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Abstract. In order to simulate dispersed multiphase flows, the coupling level must be 
determined according to the volume fraction in the system. The volume fraction is the ratio of 
the total volume of the dispersed phases over the total volume of the flow. In dilute flows, with 
volume fractions smaller than 10-6, only the influence of carrier phase over the dispersed phase 
is considered which is known as one-way coupling. Nonetheless, in dispersed flows with 
higher volume fractions, the effect of the dispersed phase over the continuous one should be 
taken into consideration, known as two-way coupling. This effect normally is applied as a 
source term in the conservation equations of the carrier phase. Depending on the numerical 
method and the discrete operators employed, these source terms can lead to some issues when 
aiming to preserve physical properties like mass, momentum and energy. Moreover, in order to 
validate the two-way coupling method, a particle-laden turbulent flow benchmark case with a 
mass loading of 22% is simulated by means of large eddy numerical simulation (LES). The aim 
of this work is to study the conservation properties of dispersed multiphase flows like 
momentum, kinetic energy and thermal energy through two-way coupling between dispersed 
and continuous phases. 

1.  Introduction 
With the purpose of analyzing the phenomena where one phase is continuous and the other ones are 
dispersed, simulations of dispersed multiphase flow are required. 

Aiming toward the numerical simulation of dispersed multiphase flows, several methods can be 
applied. When the motivation is to simulate two-way coupled dispersed multi-phase flows where up to 
~O(106)-O(109) particles are present in the studied domain, Eulerian-Lagrangian computational 
method is the most well suited. This method easily allows capturing and accounting for non-linearities, 
multi-scale interactions and non-equilibrium effects in poly-dispersed multiphase flows [1]. 

Accordingly, Navier-Stokes equations and a dynamic equation based on Newton’s second law of 
motion (known as BBO-equation [2]) are applied for the carrier phase and tracking the particles, 
respectively. The flow field is discretized and solved on a collocated finite volume grid. The pressure-
velocity coupling is solved by means of the fractional step method  [3]. Moreover, flow field discrete 
equations are advanced in time using the calculated source terms from the previous time step. 

In the present work, numerical simulations of two-way coupled dispersed multiphase flow are 
presented. It is organized as follows: first section is a brief introduction; second section gives an 
overview of the background necessary for understanding the numerical methods and presents the main 
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equations; in third section, first a simple case study is studied and some preliminary results of the 
conservation properties for the considered numerical methods are presented. Following, in order to 
validate the two-way coupling method, a benchmark case is studied; finally, some conclusions are 
drawn in the last section. 

2.  Methodology 
The methods of direct numerical simulation of dispersed multiphase flows have been described 
comprehensively in the literature  [4] [5]. So, the goal of this section is to summarize the essential 
equations and numerical methods that have been applied. The governing equations for determining the 
nth particle position and momentum in time are respectively  [2]: 
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where 𝐱𝐩𝐧 , 𝐯𝐩𝐧 and 𝑚𝑝
𝑛 are center location, velocity and mass of the nth particle. The sum of forces 

appearing in the right-hand side of equation (2) accounts for all the relevant forces acting over the 
particles, e.g., drag, gravity, added mass, pressure gradient force, etc.  

In order to study the conservation properties of the described numerical algorithm, for simplicity, it 
is assumed that the drag force is the only significant fluid-particle interaction force. Therefore, 
equation (2) simplifies to: 
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where 𝜌𝑝 is the density of the particle and 𝐮(𝐱𝐩𝐧) is the velocity of fluid in the position of the nth 
particle. 𝛽 is the momentum exchange coefficient. 𝜌 , 𝑑𝑝 and 𝐶𝐷 are the density of the fluid (assumed 
constant), the diameter of the nth particle and the drag coefficient, respectively. 
The equation for the energy transfer of a single solid particle is determined as  [6]: 
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where 𝑇𝑝 and 𝑇𝑔 are the temperature of the nth particle and fluid, 𝑐𝑝,𝑝 and 𝜆𝑔 are the specific heat for 
the particle and the thermal conductivity of fluid and 𝐺 = 1. 𝑁𝑢, Re𝑝 and Pr𝑔 are the Nusselt number, 
the droplet Reynolds number and the gas phase Prandtl number, respectively. 

Numerical approximation of the fluid velocity at the particle position 𝐮(𝐱𝐩𝐧) is determined by 
interpolating the fluid velocity from a stencil of surrounding nodes. Hence, these interpolations can be 
seen as a weighted sum of the velocities in the computational nodes surrounding particle position.  

According to the fact that the volume fraction of particles is relatively small (i.e. less than 0.1%), 
by neglecting the volume that the particle phase occupies (i.e. dilute approximation) and by 
considering the two-way coupling between particles and fluid, the equations of motion for the fluid 
can be approximated by: 

0∇ ⋅ =u  (5)  
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(6)  

where 𝑝, 𝜇 and 𝑆𝑢 are the pressure, the dynamic viscosity and the momentum source term. 
The thermal energy equation is defined as: 
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where ℎ, 𝐪̇, 𝛕, 𝑄̇ and 𝑆𝑒 are the enthalpy, the conduction heat flux, the viscous stress tensor, a heat 
source term and the thermal source term due to the two-way coupling, respectively. 
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As expressed in the work of Sundaram et al.   [7], the dynamic equation for the total kinetic energy 
in a fluid phase considering a periodic system is: 
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where E and ϕ𝑣 are the total kinetic energy of the fluid and the viscous loss term. The dynamic 
equation for the kinetic energy of a single particle is found by dotting equation (3) with the particle 
velocity. Summing over the total number of particles then yields: 
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where E𝑝 is the total kinetic energy of the particles. 
If we sum equation (9) and (10), the total kinetic energy in the system can be expressed as: 
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As discussed in the work of Sundaram et al.   [7], and according to equation (11), the total kinetic 
energy of the system is dissipated by two mechanisms, a homogeneous term due to viscous losses 
throughout the system and a term that results from the drag imparted by one phase on the other. The 
drag forces, although conservative in their momentum exchange, are dissipative in terms of the total 
kinetic energy. 

3.  Preliminary results 

3.1.  Simple test case 
A cube with a length 𝐿 = 1𝑚 with periodic boundary condition is considered. 105-106 particles with 
density and diameter of 𝜌𝑝 = 1500 𝑘𝑔.𝑚−3 and 𝑑𝑝 = 3 × 10−4𝑚 are distributed randomly in the 
domain.  𝐯𝐩 = (1,0,0)𝑚. 𝑠−1, 𝐮 = (0,0,0)𝑚. 𝑠−1, 𝑇𝑝 = 40℃ and 𝑇𝑔 = 25℃ are the initial velocity 
and temperature for the particles and fluid. 

As it is shown in figure 1, figure 3 and figure 4 due to the two-way coupling approach, the total 
momentum and thermal energy of the system are almost conserved. figure 2 shows that the total 
kinetic energy of the system is almost equal to the expected one due to the dissipation. 
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Figure 1. Momentum conservation versus 
time. 

 Figure 2. Total kinetic energy and the 
Expected total kinetic energy. 

 

 

 

Figure 3. Variation of thermal energy in 
each time step for particles and fluid. 

 Figure 4. Total thermal energy in the 
system. 

3.2.  Real test case 
In this section, a real test case of a particle-laden turbulent flow using two-way coupling approach is 
simulated. The selected case is the flow loop Hercule of Borée et al.  [8] which generates an 
axisymmetric confined bluff body flow. 
 

 

 

 

 

 
Figure 5. Streamwise profiles of fluid (a) 
mean velocity and (b) RMS velocity for 
the particle-laden configuration (M=22%). 
Circle: Experiment; solid line: Numerical 
simulation. 

 Figure 6. Streamwise profiles of particle 
(dp=20μm) (a) mean velocity and (b) RMS 
velocity for the particle-laden configuration 
(M=22%). Circle: Experiment; solid line: 
Numerical simulation. 
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As it is seen in figure 5 and figure 6, the preliminary results show a good agreement for the 
continuous phase velocities, although some discrepancies can be seen for the velocities of the 
dispersed phase. Nonetheless, the trend is well-captured. Further studies are being carried out to assess 
the source of discrepancies. 

4.  Conclusion 
The present work is focused on the study and development of numerical methods in order to enhance 
the conservation properties of the numerical methods for two-way coupled dispersed multiphase 
flows. According to the presented preliminary results, the developed numerical method presents an 
almost constant value for the total momentum and thermal energy of the system. Moreover, the total 
kinetic energy of the system almost matches the theoretically expected one, considering the inherent 
dissipation due to the drag force. 
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