Brought to you by:

Table of contents

Volume 34

Number 10, 5 March 2023

Previous issue Next issue

Buy this issue in print

Papers

Biology and medicine

105101

, , , , and

Ellipsoidal-Fe3O4@SiO2@mSiO2-C18@dopamine hydrochloride-graphene quantum dots-folic acid (ellipsoidal-HMNPs@PDA-GQDs-FA), a dual-functional drug carrier, was stepwise constructed. The α-Fe2O3 ellipsoidal nanoparticles were prepared by a hydrothermal method, and then coated with SiO2 by Stöber method. The resulting core–shell structure, Fe3O4@SiO2@mSiO2-C18 magnetic nano hollow spheres, abbreviated as HMNPs, was finally grafted with graphene quantum dots (GQDs), dopamine hydrochloride (PDA) and folic acid (FA) by amide reaction to obtain HMNPs@PDA-GQDs-FA. Transmission electron microscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy and element analysis proved the successful construction of the HMNPs@PDA-GQDs-FA nanoscale carrier-cargo composite. The carrier HMNPs@PDA-GQDs-FA has higher load (51.63 ± 1.53%) and release (38.56 ± 1.95%) capacity for gambogic acid (GA). Cytotoxicity test showed that the cell survival rate was above 95%, suggesting the cytotoxicity of the carrier-cargo was very low. The cell lethality (74.91 ± 1.2%) is greatly improved after loading GA because of the magnetic targeting of HMNPs, the targeting performance of FA to tumor cells, and the pH response to the surrounding environment of tumor cells of PDA. All results showed that HMNPs@PDA-GQDs-FA had good biocompatibility and could be used in the treatment of VX2 tumor cells after loading GA.

105102

, , , , , and

Electrohydrodynamic (EHD) printing has been considered as a mature strategy to mimic the hierarchical microarchitectures in native extracellular matrix (ECM). Most of the EHD-printed scaffolds possess single-dimensional fibrous structures, which cannot mimic the multi-dimensional architectures for enhanced cellular behaviors. Here we developed a two-nozzle EHD printing system to fabricate hybrid scaffolds involving submicron and microscale features. The polyethylene oxide- polycaprolactone (PEO-PCL) submicron fibers were fabricated via solution-based EHD printing with a width of 527 ± 56 nm. The PCL microscale fibers were fabricated via melt-based EHD printing with a width of 11.2 ± 2.3 μm. The hybrid scaffolds were fabricated by printing the submicron and microscale fibers in a layer-by-layer manner. The microscale scaffolds were utilized as a control group. Rat myocardial cells (H9C2 cells) were cultured on the two kinds of scaffolds for the culturing period of 1, 3 and 5 d. Biological results indicated that H9C2 cells showed enhanced adhesion and proliferation behaviors on the hybrid scaffold than those on the pure microscale scaffold. This work offers a facile and scalable strategy to fabricate multiscale synthetic scaffolds, which might be further explored to regulate cellular behaviors in the fields of tissue regeneration and biomedical engineering.

Electronics and photonics

105201

, , and

With the recent discovery of three dimensional Dirac semimetals, their integrations with the optoelectronic devices allow the novel optical effects and functionalities. Here, we theoretically report the photonic spin Hall effect in a periodic structure, where three dimensional Dirac semimetals and the dielectric materials are assembled into the stack. The incident angle and frequency dependent spin shift spectrum reveals that the spin shifts of the transmitted wave in this structure emerge the obvious peaks and valleys for the horizontal polarized wave and their magnitudes and positions display a distinct dependence on the incident angle around the specific frequency. These observations originate from its zero value of the effective perpendicular permittivity and its greatly reduced transmission in the multilayered structure, whose mechanism is different from those in the previous works. Moreover, both the peaks and valleys of the transmitted spin shift are significantly sensitive to the Fermi energy of three dimensional Dirac semimetals, whose magnitudes and positions can be tuned by varying it. Our results highlight the vital role of three dimensional Dirac semimetals in their applications of the spin photonic devices and pave the way to explore the tunable photonic spin Hall effect by engineering their Fermi energies.

105202
The following article is Open access

, , , and

Scanning thermal microscopy (SThM) enables to obtain thermal characteristic information such as temperature and thermal conductivity from the signals obtained by scanning a thermometer probe over a sample surface. Particularly, the precise control of the thermometer probe makes it possible to study near-field radiative heat transfer by measuring the near-field thermal energy, which implies that when light is used as a local heat source, photothermal energy can be detected from the optical near-field by approaching the probe in the near-field region. In this study, SThM is applied to generate sub-wavelength near-field optical image in the plasmonic grating coupler. Herein, by controlling the surface plasmon polariton generation, we show that the dominant component of SThM signal is from the optical response rather than the thermal response. The obtained near-field optical images have a spatial resolution of 40 nm and signal to noise ratio of up to 19.8. In addition, field propagation images in the Z-direction can be visualised with the precise control of the distance between the thermometer probe and the sample

105203

, , , , , , , , and

Transparent conductive films with high stability were prepared by embedding silver nanowires in colorless polyimide and adding a protective layer of exfoliated graphene. The films exhibit great light transmission and conductivity with a sheet resistance of 22 Ω sq−1 at transmittance of 83%. Due to its special embedded structure, the conductive layer can withstand several peeling experiments without falling off. In addition, the most outstanding advantage is the ultra-high stability of the films, including high mechanical robustness, strong chemical corrosion resistance and high operating voltage capacity. The organic light-emitting diode devices prepared based on this transparent conductive electrode exhibit comparable efficiency to indium tin oxide (ITO) based devices, with C.E.max = 2.78 cd A−1, P−1.E.max = 1.89 lm W−1, EQEmax = 0.89%. Moreover, the efficiencies were even higher than that of ITO devices when the operating voltage of the device exceeds 5 V. The above performances show that the transparent conductive electrode based on this structure has high potential for application in organic electronic devices.

Patterning and nanofabrication

105301

, , , , and

A novel methodology, based on wetting and electromigration, for transporting liquid metal, over long distances, at micro-and nano-scale using a stylus is reported. The mechanism is analogous to a dropper that uses 'suction and release' actions to 'collect and dispense' liquid. In our methodology, a stylus coated with a thin metal film acts like the dropper that collects liquid metal from a reservoir upon application of an electric current, holds the liquid metal via wetting while carrying the liquid metal over large distances away from the reservoir and drops it on the target location by reversing the direction of electric current. Essentially, the working principle of the technique relies on the directionality of electromigration force and adhesive force due to wetting. The working of the technique is demonstrated by using an Au-coated Si micropillar as the stylus, liquid Ga as the liquid metal to be transported, and a Kleindiek-based position micro-manipulator to traverse the stylus from the liquid reservoir to the target location. For demonstrating the potential applications, the technique is utilized for closing a micro-gap by dispensing a minuscule amount of liquid Ga and conformally coating the desired segment of the patterned thin films with liquid Ga. This study confirms the promising potential of the developed technique for reversible, controlled manipulation of liquid metal at small length scales.

105302
The following article is Open access

, , , , , and

The formation of nano-pores in graphene crystal structure is alternative way to engineer its electronic properties, chemical reactivity, and surface interactions, enabling applications in technological fields such as sensing, energy and separation. The past few years, nano-perforation of graphene sheets has been accomplished by a variety of different methods suffering mainly from poor scalability and cost efficiency issues. In this work, we introduce an experimental protocol to engineer nanometer scale pores in CVD graphene membranes under ambient conditions, using low power ultra-short laser pulses and overcoming the drawbacks of other perforation techniques. Using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) we visualized and quantified the nanopore network while Raman spectroscopy is utilized to correlate the nano-perforated area with the nanotopographic imaging. We suggest that Raman imaging provides the identification of nanoporous area and, in combination with AFM, we provide solid evidence for the reproducibility of the method, since under these experimental conditions, nanopores of a certain size distribution are formed.

105303
The following article is Open access

, , , , and

Vertical nanostructure technologies are becoming more important for the down scaling of nanoelectronic devices such as logic transistors or memories. Such devices require dense vertical nanostructured channel arrays (VNCA) that can be fabricated through a top-down approach based on group IV materials. We present progresses on the top-down fabrication of highly anisotropic and ultra-dense Si1-xGex (x = 0, 0.2, 0.5) VNCAs. Dense nanowire and nanosheet patterns were optimized through high resolution lithography and transferred onto Si1-xGex substrates by anisotropic reactive ion etching with a fluorine chemistry. The right gas mixtures for a given Ge content resulted in perfectly vertical and dense arrays. Finally we fabricated oxide shell/SiGe core heterostructures by dry- and wet-thermal oxidation and evaluated their applicability for nanostructure size engineering, as already established for silicon nanowires. The impact of the nanostructured shape (wire or sheet), size and Ge content on the oxide growth were investigated and analysed in detail through transmission electron microscopy.

Sensing and actuating

105501

, , , , , , , and

Herein, we proposed a simple non-lithographic way to fabricate hierarchical Al nanopit arrays performed as deep ultraviolet (DUV, 200–300 nm) refractive index sensing. Only by adjusting the Al deposition thickness on the Al nanopit array, the hierarchical Al nanopit arrays with tunable plasmonic properties in the DUV region were obtained. The prepared hierarchical Al nanopit arrays are of very good time stability and its RI sensitivity and concentration detection limit of adenine ethanol solution reach 311 nm/RIU and ${5\times 10}^{-6}\,{\rm{M}},$ respectively, as the Al deposition thickness is 60 nm. Furthermore, the electric field distribution simulation results show that high RI sensing characteristic are mainly attributed to the local surface plasmon resonance. This investigation provides a facile way to develop low cost, high efficient and easily fabricated Al-based RI sensor in the DUV region.

Materials: synthesis or self-assembly

105601

, , , , , and

Epitaxial graphene on SiC is the most promising substrate for the next generation 2D electronics, due to the possibility to fabricate 2D heterostructures directly on it, opening the door to the use of all technological processes developed for silicon electronics. To obtain a suitable material for large scale applications, it is essential to achieve perfect control of size, quality, growth rate and thickness. Here we show that this control on epitaxial graphene can be achieved by exploiting the face-to-face annealing of SiC in ultra-high vacuum. With this method, Si atoms trapped in the narrow space between two SiC wafers at high temperatures contribute to the reduction of the Si sublimation rate, allowing to achieve smooth and virtually defect free single graphene layers. We analyse the products obtained on both on-axis and off-axis 4H-SiC substrates in a wide range of temperatures (1300 °C–1500 °C), determining the growth law with the help of x-ray photoelectron spectroscopy (XPS). Our epitaxial graphene on SiC has terrace widths up to 10 μm (on-axis) and 500 nm (off-axis) as demonstrated by atomic force microscopy and scanning tunnelling microscopy, while XPS and Raman spectroscopy confirm high purity and crystalline quality.

Materials: properties, characterization or tools

105701

, , , , , and

Understanding the excited state behavior of isomeric structures of thiolate-protected gold nanoclusters is still a challenging task. In this paper, based on grand unified model and ring model for describing thiolate-protected gold nanoclusters, we have predicted four isomers of Au24(SR)16 nanoclusters. Density functional theory calculations show that the total energy of one of the predicted isomers is 0.1 eV lower in energy than previously crystallized isomer. The nonradiative relaxation dynamics simulations of Au24(SH)16 isomers are performed to reveal the effects of structural isomerism on relaxation process of the lowest energy states, in which that most of the low-excited states consist of core states. In addition, crystallized isomer possesses the shorter e–h recombination time, whereas the most stable isomer has the longer recombination time, which may be attributed to the synergistic effect of nonadiabatic coupling and decoherence time. Our results could provide practical guidance to predict new gold nanoclusters for future experimental synthesis, and stimulate the exploration of atomic structures of same sized gold nanoclusters for photovoltaic and optoelectronic devices.

105702

, , , , , and

Ultra-small (1.6 nm), water-soluble, white light-emitting (WLE), highly stable (∼8 months) BSA templated metallic (Mg0) nanoclusters (fluorescent magnesium nanoclusters = FMNCs) is developed using the green and facile route. Synthesis was facilitated by the reduction of magnesium salt, where template bovine serum albumin is utilized as a reducing agent and ascorbic acid act as a capping agent to impart stability in water, thereby obtaining stabilized Mg0 nanoclusters In solution, stabilized Mg0 nanoclusters produce white light (450–620 nm with FWHM ∼120 nm) upon 366 nm light excitation. This white light emission was found to have a CIE coordinate of 0.30, 0.33 [pure white light CIE (0.33, 0.33)]. Taking advantage of WLE and ultrasmall size, FMNCs were used for in vitro fluorescence imaging of HaCaT cell lines, yielding blue (τ = 2.94 ns, with a relative of QY = 1.2 % w.r.t QS), green (τ = 3.07 ns; relative quantum yield of 4.6% w.r.t R6G) and red (τ = 0.3 ns) images. Further, incubation of FMNCs with HEK293 (Human embryonic kidney cell) and cancerous MDA-MB-231 (Breast cancer cell line) human cell lines yielded 100 % cell viability. Current work is envisioned to contribute significantly in the area of science, engineering, and nanomedicine.

105703

It is commonly thought that ferromagnetic materials can not find applications in terahertz domain because of their very weak dynamic magnetic responses. However, our results in this paper show that the terahertz (THz) permeability of an isolated L10-FePt alloy nanowire with super hard ferromagnetic properties is significant at 0.348 THz, as long as it is at proper remanent states (for instance, Mr/Ms = 1.0), which are ever thought only possible in some metamaterials. Compared to the gigahertz (GHz) permeability of single Fe nanowire, the THz permeability spectra of L10-FePt are shown obviously different. Unusual negative imaginary parts of permeability (μ'' < 0) is found related to the equivalent negative damping constant, which is explained from the perspective of abnormal precession of natural resonance at THz for FePt nanowire.

105704

, , and

Owning to limited supply of lithium for Li-ion batteries, the development of non-Li-ion batteries (such as Na+, K+ Mg2+, Ca2+, and Al3+ ion batteries) has attracted significant research interest. In this work, by means of the first-principles calculations, we systematically investigated the performance of chalcogenide-terminated MXenes Ti2CT2 (T = O, S, Se, and Te) as electrodes for Li-ion and non-Li-ion batteries, as well as the layer-stacking and electronic properties of Ti2CT2. We find that the stacking type of O and Te terminated Ti2C multilayers with AA stacking differs from that of S and Se terminated Ti2C multilayers with AB stacking. More importantly, Ti2CO2 monolayer can be potential anode material for Na- and K-ion batteries with high capacities and very low diffusion barriers (0.03–0.11 eV), while Ti2CS2 and Ti2CSe2 are promising anode materials with relatively low average open circuit voltages (OCVs) for Na-, K-, and Ca-ion batteries (0.4–0.87 V). Among these materials, Ti2CS2 exhibits the largest ion capacity of 616 mAh g−1. These results of our work may inspire further studies of Ti2C-MXenes multilayers as electrodes for metal-ion batteries either experimentally or theoretically.

105705

, , and

Spin pumping is a key property for spintronic application that can be realized in heavy metal/ferromagnet bilayers. Here we demonstrate the possibility of improving spin pumping in permalloy (Py)/tantalum (Ta) bilayers through control of Ta heavy metal deposition temperature. Through a combination of structural and ferromagnetic resonance based magnetization dynamics study, we reveal the role of Ta deposition temperature in improving spin mixing conductance which is a key parameter for spin pumping across the Py/Ta interface. The results show that by depositing Ta above room temperature, a high spin mixing conductance of 7.7 ×1018 m−2 is obtained with α-Ta layer. The results present an understanding of the correlation between heavy metal deposition temperature and interface structure improvement and consequent control of spin pumping in Py/Ta bilayers.

105706

, , , , and

Cerium oxide (CeO2) is a well-known antioxidant with the ability to scavenge reactive oxygen species due to its unique electronic structure and chemical properties. Although many methods to enhance the antioxidant activity of CeO2 have been reported, its antioxidant activity is still not high enough, and some enhancement effects are limited by the material concentration. There are also some CeO2 obtained with high antioxidant activity at high concentrations, which is not conducive to the application of biomedicine. Therefore, it is urgent to obtain CeO2 material with low cell cytotoxicity, high antioxidant activity and wide application range. In this work, rod-like metal organic framework derived CeO2 (CeO2-MOF) was prepared by a simple method. Compared with the CeO2 nanorods prepared by hydrothermal method, it shows better antioxidant activity compared with the CeO2 nanorods prepared by hydrothermal method. Moreover, the advantage of CeO2-MOF's antioxidant activity is not affected by the hydroxyl radical and material concentrations The reason why CeO2-MOF has higher antioxidant activity should be attributed to its higher Ce3+ content and larger specific surface area. In addition, CeO2-MOF also exhibits low cytotoxicity to HeLa cells and PC12 cells in vitro. The strategy of using MOF as a structural and compositional material to create CeO2 provides a new method to explore highly efficient and biocompatible CeO2 for practical applications.

105707

, , , , , and

Ethanol is a harmful volatile organic compound (VOC) for human health. Currently, zinc oxide (ZnO) is one of the most popular metal oxide semiconductors for VOCs detection but suffering from a lack of selectivity, poor response, and slow response/recovery speeds. Herein, we successfully synthesized the ZnO/Ti3C2Tx nanocomposites via a facile hydrothermal method, in which ZnO nanoparticles were uniformly grown on two-dimensional (2D) Ti3C2Tx nanosheets. As a result, the ZnO/Ti3C2Tx nanocomposites showed a significant improvement in the ethanol-sensing performance, when it compared to the pure ZnO and Ti3C2Tx samples. In particular, ZnO doped with 5 mg of Ti3C2Tx showed an ultra-high response (79) to 100 ppm ethanol, a short response/recovery time (22 s/34 s to 50 ppm ethanol), a low limit of detection (1 ppm) and a long-term stability. The excellent ethanol sensing properties are mainly attributed to the coupling effect between ZnO and Ti3C2Tx of composites. The ZnO nanoparticles are uniformly distributed on the 2D Ti3C2Tx platform, which can provide more gas adsorption sites. Simultaneously, the presence of hybrid heterojunctions further enhances the response in the sensing process.

105708

, , , , , and

In this work, an environment-friendly core–shell material based on CDs@SiO2 as the core and mesoporous ion-imprinted layer as the shell was reported. As a highly sensitive and accurate fluorescent sensor for the detection of Pb2+ in environmental water, the composition combined ion imprinting technology with quantum dots to selectively quench the fluorescence of CDs by metal coordination in the presence of Pb2+, and the visual change of gradually weakening blue color could be observed by the naked eye for visual detection. The mesoporous structure significantly improved the detection recognition rate of CDs@SiO2@MIIPs.The molecularly imprinted sensor presented a favorable linear relationship over a Pb2+ concentration range from 10 nmol l−1 to 100 nmol l−1 and a detection limit of 2.16 nmol l−1 for Pb2+. The imprinting factor of the CDs@SiO2@MIIPs was 5.13. The sensor has a fast detection rate, is highly selective in the identification of Pb2+, and can be reused up to 10 times. The applicability of the method was evaluated by the determination of Pb2+ in spiked environmental water samples with satisfactory results.

105709

, , , , , , , and

The exsolution of nanoparticles (NPs) on material surfaces exhibits good performance with great potential in the field of catalysis. In this study, a method with twice lasers treatment (TLT) is proposed for the first time to rapidly promote the exsolution of Co NPs to the surface of (La0.7Sr0.3)0.93Ti0.93Co0.07O3 (LSTC) by laser rapid heating to enhance the electrochemical performance of the LSTC. The entire process from precursor powder—stable perovskite crystal structure—Co NPs exsolution on the LSTC surface takes only ≈36 s by TLT. The Co NPs exsolution was confirmed by x-ray diffractometer, scanning electron microscopy and high-resolution transmission electron microscopy. After TLT, a large number of Co NPs reached 75 particles μm−2 appeared on the surface of LSTC with the onset potential of 1.38 V, the overpotential of 214 mV, and the Tafel slope of 81.14 mV dec−1, showing good catalytic activity and long-term stability. The novel process of using TLT to rapidly induce exsolution of NPs enables the rapid preparation of nanoparticle-decorated perovskite materials with better electrochemical properties, thus enriching exsolution technology and opening a new avenue for surface science research.