at a shear rate of 140 s−1, before its gelation time (tg ⩽ 15 min), resulted in good printability and 3D structures with rigidity comparable with the alginate/gelatin bioink. The methodology introduced in this paper could be used to evaluate the printability of other time- and temperature-dependent biomaterial inks in the future.

015004

, , , , , and

Wound healing is a dynamic and well-orchestrated process that can be promoted by creating an optimal environment with wound dressing. An ideal wound dressing material should possess a suitable matrix, structure and bioactive components, functioning synergistically to accelerate wound healing. Wound dressings that allow reproducibility and customizability are highly desirable in clinical practice. In this study, using chitosan (CS) as the matrix and bioglass (BG) as the biological component, a spatially designed dressing scaffold was fabricated from a home-made cryogenic printing system. The micro- and macro-structures of the scaffold were highly controllable and reproducible. The printed scaffold exhibited interconnected and hierarchical pore structures, as well as good flexibility and water absorption capacity, and these properties were not affected by the content of BG. Nevertheless, when the content of BGs exceeded 20% that of CS, the tension strength and elongation rate reduced, but in vitro antibacterial, cell proliferation and migration performance were enhanced. In vivo examinations revealed that the composite scaffold significantly promoted wound healing process, with the group having 30% bioglass showing better wound closure, neovascularization and collagen deposition than other groups. These results indicate that the 3D printed CS/BG composite scaffold is a promising dressing material that accelerates wound healing.

015005

, , , , , and

The development of neo-tissues assisted by artificial scaffolds is continually progressing, but the reproduction of the extracellular environment surrounding cells is quite complex. While synthetic scaffolds can support cell growth, they lack biochemical cues that can prompt cell proliferation or differentiation. In this study, Wharton's Jelly-derived mesenchymal stem cells are seeded on a polyurethane (PU) scaffold combined with a hydrogel based on bovine serum albumin (BSA). BSA hydrogel is obtained through thermal treatment. While such treatment leads to partial unfolding of the protein, we show that the extent of denaturation is small enough to maintain its bioactivity, such as protein binding. Therefore, BSA provides a suitable playground for cells inside the scaffold, allowing higher spreading, proliferation and matrix secretions. Furthermore, the poor mechanical properties of the hydrogel are compensated for by the porous PU scaffold, whose architecture is well controlled. We show that even though PU by itself can allow cell adhesion and protein secretion, cell proliferation is 3.5 times higher in the PU + BSA scaffolds as compared to pure PU after 21 d, along with the non-collagenous protein secretions (389 versus 134 μmmg −1). Conversely, the secretion of sulphated glycosaminoglycans is 12.3-fold higher in the scaffold made solely of PU. Thereby, we propose a simple approach to generating a hybrid material composed of a combination of PU and BSA hydrogel as a promising scaffold for tissue regeneration.

015006

, , , , and

The blood-brain barrier (BBB) protects the human brain from external aggression. Despite its great importance, very few in vitro models of the BBB reproducing its complex organization are available yet. Here we fabricated such a three-dimensional (3D) self-organized in vitro model of BBB microvasculature by means of a combination of collagen microfibers (CMF) and fibrin gel. The interconnected fibers supported human brain microvascular endothelial cell migration and the formation of a capillary-like network with a lumen diameter close to in vivo values. Fibrin, a protein involved in blood vessel repair, favored the further 3D conformation of the brain microvascular endothelial cells, astrocytes and pericytes, ensured gel cohesion and avoided shrinkage. The maturation of the BBB microvasculature network was stimulated by both the CMF and the fibrin in the hydrogel. The expression of essential tight-junction proteins, carriers and transporters was validated in regards to bidimensional simple coculture. The volume of gel drops was easily tunable to fit in 96-well plates. The cytotoxicity of D-Mannitol and its impacts on the microvascular network were evaluated, as an example of the pertinence of this 3D BBB capillary model for screening applications.

015007
The following article is Open access

, , , , , , , and

Three-dimensional (3D) printing enhances the production of on-demand fabrication of patient-specific devices, as well as anatomically fitting implants with high complexity in a cost-effective manner. Additive systems that employ vat photopolymerisation such as stereolithography (SLA) and digital light projection are used widely in the field of biomedical science and engineering. However, additive manufacturing methods can be limited by the types of materials that can be used. In this study, we present an isosorbide-based formulation for a polymer resin yielding a range of elastic moduli between 1.7 and 3 GN mm−2 dependent on the photoinitiator system used as well as the amount of calcium phosphate filler added. The monomer was prepared and enhanced for 3D-printing using an SLA technique that delivered stable and optimized 3D-printed models. The resin discussed could potentially be used following major surgery for the correction of congenital defects, the removal of oral tumours and the reconstruction of the head and neck region. The surgeon is usually limited with devices available to restore both function and appearance and with the ever-increasing demand for low-priced and efficient facial implants, there is an urgent need to advance new manufacturing approaches and implants with a higher osseointegration performance.

015008

, , , , , , , , , et al

Brain implants are promising instruments for a broad variety of nervous tissue diseases with a wide range of applications, e.g. for stimulation, signal recording or local drug delivery. Recently, graphene-based scaffold materials have emerged as attractive candidates as neural interfaces, 3D scaffolds, or drug delivery systems due to their excellent properties like flexibility, high surface area, conductivity, and lightweight. To date, however, there is a lack of appropriate studies of the foreign body response, especially by glial cells, towards graphene-based materials. In this work, we investigated the effects of macroscopic, highly porous (>99.9%) graphene oxide (GO) and reduced graphene oxide (rGO) (conductivity ∼1 S m−1) scaffolds with tailorable macro- and microstructure on human astrocyte and microglial cell viability and proliferation as well as expression of neuroinflammation and astrogliosis associated genes in an indirect contact approach. In this in vitro model, as well as ex vivo in organotypic murine brain slices, we could demonstrate that both GO and rGO based 3D scaffolds exert slight effects on the glial cell populations which are the key players of glial scar formation. These effects were in most cases completely abolished by curcumin, a known anti-inflammatory and anti-fibrotic drug that could in perspective be applied to brain implants as a protectant.

015009

, , , , , , , , and

Calcium sulfate (CS) bone cements have been used as bone substitutes for a long time, but their clinical use is currently limited due to their rapid degradation rate and brittleness. This work aimed to study the effect of α-tricalcium phosphate (α-TCP) and silk fibroin nanofibers (SFF) on CS bone cements. The bone cements were prepared from α-CS hemihydrate (α-CSH), calcium sulfate dihydrate (CSD; as a setting accelerator) and varying α-TCP contents (0%, 5%, 10%, 15%, 20% and 25%), with SFF solution or deionized water as the solidification solution at the same liquid/solid ratio. Scanning electron microscopy, particle size distribution, x-ray diffraction and Fourier transform infrared spectroscopy were used to measure the composition and characterize the properties of the materials. The compressive strength, setting time and weight loss rate of samples were also tested. Cytotoxicity was evaluated by a Cell Counting Kit-8 assay. The results suggest that the tuning of α-TCP and SFF has an important role in determining the compressive strength and degradation rate of CS bone cements, and the properties could be changed by varying the content of α-TCP. Moreover, cell experiments showed no toxicity of the samples towards MC3T3 cells. Thus, the materials prepared from α-CSH, CSD, α-TCP and SFF in this work could provide the basis for research into CS-based bone repair materials.

015010

, , , , , and

In this paper, a facile and efficient preparation strategy for a porous and hydrophilic chitosan sponge is demonstrated, combining a surfactant and a pore-foaming agent. The resulting chitosan sponge possesses an interconnected pore structure and soft texture, exhibits fast water absorption rate and capacity, and the compressed sponge can achieve full shape recovery 5 s after absorbing water. Moreover, our process removes the residual acid commonly found in chitosan sponges prepared by the acid method. In addition, the results demonstrate the useful characteristics of our chitosan sponge, in terms of its contribution to improved blood coagulation, together with its compression strength and biocompatibility. It also demonstrates effective antibacterial properties in relation to both Escherichia coli and Staphylococcus aureus. Further testing via animal experimentation reveals that rapid hemostasis can be achieved within 50 s using our chitosan sponge.

015011

, , , , , , , , , et al

A calcium phosphate (CaP)-based scaffold used as synthetic bone grafts, which smartly combines precise dimensions, controlled porosity and therapeutic functions, presents benefits beyond those offered by conventional practices, although its fabrication is still a challenge. The sintering step normally required to improve the strength of the ceramic scaffolds precludes the addition of any biomolecules or functional particles before this stage.

This study presents a proof of concept of multifunctional CaP-based scaffolds, fabricated by additive manufacturing from an innovative ink composition, with potential for bone regeneration, cancer treatment by local magnetic hyperthermia and drug delivery platforms. Highly loaded inks comprising iron-doped hydroxyapatite and β-tricalcium phosphate powders suspended in a chitosan-based solution, in the presence of levofloxacin (LEV) as model drug and magnetic nanoparticles (MNP), were developed. The sintering step was removed from the production process, and the integrity of the printed scaffolds was assured by the polymerization capacity of the ink composite, using genipin as a crosslinking agent. The effects of MNP and LEV on the inks' rheological properties, as well as on the mechanical and structural behaviour of non-doped and iron-doped scaffolds, were evaluated. Magnetic and magneto-thermal response, drug delivery and biological performance, such as cell proliferation in the absence and presence of an applied magnetic field, were also assessed. The addition of a constant amount of MNP in the iron-doped and non-doped CaP-based inks enhances their magnetic response and induction heating, with these effects more pronounced for the iron-doped CaP-based ink. These results suggest a synergistic effect between the iron-doped CaP-based powders and the MNP due to ferro/ferrimagnetic interactions. Furthermore, the iron presence enhances human mesenchymal stem cell metabolic activity and proliferation.

015012

and

Many growth factors have been paired with synthetic bone grafts to accelerate the healing process in vivo. Collagen has been particularly examined as a mediator of the enhancement of bone regeneration. This study investigated the new bone formation potential of micro–macroporous biphasic calcium phosphate (m-BCP), high porosity biphasic calcium phosphate (p-BCP), and collagen-coated p-BCP (cp-BCP) using a rabbit calvarial defect model. At 2 or 8 weeks after surgery, bone tissue was collected. The three-dimensional analysis of new bone formation using synchrotron radiation micro-computed tomography and histological study were conducted. The new bone formation values observed at 2 and 8 weeks in the negative control, m-BCP, p-BCP, and cp-BCP groups were 11.21 ± 1.36 mm3, 21.75 ± 1.18 mm3, 24.59 ± 1.26 mm3, and 29.54 ± 2.72 mm3, respectively, and 18.34 ± 3.99 mm3, 32.27 ± 3.78 mm3, 43.12 ± 1.61 mm3, and 58.20 ± 3.84 mm3, respectively. New bone formation was greatest in the cp-BCP group, while the amount of new bone at 8 weeks was higher than at 2 weeks in each group. The use of cp-BCP to enhance new bone formation during the healing period could improve bone regeneration.

015013
The following article is Open access

, , , , , , , , , et al

Stent-related granulation tissue hyperplasia is a major complication that limits the application of stents in airways. In this study, an arsenic trioxide-eluting electrospun nanofiber-covered self-expandable metallic stent (ATO-NFCS) was developed. Poly-L-lactide-caprolactone (PLCL) was selected as the drug-carrying polymer. Stents with two different ATO contents (0.4% ATO/PLCL and 1.2% ATO/PLCL) were fabricated. The in vitro release in simulated airway fluid suggested that the total ATO release time was 1 d. The growth of human embryonic pulmonary fibroblasts (CCC-HPF-1), normal human bronchial epithelial cells and airway smooth muscle cells was inhibited by ATO. When embedded in paravertebral muscle, the nanofiber membrane showed good short-term and long-term biological effects. In an animal study, placement of the ATO-NFCS in the trachea through a delivery system under fluoroscopy was feasible. The changes in liver and kidney function 1 and 7 d after ATO-NFCS placement were within the normal range. On pathological examination, the heart, liver, spleen, lungs and kidneys were normal. The effectiveness of the ATO-NFCS in reducing granulation tissue hyperplasia and collagen deposition was demonstrated in the rabbit airway (n = 18) at 4 weeks. The present study preliminarily investigated the efficacy of the ATO-NFCS in reducing granulation tissue formation in the trachea of rabbits. The results suggest that the ATO-NFCS is safe in vivo, easy to place, and effective for the suppression of granulation tissue formation.

015014

, , , and

The current biological valve products used in transcatheter aortic valve replacement (TAVR) are mainly made of glutaraldehyde (GLUT)-crosslinked porcine and bovine pericardia, which need to be transported and stored in GLUT solution. This leads to prolonged preparation time and the presence of GLUT residue. Therefore, there has been interest in developing TAVR valves using a pre-crimped valve (also known as a dry valve). Herein, a natural, inexpensive, and widely available swim bladder was selected as the source of a biological valve functioning as a dry valve and was obtained via acellular processes and crosslinking fixation. With the help of multiple hydrogen bonds between polyphenols (represented by procyanidin and curcumin) and tissue, as well as the chemical crosslinking of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) with tissue, we found that this novel combined crosslinking method was able to successfully crosslink with an acellular swim bladder. The stabilities, mechanical properties, resistance to pre-folding/pre-compressing, flattening capability in water, hemocompatibility, cytocompatibility, and anti-calcification capability were systematically measured via a series of experiments. We demonstrated that this dry valve resulting from a combination of EDC/polyphenols exhibited superior properties compared with those of a control pericardial-based valve.

015015

, , , , , , , , , et al

Surface roughness, bioactivity, and antibacterial properties are desirable in skeletal implants. We hot-pressed a mix of particulate sodium chloride (NaCl) salt and silicon nitride (β-Si3N4) onto the surface of bulk PEEK. NaCl grains were removed by leaching in water, resulting in a porous PEEK surface embedded with sim15 vol% β-Si3N4 particles. This functionalized surface showed the osteogenic and antibacterial properties previously reported in bulk silicon nitride implants. Surface enhancement of PEEK with β-Si3N4 could improve the performance of spinal fusion cages, by facilitating arthrodesis and resisting bacteria.

015016

, , , , and

The use of alloplastic materials in periodontal regenerative therapies is limited by their incapacity to establish a dynamic dialog with the surrounding milieu. The aim of the present study was to control biomaterial surface bioactivity by introducing aptamers to induce the selective adsorption of fibronectin from blood, thus promoting platelets activation in vitro and bone regeneration in vivo. A hyaluronic acid/polyethyleneglycole-based hydrogel was enriched with aptamers selected for recognizing and binding fibronectin. In vitro, the capacity of constructs to support osteoblast adhesion, as well as platelets aggregation and activation was assessed by chemiluminescence within 24 h. Matrices were then evaluated in a rat periodontal defect to assess their regenerative potential by microcomputed tomography (µCT) and their osteogenic capacity by Luminex assay 5, 15 and 30 d postoperatively. Aptamers were found to confer matrices the capacity of sustaining firm cell adhesion (p = 0.0377) and to promote platelets activation (p = 0.0442). In vivo, aptamers promoted new bone formation 30 d post-operatively (p < 0.001) by enhancing osteoblastic lineage commitment maturation. Aptamers are a viable surface modification, which confers alloplastic materials the potential capacity to orchestrate blood clot formation, thus controlling bone healing.

015017

, , , and

Magnesium (Mg) is a potential alternative for conventional orthopaedic implant materials owing to its biodegradation behavior and physical characteristics similar to natural human bone. Due to its biomimetic mechanical attributes, Mg in orthopaedic applications could reduce the risk of the 'stress shielding effect'. However, the major limitation of Mg is its high in-vivo corrosion rate. Thermal sprayed coatings of osteoconductive ceramics like hydroxyapatite (HA) have been explored as a potential solution, albeit with limited success due to the low melting point of Mg, which restricts the ease of fabricating surface-adherent ceramic coating. The present study focuses on overcoming this limitation through a Mg-HA functionally gradient material (FGM) system, which is expected to provide a highly corrosion-resistant surface and uniform mechanical integrity throughout the structure. In addition to corrosion resistance, the FGM system has improved biocompatibility and osteoconductivity without compromising its mechanical stability. The FGM, with a compositional gradient of Mg-HA composite, consisting of Mg at the core and increasing HA towards the outer layer, has been fabricated through spark plasma sintering. Mechanical properties of the overall structure were better than those of the best individual composite. More importantly, corrosion resistance of the FGM structure was significantly improved (~154%) as compared to individual composites. In addition, alkaline phosphatase activity, osteogenic gene expression and cell viability, all pertaining to efficient osteogenic differentiation, were enhanced for FGM and 15 wt% HA reinforced composites. These observations suggest that the FGM structure is promising for temporary biodegradable orthopaedic implants.

015018

, , and

This is the final report of the study aimed at assessing the antimicrobial activity of calcium phosphate (CP) nanoparticles delivered in the form of hydroxyapatite (HAp) or amorphous CP (ACP) and understanding the fundamental principles behind their mechanisms of action. Not responding to propidium iodide and causing no gross morphological changes except moderate stress-induced filamentation in Escherichia coli (E. coli), CP nanoparticles were shown to be bacteriostatic, not bactericidal. Also, the lack of expression of genes involved in DNA repair indicated no genotoxic activity. In contrast, the softening of amide infrared bands and the partial dissociation of lipopolysaccharide structures comprising the membrane of Gram-negative Pseudomonas aeruginosa (P. aeruginosa) was detected in a vibrational spectroscopic analysis of the nanoparticle/bacterium interaction. Similarly, the inhibition of the growth of Staphylococcus aureus (S. aureus) was paralleled by a reduced integrated intensity and the softening of the C = O ester carbonyl stretch in lipoteichoic acid, a major component of the Gram-positive cell membrane. Electron microscopy analyses confirmed that changes to the cell membrane are a major mode of action of CP nanoparticles. While HAp got internalized by E. coli significantly more than ACP, the membrane damage was more pronounced in ACP-treated bacteria, which was explained by the higher surface reactivity of ACP. HAp nanoparticles decreased the activity of overexpressed efflux pumps in methicillin-resistant S. aureus, suggesting that they may hijack these pumps and use them to enter the cell without producing any visible damage to the membrane, thus acting on the cell from the inside out, as opposed to ACP, whose action is mostly external in mechanism. This may explain why HAp, unlike ACP, suppresses the mechanisms of resistance in methicillin- and multidrug-resistant S. aureus and P. aeruginosa, respectively. The findings of this study will be essential in the optimization of these nanoparticles for becoming an alternative to less biocompatible inorganics and small molecule antibiotics in the global effort to curb the rising resistance of bacterial pathogens to the existing therapies.

015019

, , , and

3D printing technology has various advantages, and the incorporation of bioactive substances into the 3D printed scaffold provides the biological and architectural characteristics of the scaffolds, which is very important for obtaining a good osseointegration effect. In this relation, this study prepared a novel porous hollow cage poly(lactic acid) (PLA) 3D printed scaffold and combined recombinant human bone morphogenetic protein-2 (rhBMP-2) and/or mesenchymal stem cells (MSCs) with Biogel composed of gelatin and alginate. Then, the scaffolds were used to evaluate the resulting bone regeneration through both in vitro and in vivo tests. The experimental group was divided into four groups as follows: only PLA scaffold (PLA); PLA scaffold filled with BMP-2 loaded on Biogel (P-BG-B2); PLA scaffold filled with MSCs encapsulated Biogel (P-BG-M); PLA scaffold filled with both BMP-2 and MSCs loaded on Biogel (P-BG-B2-M). Then in vitro results showed that the PLA-Biogel-based scaffold increased cell proliferation, and the P-BG-B2-M group showed a higher alkaline phosphatase activity and bone-related gene expression than was seen with the P-BG-M group at all the time points. It was shown that four weeks post-operative micro-CT analysis showed that within the defect site the P-BG-B2 group had a significantly higher percent bone volume (BV/TV) than the PLA group and P-BG-M group. And, out of the defect site, the P-BG-B2-M group BV/TV was shown significantly higher than the PLA group (p < 0.05). Histologically, defects in the P-BG-B2-M group showed a homogeneous new bone distribution, however the P-BG-B2 group and P-BG-M group presented a notably higher bone formation in the internal region than in the proximal region of the bone defect site. In conclusion, the 3D PLA-Biogel-based scaffold adapted rhBMP-2 and MSCs with carrier PLA showed good biocompatibility and high possibility as an effective and satisfactory bone graft material.

015020

, and

Antimicrobial peptides (AMPs) are considered as novel potential alternatives to antibiotics against increasing number of multi drug resistant (MDR) pathogens. Although AMPs have shown strong antimicrobial activity against gram-negative or gram-positive microorganisms, AMP conjugated biomaterials that are effective against MDR microorganisms are yet to be developed. Herein, the potential use of (RWRWRWRW)-NH2 (AMP-1) and KRFRIRVRV-NH2 (AMP-2) peptide conjugated electrospun polylactic–co-glycolic-acid (PLGA) nanofibers (NFs) fabricated and their antimicrobial effect by themselves and in their dual combination (1:1) were evaluated on P. aeruginosa and methicillin-resistant S. aureus (MRSA). Those AMP conjugated NFs did not inhibit proliferation of keratinocytes. These results suggest that AMP conjugated NF, which has multiple biological activities, would be a promising candidate as a wound dressing material.

015021

, , , , and

Additive manufacturing has shown promising results in reconstructing three-dimensional (3D) living tissues for various applications, including tissue engineering, regenerative medicine, drug discovery, and high-throughput drug screening. In extrusion-based bioprinters, stable formation of filaments and high-fidelity deposition of bioinks are the primary challenges in fabrication of physiologically relevant tissue constructs. Among various bioinks, gelatin methacryloyl (GelMA) is known as a photocurable and physicochemically tunable hydrogel with a demonstrated biocompatibility and tunable biodegradation properties. The two-step crosslinking of GelMA (reversible thermal gelation and permanent photo-crosslinking) has attracted researchers to make complex tissue constructs. Despite promising results in filament formation and printability of this hydrogel, the effect of temperature on physicochemical properties, cytocompatibility, and biodegradation of the hydrogel are to be investigated. This work studies the effect of thermoreversible, physical crosslinking on printability of GelMA. The results of 3D printing of GelMA at different temperatures followed by irreversible chemical photo-crosslinking show that the decrease in temperature improves the filament formation and shape fidelity of the deposited hydrogel, particularly at the temperatures around 15 °C. Time dependant mechanical testing of the printed samples revealed that decreasing the extruding temperature increases the elastic properties of the extruded filaments. Furthermore, our novel approach in minimizing the slippage effect during rheological study enabled to measure changes in linear and non-linear viscoelastic properties of the printed samples at different temperatures. A considerable increase in storage modulus of the extruded samples printed at lower temperatures confirms their higher solid behavior. Scanning electron microscopy revealed a remarkable decrease in porosity of the extruded hydrogels by decreasing the temperature. Chemical analysis by Fourier-transform infrared spectroscopy and circular dichroism showed a direct relationship between the coil-helix transition in hydrogel macromers and its physical alterations. Finally, biodegradation and cytocompatibility of the extruded hydrogels decreased at lower extruding temperatures.

015022

, , , , , , and

An ongoing challenge in drug delivery systems for a variety of medical applications, including cardiovascular diseases, is the delivery of multiple drugs to address numerous phases of a treatment or healing process. Therefore, an extended dual drug delivery system (DDDS) based on our previously reported cardiac DDDS was generated. Here we use the polymer poly(L-lactide) (PLLA) as drug carrier with the cytostatic drug Paclitaxel (PTX) and the endothelial cell proliferation enhancing growth factor, human vascular endothelial growth factor (VEGF), to overcome typical in-stent restenosis complications. We succeeded in using one solution to generate two separate DDDS via spray coating (film) and electrospinning (nonwoven) with the same content of PTX and the same post processing for VEGF immobilisation. Both processes are suitable as coating techniques for implants. The contact angle analysis revealed differences between films and nonwovens. Whereas, the morphological analysis demonstrated nearly no changes occurred after immobilisation of both drugs. Glass transition temperatures (Tg) and degree of crystallinity (χ) show only minor changes. The amount of immobilised VEGF on nonwovens was over 300% higher compared to the films. Also, the nonwovens revealed a much faster and over three times higher PTX release over 70 d compared to the films. The almost equal physical properties of nonwovens and films allow the comparison of both DDDS independently of their fabrication process. Both films and nonwovens have significantly increased in vitro cell viability for human umbilical vein endothelial cells (EA.hy926) with dual loaded PTX and VEGF compared to PTX-only loaded samples.

015023

, , , and

Thiol modification of beta cyclodextrin (β-CD) was carried out using thiourea, which served as a thiol donor. The chemical reaction was mediated using HCl. Polymer prepared via thiolation was further subjected to physicochemical and biocompatible analysis. Acute oral toxicity and compatibility was determined in albino rats. Furthermore, compressed tablets of ticagrelor (TCG) were prepared using modified and unmodified polymers and evaluated via various quality control tests. Thiolation was successfully achieved and confirmed by the FTIR scan, as a significant corresponding peak was observed at 2692 cm−1 wavenumber, demonstrating the attachment of –SH group. In vivo analysis has confirmed the safe use of β-CD, as none of the vital organs showed any kind of toxic effects. Dissolution studies revealed that Tβ-CD was able to release 96.62% of the drug within 1 h of the study, hence providing an immediate release. Conclusively, a thiol moiety was successfully attached to the polymeric backbone and was found safe to be used as a pharmaceutical excipient.

015024

, , , , , and

Micro/nano-topography (MNT) can promote osteogenic differentiation of stem cells, but the mechanism of topographical signaling transduction remains unclear. We have confirmed MNT, as a stressor, triggers endoplasmic reticulum (ER) stress and activates unfolded protein response in rat bone marrow mesenchymal stem cells, and such topography-induced ER stress promotes osteogenic differentiation. In order to reveal the influence of nanotube dimensions on ER stress, MNTs containing vertically oriented TiO2 nanotubes of diameters ranging from 30 nm to 100 nm were fabricated on pure titanium (Ti) foils, and ER stress and osteogenic differentiation of cells were systematically studied. After 12 h of cultivation, the transmission electron microscopy showed that cells on MNTs presented gross distortions of rough ER morphology containing the electron-dense material, and the expansion of the ER lumen became more pronounced as the dimension of nanotubes increased. Additionally, PCR and western blotting showed that the ER stress-related gene, the ER chaperone 78 kDa glucose-regulated protein, also known as binding-immunoglobulin protein (GRP78/BiP), was up-regulated, which was consistent with the osteogenesis-inducing ability of MNTs. Based on our previous studies, the findings in this article further revealed the mechanism for topographical cues modulating osteogenic differentiation of cells, which may provide an innovative approach for the optimal design of implant surface topography.

015025

, , , , and

Cartilage defects are among the most difficult diseases to cure in clinic. Due to the limited regeneration capacity of chondrocytes, cartilage regeneration is very difficult. Tissue engineering is a potential strategy for cartilage regeneration. The choice of scaffold is a key factor for the successful construction of tissue engineering cartilage. In this research, we successfully constructed the silk/silk fibroin/gelatin/polylactic acid porous microspheres (S/SF/G/PLLA-PMs) scaffold, then further evaluated the physical and chemical properties and biocompatibility of the composite cartilage tissue in vitro and in vivo, also the long-term survival of the composite cartilage in large animals was carried out. The research results showed that S/SF/G/PLLA-PMs composite scaffold had good biocompatibility. The addition of L-polylactic acid porous microspheres (PLLA-PMs) could significantly enhance the mechanical strength of the scaffold and achieve a multi-level pore structure. After 4 weeks of culture in vitro, composite cartilage could be constructed. Further immunohistochemical results showed that S/SF/G/PLLA-PMs scaffold could increase the long-term stability of the composite cartilage transplantation in vivo.

015026
The following article is Open access

, , , , and

Flow diversion aims at treatment of intracranial aneurysms via vessel remodeling mechanisms, avoiding the implantation of foreign materials into the aneurysm sack. However, complex implantation procedure, high metal surface and hemodynamic disturbance still pose a risk for thromboembolic complications in the clinical praxis. A novel fibrin and heparin based nano coating considered as a hemocompatible scaffold for neointimal formation was investigated regarding thrombogenicity and endothelialization. The fibrin-heparin coating was compared to a bare metal as well as fibrin- or heparin-coated flow diverters. The implants were tested separately in regard to inflammation and coagulation markers in two different in vitro hemocompatibility models conducted with human whole blood (n = 5). Endothelialization was investigated through a novel dynamic in vitro cell seeding model containing primary human cells with subsequent viability assay. It was demonstrated that platelet loss and platelet activation triggered by presence of a bare metal stent could be significantly reduced by applying the fibrin-heparin, fibrin and heparin coating. Viability of endothelial cells after proliferation was similar in fibrin-heparin compared to bare metal implants, with a slight, non-significant improvement observed in the fibrin-heparin group. The results suggest that the presented nanocoating has the potential to reduce thromboembolic complications in a clinical setting. Though the new model allowed for endothelial cell proliferation under flow conditions, a higher number of samples is required to assess a possible effect of the coating.

015027

, , , , and

Diabetes mellitus, a complex metabolic disorder, leads to many health complications like kidney failure, diabetic heart disease, stroke, and foot ulcers. Treatment approaches of diabetes and identification of the mechanisms underlying diabetic complications of the skin have gained importance due to continued rapid increase in the diabetes incidence. A thick and pre-vascularized in vitro 3D type 2 diabetic human skin model (DHSM) was developed in this study. The methacrylated gelatin (GelMA) hydrogel was produced by photocrosslinking and its pore size (54.85 ± 8.58 μm), compressive modulus (4.53 ± 0.67 kPa) and swelling ratio (17.5 ± 2.2%) were found to be suitable for skin tissue engineering. 8% GelMA hydrogel effectively supported the viability, spreading and proliferation of human dermal fibroblasts. By isolating dermal fibroblasts, human umbilical vein endothelial cells and keratinocytes from type 2 diabetic patients, an in vitro 3D type 2 DHSM, 12 mm in width and 1.86 mm thick, was constructed. The skin model consisted of a continuous basal epidermal layer and a dermal layer with blood capillary-like structures, ideal for evaluating the effects of anti-diabetic drugs and wound healing materials and factors. The functionality of the DHSM was showed by applying a therapeutic hydrogel into its central wound; especially fibroblast migration to the wound site was evident in 9 d. We have demonstrated that DHSM is a biologically relevant model with sensitivity and predictability in evaluating the diabetic wound healing potential of a therapeutic material.

015028

, , , , , , and

The fused-deposition modeling (FDM) process is carried out at an elevated temperature, preventing the addition of biological factors, drugs, bioactive compounds, etc, during fabrication. To overcome this disadvantage, a 3D interlinked porous polylactic acid (PLA) scaffold was fabricated by FDM, followed by the embedding of a polycaprolactone (PCL) scaffold into the pores of the PLA at room temperature, yielding a PLA-PCL scaffold. In addition, PLA-PCL scaffolds with nanohydroxyapatite (PLA-PCL-nHAP) and multiwalled carbon nanotubes (PLA-PCL-MWCNT) were also fabricated. Here, the FDM-fabricated PLA scaffold functions as the structural component, whereas the embedded PCL scaffold acts as the functional component, which provides a the ability to functionalize the scaffolds with the desired chemical or biological materials. The embedding process is straightforward, cost effective, and does not require sophistication. A mechanical characterization of the scaffolds suggests that the Young's modulus of the PLA-PCL scaffold (16.02 MPa) was higher than that of the FDM-fabricated PLA (9.98 MPa) scaffold, by virtue of embedded PCL matrix. In addition, finite element analysis showed that the von Mises stress on a mandible with scaffolds was 4.04 MPa, whereas for a mandible with a defect, it was 6.7 MPa, confirming the stress distribution efficiency and mechanical stability of these scaffolds. Furthermore, field emission-scanning electron microscope analysis implied the presence of interlinked porous structures with pore diameters of 50 µm to 300 µm. X-ray diffraction results revealed an increased crystallinity (%) in the embedded models (PLA-PCL, PLA-PCL-nHAP and PLA-PCL-MWCNT), compared to a PLA printed scaffold. Additionally, Raman analysis revealed that the embedding process did not cause chemical alterations in the polymeric chains. In vitro analysis with human osteoblasts demonstrated the osteoconductive nature of the scaffold, which supported mineralization. In brief, the advantage of our model is that it helps to overcome the difficulties of manufacturing a filament with the desired additives for FDM, and offers the ability to incorporate the desired concentrations of heat-labile bioactive molecules during the embedding process at ambient temperatures.

015029

, , , , , , , , and

The biomechanical characteristics of tendon grafts is essential for tendon reconstructive surgery due to its great role in providing a good mechanical environment for tendon healing and regeneration. In our previous studies, the decellularized tendon slices (DTSs) and decellularized bovine tendon sheets (DBTSs) scaffolds were successfully developed. However, the influence of the integrity of tendinous membrane (endotenon and epitenon) and fascicle on biomechanical characteristics of these two scaffolds was not investigated. In this study, we assessed the integrity of tendinous membrane and fascicle of the tendon derived scaffolds and its effect on the biomechanical characteristics. The results of histological staining indicated that the DBTSs had complete endotenon and epitenon, while DTSs had no epitenon at all, only part of endotenon was remained. Furthermore, the DBTSs, and DTSs with thickness of 900 μm had complete fascicles, while DTSs with thickness less than 600 μm had almost no complete fascicles. The fibrous configuration of epitenon was well-preserved in the surface of the DBTSs but the surface ultrastructure of the DTSs was aligned collagen fibers based on scanning electron microscopy examination. The results of transmission electron microscopy showed that there was no significant difference between the DBTSs and DTSs. Mechanically, the DBTSs and DTSs with thickness of 900 μm showed similar ultimate tensile strength and stiffness to native tendon segments (NTSs). The strain at break and suture retention strength of the DBTSs showed much higher than that of the DTSs (p < 0.05). Additionally, the DBTSs showed higher ultimate load than the DTSs when these scaffolds were sutured with NTSs (p < 0.05) through the modified Kessler technique based on a uniaxial tensile test. This study demonstrated that DTSs may be used as a patch for reinforcing tendon repair, while DBTSs may be used as a bridge for reconstructing tendon defects.

015030

, , , , and

The aim of this study was to evaluate the antimicrobial efficacy of adding a gentamicin palmitate (GP) coating and zirconium dioxide (ZrO2) to biodegradable poly(3-hydroxybutyrate) (PHB) to reduce biofilm formation. Cylindrical pins with and without a coating were incubated in Müller-Hinton broth inoculated with 2 × 105 colony-forming units (CFU) ml-1 of Staphylococcus aureus for 2 d or 7 d, then sonicated to disrupt biofilms. Pure PHB (PHB + GP) and PHB pins with ZrO2 added (PHBzr + GP) were coated with GP and compared with PHB pins lacking a coating (PHB). Cells (CFU) were counted to quantify the number of bacteria in the biofilm and a cell proliferation assay was employed to evaluate metabolic activity, and scanning electron microscopy (SEM) was performed to visualize the structure of the biofilm. After 2 d of incubation there were significantly more cells in biofilms on PHB pins than PHB + GP and PHBzr + GP pins (p < 0.0001), and cells in the sonication fluid obtained from GP-coated pins exhibited significantly lower metabolic activity than cells from uncoated PHB pins (p < 0.0001). After 7 d of incubation metabolic activity was lowest for PHBzr + GP, with significant differences between PHB and PHBzr + GP (p = 0.001). SEM revealed more cells attached to the surface, and more structured biofilms, on pins without a coating. Coating pins with GP significantly reduced early biofilm formation on PHB implants. This could lower the potential risk of surgical site infections when using PHB implants. Addition of ZrO2 might further enhance the antibacterial properties. Such modification of the implant material should therefore be considered when developing new biodegradable PHB implants.

Corrigendum