Paper The following article is Open access

Study of the conservation properties in two-way coupled dispersed multiphase flows using finite volume methods

, and

Published under licence by IOP Publishing Ltd
, , Citation Linda Bahramian et al 2021 J. Phys.: Conf. Ser. 2116 012071 DOI 10.1088/1742-6596/2116/1/012071

1742-6596/2116/1/012071

Abstract

In order to simulate dispersed multiphase flows, the coupling level must be determined according to the volume fraction in the system. The volume fraction is the ratio of the total volume of the dispersed phases over the total volume of the flow. In dilute flows, with volume fractions smaller than 10-6, only the influence of carrier phase over the dispersed phase is considered which is known as one-way coupling. Nonetheless, in dispersed flows with higher volume fractions, the effect of the dispersed phase over the continuous one should be taken into consideration, known as two-way coupling. This effect normally is applied as a source term in the conservation equations of the carrier phase. Depending on the numerical method and the discrete operators employed, these source terms can lead to some issues when aiming to preserve physical properties like mass, momentum and energy. Moreover, in order to validate the two-way coupling method, a particle-laden turbulent flow benchmark case with a mass loading of 22% is simulated by means of large eddy numerical simulation (LES). The aim of this work is to study the conservation properties of dispersed multiphase flows like momentum, kinetic energy and thermal energy through two-way coupling between dispersed and continuous phases.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2116/1/012071