Paper The following article is Open access

3D gas-liquid interfaces and flow characteristics of two-phase flows in horizontal tubes

, , and

Published under licence by IOP Publishing Ltd
, , Citation Jingzhi Zhang et al 2021 J. Phys.: Conf. Ser. 2116 012072 DOI 10.1088/1742-6596/2116/1/012072

1742-6596/2116/1/012072

Abstract

In order to investigate the characteristics of gas-liquid two-phase flows in horizontal mini circular tubes with inner diameters of 3.14 and 6.68 mm, a prism is adopted to improve the light path in the visualization experimental setup. The front and top views of air-water two-phase flow patterns in two tubes are captured synchronously based on the improved method. Three-dimensional gas-liquid interfaces, flow pattern maps, and void fraction are obtained. The experimental results show that tube diameters have significant effects on flow patterns transition lines in the flow pattern maps, but the void fractions are independent on channel sizes. The effect of gravity gradually decreases with decreasing tube diameter, while that of surface tension is enhanced. As a consequence, the proportion of annular flow in flow pattern map increases in mini tubes, while the reverse is true for the stratified flow whose proportion decreases dramatically in mini channels. The void fraction increases with increasing gas quality. Experimental void fractions obtained using the three-dimensional gas-liquid interfaces fit well with correlations in the open literature. The shape of PDF distributions varies with flow patterns, which could be used to identify flow patterns in industrial applications.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/2116/1/012072