Brought to you by:

Table of contents

Volume 298

2018

Previous issue Next issue

International Nuclear Science, Technology and Engineering Conference 2017 (iNuSTEC2017) 25–27 September 2017, Selangor, Malaysia

Accepted papers received: 09 January 2018
Published online: 12 February 2018

Preface

011001
The following article is Open access

IOP Conference Series: Materials Science and Engineering

International Nuclear Science, Technology and Engineering Conference 2017 (iNuSTEC2017)

"Crafting Nuclear Knowledge for Global Well-Being"

Universiti Tenaga Nasional Kajang, Selangor, Malaysia 25 – 27 September 2017

List of Editors, Supporting/Sponsoring Organisations, Contents, Preface, Message From: The President, Malaysian Nuclear Society (MNS), Proceeding Editorial Committee, iNuSTEC2017 Organising Committee, Malaysia Nuclear Society, International Advisory Committee, National Advisory Committee, Scientific and Publication, Win Malaysia Committee, Acknowledgement, MNS Council Members 2017/2019 and MNS Chapters are available in this pdf.

011002
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Papers

Science: Environment

012001
The following article is Open access

and

The process of natural decay of radionuclides that emit gamma rays can infect humans and other living things. In this study, soil samples were taken at various locations which have been identified around the Long Term Storage Facility (LTSF) in Bukit Kledang, Perak. In addition, the respective dose rates in the sampling sites were measured at 5cm and 1m above the ground using a survey meter with Geiger Muller (GM) detector. Soil samples were taken using a hand Auger and then brought back to the laboratory for sample prepreparation process. The measuring of radioactivity concentration in soil samples were carried out using gamma spectrometer counting system equipped with HPGe detector. The obtained results show, the radioactivity concentration ranged from 11.98 – 29.93 Bq/kg for Radium-226 (226Ra), 20.97 – 41.45 Bq/kg for Thorium-232 (232Th) and 5.73 – 59.41 Bq/kg for Potassium-40 (40K), with mean values of 20.83 ± 5.88 Bq/kg, 32.87 ± 5.88 Bq/kg and 21.50 ± 2.79 Bq/kg, respectively. To assess the radiological hazards of natural radioactivity, radium equivalent activity (Raeq), the rate of absorption dose (D), the annual effective dose and external hazard index (Hex) was calculated and compared to the world average values.

012002
The following article is Open access

, , , , , , and

Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.

012003
The following article is Open access

, , , , , , and

The correlation of natural background gamma radiation and real part of the complex relative permittivity (dielectric constant) for various species Malaysian soils was investigated in this research. The sampling sites were chosen randomly according to soils groups that consist of sedentary, alluvial and miscellaneous soil which covered the area of Batu Pahat, Kluang and Johor Bahru, Johor state of Malaysia. There are 11 types of Malaysian soil species that have been studied; namely Peat, Linau-Sedu, Selangor-Kangkong, Kranji, Telemong-Akob-Local Alluvium, Holyrood-Lunas, Batu Anam-Melaka-Tavy, Harimau Tampoi, Kulai-Yong Peng, Rengam-Jerangau, and Steepland soils. In-situ exposure rates of each soil species were measured by using portable gamma survey meter and ex-situ analysis of real part of relative permittivity was performed by using DAK (Dielectric Assessment Kit assist by network analyser). Results revealed that the highest and the lowest background dose rate were 94 ± 26.28 μR hr−1 and 7 ± 0.67 μR hr−1 contributed by Rengam Jerangau and Peat soil species respectively. Meanwhile, dielectric constant measurement, it was performed in the range of frequency between 100 MHz to 3 GHz. The measurements of each soils species dielectric constant are in the range of 1 to 3. At the lower frequencies in the range of 100 MHz to 600 MHz, it was observed that the dielectric constant for each soil species fluctuated and inconsistent. But it remained consistent in plateau form of signal at higher frequency at range above 600 MHz. From the comparison of dielectric properties of each soil at above 600 MHz of frequency, it was found that Rengam-Jerangau soil species give the highest reading and followed by Selangor-Kangkong species. The average dielectric measurement for both Selangor-Kangkong and Rengam-Jerangau soil species are 2.34 and 2.35 respectively. Meanwhile, peat soil species exhibits the lowest dielectric measurement of 1.83. It can be clearly seen that the pattern of dielectric measurement for every soil at the frequency above 600 MHz demonstrated a specific distribution which can be classified into two main regions which are higher and lower between the ranges of 1.83 to 2.35. Pearson correlation analysis between the frequency of 100 MHz and 2.6 GHz with respect to exposure rate for every soil species was r = 0.38 and r = 0.51, respectively. This indicates that there was no strong correlation between both parameter, natural background dose and soils dielectric for each soils sample. This factor could be contributed by major and minor elements contained in each soils sample species, especially Ferum, Fe and Silica, Si.

012004
The following article is Open access

, , , , and

Irradiation of polymers causes structural, chemical and the optical properties changes. Polystyrene nanosphere was drop coated to substrates and the gamma irradiation was carried out in a Cesium-137 (Cs-137) source chamber at different time (1-5 hours) with constant dose of 30 kGy. Fourier transformation infrared spectroscopy (FTIR) and Raman spectroscopy were employed to characterize the chemical properties of irradiated polystyrene while Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to study the surface morphological changes of the samples. The optical energy band gaps of the thin films were investigated and studied using transmittance and absorbance measurements. The results obtained revealed that as irradiation time increases the optical properties changes and polystyrene gradually undergoes crystal to carbonaceous from its amorphous state. The average particles diameter and roughness of the samples decreases with increasing irradiation time.

012005
The following article is Open access

, , , and

Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.

012006
The following article is Open access

, , , , , , , and

The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

012007
The following article is Open access

and

ELF EMF radiation have received considerable attention as a potential threat to the safety and health of people living in the vicinity of high voltage transmission lines, electric distribution substations, power stations and even in close proximity to electronics and electrical household appliances. The paper highlights the study on the ELF EMF safety assessment performed at residences comprising of an owner-occupied house, a completed vacant house and an under construction condominium. The objectives of this study were to determine the ELF EMF radiation exposure level from the high voltage transmission line, electric distribution substation, power station and electrical household appliances in the residences, and to assess the potential exposure received by the occupants at the assessed locations. The results were logged in the electric and magnetic field strength with the units of volt per meter (V/m) and miliGauss (mG) respectively. The instrument setup and measurement protocols during the assessment were adopted from standard measurement method and procedures stipulated under the Institute of Electrical and Electronics Engineers (IEEE) Standard. The results were compared with the standards recommended in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines.

012008
The following article is Open access

, , , , and

Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.

012009
The following article is Open access

, , and

Copper and steel canning and bentonite buffer are normally forseen as the primary containment component of a deep nuclear waste repository. Distribution of microbes in subsurface environments have been found to be extensive and directly or indirectly may exert influence on waste canister corrosion and the mobility of radionuclides. The understanding of clays and microbial interaction with radionuclides will be useful in predicting the microbial impacts on the performance of the waste repositories. The present work characterizes the culture-dependent microbial diversity of Andrassy bentonite recovered from Tawau clay deposits. The evaluation of microbial populations shows the presence of a number of cultivable microbes (e.g. Staphylococcus, Micrococcus, Achromobacter, Bacillus, Paecilomyces, Trichoderma, and Fusarium). Additionally, a pigmented yeast strain Rhodotorula mucilaginosa was also recovered from the formation. Both Bacillus and Rhodotorula mucilaginosa have high tolerance towards U radiation and toxicity. The presence of Rhodotorula mucilaginosa in Andrassy bentonite might be able to change the speciation of radionuclides (e.g. uranium) in a future deep repository. However, concern over the presence of Fe (III) reduction microbes such as Bacillus also found in the formation could lead to corrosion of copper steel canister and affect the overall performance of the containment system.

012010
The following article is Open access

, and

The only factory that currently processes ilmenite to produce synthetic rutile is Tor Minerals in Ipoh, Perak, Malaysia. These two minerals contain radioactive elements such as uranium and thorium. Furthermore, this factory was built close to the residential areas. Thus, the primary issues are radiation exposure attributed to the decay of the radionuclides. Hence, the objectives of this study are to measure the dose and to evaluate activity levels of uranium and thorium. Dose rates from surrounding area of factory indicate the normal range for both on the surface and 1 meter above the ground (0.3-0.7 μSv/hr) lower than the global range of 0.5-1.3 μSv/hr set by UNSCEAR. The mean activity levels of uranium and thorium for ilmenite are 235 Bq/kg and 503 Bq/kg while for synthetic rutile are 980 Bq/kg and 401 Bq/kg, respectively. The result shows that uranium activity levels of synthetic rutile is 4 times higher than ilmenite but it is still lower than the regulatory exemption limit of 1000 Bq/kg set by IAEA Basic Safety Standards. Even though the dose rates at the factory and the activity levels are within safe limits, safety precautions must be followed by the factory management to prevent any unwanted accident to occur.

012011
The following article is Open access

, and

Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

Science: Sustainability

012012
The following article is Open access

, , , and

Micro-flexographic printing is a combination of flexography and micro-contact printing technique. It is a new printing method for fine solid lines printing purpose. Graphene material has been used as depositing agent or printing ink in other printing technique like inkjet printing. This graphene ink is printed on biaxially oriented polypropylene (BOPP) by using Micro-flexographic printing technique. The choose of graphene as a printing ink is due to its wide application in producing electronic and micro-electronic devices such as Radio-frequency identification (RFID) and printed circuit board. The graphene printed on the surface of BOPP substrate was analyzed using X-Ray Photoelectron Spectroscopy (XPS). The positions for each synthetic component in the narrow scan are referred to the electron binding energy (eV). This research is focused on two narrow scan regions which are C 1s and O 1s. Further discussion of the narrow scan spectrum will be explained in detail. From the narrow scan analysis, it is proposed that from the surface adhesive properties of graphene, it is suitable as an alternative printing ink medium for Micro-flexographic printing technique in printing multiple fine solid lines at micro to nano scale feature.

012013
The following article is Open access

, , , , , and

Preliminary experiment has been carried out using irradiated Au-198 as radiotracer inside the laboratory porous media. The objectives are to check the compatibility of Au-198 as the radiotracer inside the porous media as well as to provide insights of fluid hydrodynamics inside the media using gamma camera.198Au is gamma emitter isotope with half-life of 2.7 days and energy of 0.41 MeV (99%). The porous media consists of fine sandstone with grain size 850μm, lubricant as the mimic of original oil in plant (OOIP) or trapped oil and a layer of cement on top of the rig as the bed rock. Gamma camera is arranged next to the porous media in order to capture the movement of radiotracer which has been set to 1minute per frame. Initially, the gold wire which has isotope of 197Au was irradiated inside the rotary rack of Reactor Triga PUSPATI (RTP) to produce 198Au. RTP is located in Nuclear Malaysia, Bangi has energy of 750kW and neutron flux of 5 × 102 n/cm2/s. 198Au, which is in liquid form, is injected inside the porous media and monitored and recorded by gamma camera. The gamma camera gives a quantitative determination of local fluid saturations over the area of observation.

012014
The following article is Open access

, , , , , , , and

The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

012015
The following article is Open access

, , and

Tellurium (Te) is an attractive semiconductor material for a wide range of applications in various functional devices including, radiation dosimeters, optical storage materials, thermoelectric or piezoelectric generators. In this work, large scale synthesis of tellurium (Te) nanostructures have been successfully carried out in different concentrations of aqueous solutions containing TeO2 and NaOH, by galvanic displacements of Zn and Al which served as the sacrificial materials. Galvanic displacement process is cost-effective and it requires no template or surfactant for the synthesis of nanostructures. By varying the concentrations of TeO2 and NaOH, etching temperatures and etching times, Te nanostructures of various forms of nanostructures were successfully obtained, ranging from one-dimensional needles and rod-like structures to more complex hierarchical structures. Microscopy examinations on the nanostructures obtained have shown that both the diameters and lengths of the Te nanostructures increased with increasing etching temperature and etching time.

012016
The following article is Open access

, and

ZnO has received lots of attention in recent years because of its unique properties, rendering it a good candidate material for various industrial applications. Amongst the methods used for synthesizing ZnO structures, hydrothermal technique offers a simple, cost-effective and yet environment friendly synthesis route for the materials. To investigate the effect of substrate on the formation of hydrothermally grown ZnO, several types of substrates were used and the structures of the ZnO were systematically studied by field emission scanning electron microscopy (FESEM). It was demonstrated that the type of substrates used had a great influence on the morphologies, density and alignment of the ZnO formed. Pre-coated substrate with Au yielded highly aligned ZnO nanorod arrays compared to bare Si and Al substrates. Possible mechanisms for the variation of morphology obtained are discussed.

012017
The following article is Open access

, , , and

A novel gamma irradiation induced synthesis method of Gd2O2S:Eu3+ phosphors was investigated in the presence of cetyltrimethylammonium bromide (CTAB). The effect of irradiation doses (50-150kGy) on structural and morphology analysis as well as luminescence properties were characterized by X-ray diffraction (XRD), field emission scanning microscopy (FESEM) and photoluminescence spectrometer (PL). The results show that gamma radiation is potentially induced formation of Gd2O2S:Eu3+ phosphors from radiation reduction and/or precipitation of insoluble compounds as the hexagonal phase structure was formed without any impurities as proven in XRD pattern. The morphologies were observed that the obtained Gd2O2S:Eu3+ phosphors possess sphere structure with smooth surface at 100 kGy irradiated dose. PL spectroscopy reveals that the strongest red emission peaks is located at 626 nm under 325 nm light excitation, which corresponds to 5D07F2 transition of Eu3+ ions. An optimized dose for excellent luminescent was observed at 100 kGy. The results suggested that the Gd2O2S:Eu3+ phosphors may have a beneficial approach in field of imaging device or media.

012018
The following article is Open access

, and

Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

012019
The following article is Open access

, , , and

This study aims to find the optimised heating temperature for carbon extraction from peat soil. Ccarbon from peat soil was extracted by the pyrolisation process at temperature, T = 200, 300, 400, 500, 600 and 700°C for 5 hours. The carbon, C and silica, Si content extracted from peat soil at various heating temperatures were measured by using an Energy Dispersive X-Ray analyzer (EDX) at 3 points on the sample surface. High atomic percentage of carbon (95.44 %) was measured at T = 400°C, while the highest atomic percentage of silicon was recorded at T = 700°C (30.79 %). The surface morphology of peat soil was analysed using Scanning Electron Microscope (SEM) at 800 magnifying power, and it was clearly seen that peat fragments were pyrolised at high heating temperature with pores enhancement. The molecular structure parameter of the extracted carbon were identified using Laser Raman analysis. The peak positions of D-band and G-band for raw peat soil were observed at Raman shift of 1379.62 and 1549.02 cm−1, respectively. Meanwhile, the D-band for peat soil heated at temperature of 400°C was 1391.56 cm−1 whereas the G-band has peak position at 1562.16 cm−1. From the Raman spectra of the optimum heating temperature at 400°C, it was revealed that the carbon molecular structure from the peat soil is mainly attributed by graphite and diamond structure.

012020
The following article is Open access

, , , , and

Particleboards made of oil palm with addition of polylactic acid (PLA), starch, and fish oil were fabricated with target density of 1.0 g/cm3. The mass attenuation coefficients of the particleboards were measured using x-ray fluorescence (XRF) configuration in conjunction with niobium, molybdenum, palladium and tin metal plates that provided Kα1 photon energies between 16.59 and 25.26 keV. The results were compared to the calculated value of water using XCOM. The results showed that all particleboards having mass attenuation coefficients near to the value of water with the mass attenuation coefficient different less than 0.25. The method of fabrication did not give significant different to the mass attenuation coefficients of the particleboards. The results had indicated the potential of bio-adhesive based palm oil particleboards to be developed as phantoms for low energy photons.

012021
The following article is Open access

, , and

The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

012022
The following article is Open access

, , , , , , , and

Accurate dosimetry of small-field photon beams has always been difficult to achieve, due to the steep dose gradient and absence of lateral electronic equilibrium. The purpose of this study was to verify the measurement of relative output factor (ROF), which is one of the dosimetric parameter required for stereotactic radiosurgery (SRS) treatment planning. The ROFs for Radionics circular cone collimators with diameter in the range of 10.0 to 45.0 mm were measured using Gafchromic EBT2 and EBT3 films. The measurements were then compared with the ROFs obtained using a PinPoint ionisation chamber and Monte Carlo (MC) simulation. From the results, the ROFs measured by the ionisation chamber, EBT2, and EBT3 films were good agreement with the MC simulation, with deviations of less than 1.5, 2.6, and 5.0 % respectively. Based on the film dosimetry, the EBT2 film showed in a more reliable measurement for field size ranging from 15.0 to 45.0 mm, compared with EBT3. As a conclusion, based on the special characteristic of the small-field photon beams, ROF measurement using PinPoint ionisation chamber are being favoured, due to its accuracy. However, the EBT2 film can be used as an alternative, when high spatial resolution is required.

012023
The following article is Open access

, , , , and

The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

012024
The following article is Open access

, , , and

Gamma and neutron irradiation effect on material had been studied intensively. It was proven that there are strong correlation between neutron fluence and physical and mechanical damage of materials. The paper is part of the project to study the use of neutron and gamma irradiation to increase the effectiveness of simple water filtration element which are mostly sands and paper or pulp. Studies on irradiation effect on these element are compiled and analyze its changes from atomic structure to physical properties. On the atomic level, the change in atomic structure are relatively similar to the effect of irradiation on any solid, but with slight difference due to different in material composition and grain structure. Change in chemical properties might be less prominent but the change in grain size and its ability to filter water may be different. List of publication on previous experiments conducted on irradiating filtering element are compiled to provide basic idea on the parameters needed to provide significant changes. As a conclusion, the paper provides a preliminary correlation between the fluence and energy level of irradiation with the physical effects towards these filtration element, hence will be used to analyze events leads to change in filtering effectiveness upon irradiation

012025
The following article is Open access

, , , and

Hollow jewelry made from combination of gold and other material was found in the market. At the outside it is made of gold and the inside layer is made of other material. X-ray fluorescent method cannot detect the inside material that was covered by gold. This paper explained the experimental result of ultrasonic inspection of fake gold used for jewelry. The ultrasonic pulse echo contact method was used to measure longitudinal wave velocity in the gold jewelry. The results of measurements are explained and discussed.

012026
The following article is Open access

, , , and

Materials development in the field of composite material spurs the use of advanced characterization technique. As the fillers become in the nanoscale range in size, the effect of agglomeration become apparent and cannot be avoided. The use of Small Angle X-Ray (SAXS) Scattering technique revealed the information on agglomeration based on the value of specific surface (m2/g). Thermoplastic natural rubber composite was found isotropic based on 2D saxs scattering pattern. As the amount of fillers increased from 2-10% wt., the value of specific surface dropped accordingly. This indicated the higher the amount of filler used, the higher the degree of agglomeration. The SAXS system was also tested by Alumina (BAM) powder and yield result which was in good agreement with BET technique.

Engineering: Energy

012027
The following article is Open access

, , and

The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND's signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

012028
The following article is Open access

, and

The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

012029
The following article is Open access

, , , , , , , , , et al

The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian's PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

012030
The following article is Open access

Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

012031
The following article is Open access

, , , , , and

In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

012032
The following article is Open access

, , , , , , , , , et al

Power calibration is one of the important aspect for safe operation of the reactor. In RTP, the calorimetric method has been applied in reactor power calibration. This method involves measurement of water temperature in the RTP tank. Water volume and location of the temperature measurement may play an important role to the accuracy of the measurement. In this study, the analysis of water volume changes and thermocouple location effect to the power calibration accuracy has been done. The changes of the water volume are controlled by the variation of water level in reactor tank. The water level is measured by the ultrasonic measurement device. Temperature measurement has been done by thermocouple placed at three different locations. The accuracy of the temperature trend from various condition of measurement has been determined and discussed in this paper.

012033
The following article is Open access

, , , , , , , and

Neutron and gamma ray fluences are the important criteria to be looked at in a neutron diffractometer system facility design. The fluence is defined as the number of neutrons and gamma rays travel through a unit area. Currently, the facility for neutron diffractometer system are planned to be developed at radial beam port 1 of TRIGA MARK II PUSPATI research reactor (RTP). The aim of this research is to determine the value of neutron and gamma ray fluences produced at the end of radial beam port 1 and to identify the shielding materials suitable for neutron and gamma ray. In order to achieve this aim, an experiment has been designed to obtain the neutron and gamma dose rates by using TLD-600 and TLD-700. The results from this experiments are converted into neutron and gamma ray fluences and are then compared with the results from simulation. The comparison shows that both results meet an agreement on the feasibility of shielding material for neutron diffractometer system. Our research results may be of help in the design of shielding material for neutron diffractometer facility at RTP.

012034
The following article is Open access

, , and

The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, keff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.

012035
The following article is Open access

, , and

Thorium is one of the elements that needs to be explored for nuclear fuel research and development. One of the popular core configurations of thorium fuel is seed-blanket configuration or also known as Radkowsky Thorium Fuel concept. The seed will act as a supplier of neutrons, which will be placed inside of the core. The blanket, on the other hand, is the consumer of neutrons that is located at outermost of the core. In this work, a neutronic analysis of seed-blanket configuration for the TRIGA PUSPATI Reactor (RTP) is carried out using Monte Carlo method. The reactor, which has been operated since 1982 use uranium zirconium hydride (U-ZrH1.6) as the fuel and have multiple uranium weight which are 8.5, 12 and 20 wt.%. The pool type reactor is one and only research reactor that located in Malaysia. The design of core included the Uranium Zirconium Hydride located at the centre of the core that will act as the seed to supply neutron. The thorium oxide that will act as blanket situated outside of seed region will receive neutron to transmute 232Th to 233U. The neutron

multiplication factor or criticality of each configuration is estimated. Results show that the highest initial criticality achieved is 1.30153.

Engineering: Infrastructure

012036
The following article is Open access

, , and

Radiotherapy delivery techniques for cancer treatment are becoming more complex and highly focused, to enable accurate radiation dose delivery to the cancerous tissue and minimum dose to the healthy tissue adjacent to tumour. Instrument to verify the complex dose delivery in radiotherapy such as optical computed tomography (OCT) measures the dose from a three-dimensional (3D) radiochromic dosimeter to ensure the accuracy of the radiotherapy beam delivery to the patient. OCT measures the optical density in radiochromic material that changes predictably upon exposure to radiotherapy beams. OCT systems have been developed using a photodiode and charged coupled device (CCD) as the detector. The existing OCT imaging systems have limitation in terms of the accuracy and the speed of the measurement. Advances in on-pixel intelligence CMOS image sensor (CIS) will be exploited in this work to replace current detector in OCT imaging systems. CIS is capable of on-pixel signal processing at a very fast imaging speed (over several hundred images per second) that will allow improvement in the 3D measurement of the optical density. The paper will review 3D radiochromic dosimeters and OCT systems developed and discuss how CMOS based OCT imaging will provide accurate and fast optical density measurements in 3D. The paper will also discuss the configuration of the CMOS based OCT developed in this work and how it may improve the existing OCT system.

012037
The following article is Open access

, , , and

The problem of shielding against gamma and neutron radiation in nuclear facility have always attracted a great deal of attention. Typically, the best-known materials for shielding both gamma-ray and neutrons are concrete. However, due to low neutron absorption cross section in ordinary concrete, it can only weakly absorb thermal neutrons. In order to increase the neutron capture cross section, additional compound was mixed into the original concrete. In this paper, we have used ferro-boron compound to enhance the radiation shielding properties of concrete. Ferro-boron is an alloy, which is formed by combining iron with boron compound content between 10% to 17%. In this work, Monte Carlo simulation codes of MCNPX was used to simulate the radiation shielding properties of ferro-boron concrete. According to the simulation results, it is clearly shows that adding ferro-boron compound into concrete mixture can significantly enhance the radiation shielding properties of the concrete.

012038
The following article is Open access

, , , , and

A set of phantom with an external dimension of 30 cm x 30 cm was constructed from tannin-based Rhizophora spp. particleboards similar to the solid water phantoms. The dosimetric characteristics of the particleboard phantoms were evaluated at high energy photons and electrons by measuring the beam output at 6 MV photons and 6 MeV electrons based on the IAEA TRS 398:2000 protocol. The tissue-phantom ratio (TPR20,10) was measured at 6 and 10 MV photons. The beam output calibration of the particleboards was in good agreement to water and solid water phantoms at 6 MV photons with percentage difference of 1.7 and 6.2% respectively. The beam output calibration of the tannin-based Rhizophora spp. particleboards at 6 MeV electrons on the other hand were in excellent agreement to water with percentage difference of 0.3. The percentage depth dose of tannin-based Rhizophora spp. particleboards were in agreement to water and solid water within 4.5% when measured using ionization chamber and EBT2 film. The electron beam parameters of R50, R80 and R90 at 6 MeV electrons also were in good agreement to water and solid water phantoms. The overall results had indicated the suitability of tannin-based Rhizophora spp. particleboards as water substitute phantom materials for high energy photons and electrons.

012039
The following article is Open access

, , , , , , , , and

Most of the procedures in neutron activation analysis (NAA) process that has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s were performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient especially for sample counting and measurement process. The sample needs to be changed and the measurement software needs to be setup for every one hour counting time. Both of these procedures are performed manually for every sample. Hence, an automatic sample changer system (ASC) that consists of hardware and software is developed to automate sample counting process for up to 30 samples consecutively. This paper describes the ASC control software for NAA process which is designed and developed to control the ASC hardware and call GammaVision software for sample measurement. The software is developed by using National Instrument LabVIEW development package.

012040
The following article is Open access

, , , , , and

A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

012041
The following article is Open access

, , , and

The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

012042
The following article is Open access

, and

Metaheuristics are high-level algorithmic concepts that can be used to develop heuristic optimization algorithms. One of their applications is to find optimal or near optimal solutions to combinatorial optimization problems (COPs) such as scheduling, vehicle routing, and timetabling. Combinatorial optimization deals with finding optimal combinations or permutations in a given set of problem components when exhaustive search is not feasible. A radiation shield made of several layers of different materials can be regarded as a COP. The time taken to optimize the shield may be too high when several parameters are involved such as the number of materials, the thickness of layers, and the arrangement of materials. Metaheuristics can be applied to reduce the optimization time, trading guaranteed optimal solutions for near-optimal solutions in comparably short amount of time. The application of metaheuristics for radiation shield optimization is lacking. In this paper, we present a review on the suitability of using metaheuristics in multilayer shielding design, specifically the genetic algorithm and ant colony optimization algorithm (ACO). We would also like to propose an optimization model based on the ACO method.

012043
The following article is Open access

, , , and

Backscatter factor (BSF) is an important parameter in the determination of surface dose for kilovoltage X-ray beam. The purpose of this study was to measure the BSF for kilovoltage diagnostic X-ray beam, and compare the measured BSF between Gafchromic XR-QA2 film and shadow free (SFD) ionization chamber (IC). The parameters that may affect the BSF, such as tube voltage (kVp) and field size, were also studied. The results were in good agreement with the TRS 457, with deviation of less than 12 %. Based on the film study, the BSF obtained from the film measurement were found to be lower than that of the IC, with average difference of 26 %. It was also found that smaller field size resulted in lower effective energy, and the amount of photons which scattered back onto the surface were also smaller. This study demonstrated that the Gafchromic XR-QA2 film was not suitable for the application of small field size.

012044
The following article is Open access

, , , , , , , and

This paper discussed the design and development of a portable PC-based ultrasonic goniometer system that can be used to study material properties using ultrasonic wave. The system utilizes an ultrasonic pulse-receiver card model attached to computer notebook for signal display. A new specific software package (GoNIO) was developed to control the operation of the scanner, displaying the data and analyze characteristics of materials. System testing was carried out using samples with cubic dimension of about 10 mm x 20 mm x 30 mm. This size allows the sample to be fitted into the goniometer specimen holder and immersed in a liquid during measurement. The sample was rotated from incident angle of 0° to 90° during measurement and the amplitude reflected signals were recorded at every one degree of rotation. Immersion transducers were used to generate and receive the ultrasounds that pass through the samples. Longitudinal, shear and Rayleigh wave measurements were performed on the samples to determine the Dynamic Young's Modulus. Results of measurements are explained and discussed.

012045
The following article is Open access

, , , , , , , , , et al

This paper describes the method used to identify the parameters required for the window cooling system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. The heat will be increased due to the increment of the beam energy; therefore an appropriate cooling system is required to prevent the breaking of the few µmm titanium window. The broken window will disrupt the beam transportation inside the vacuum environment of the accelerating tube and also the high voltage will be breakdown if the vacuum environment couldn't be sustained. Therefore, a desired air cooling system to cool down the 9 kwatt (30 mA, 300 keV) beam power has been designed. As the result, the window cooling system with the required pressure based on the beam powers have been calculated and identified.

012046
The following article is Open access

, and

The aim of this study was to evaluate the radiation dose in pediatric head Computed Tomography examination. It was reported that decreasing tube voltage in CT examination can reduce the dose to patients significantly. A head phantom was scanned with dual-energy CT at 80 kV and 120 kV. The tube current was set using automatic exposure control mode and manual setting. The pitch was adjusted to 1.4, 1.45 and 1.5 while the slice thickness was set at 5 mm. The dose was measured based on CT Dose Index (CTDI). Results from this study have shown that the image noise increases substantially with low tube voltage. The average dose was 2.60 mGy at CT imaging parameters of 80 kV and 10 – 30 mAs. The dose increases up to 17.19 mGy when the CT tube voltage increases to 120 kV. With the reduction of tube voltage from 120 kV to 80 kV, the radiation dose can be reduced by 12.1% to 15.1% without degradation of contrast-to-noise ratio.

012047
The following article is Open access

, and

External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

012048
The following article is Open access

, , , , , and

The new low energy electron beam accelerator bunker was designed and built locally to allocate a 500 keV electron beam accelerator at Block 43T in Malaysian Nuclear Agency. This bunker is equipped with a locally made radiation shielding door of 10 tons. Originally, this door is moving manually by a wheel and fitted with a gear system. However, it is still heavy and need longer time to operate it manually. To overcome those issues, a new automated control system has been designed and developed. In this paper, the complete steps and design of automated control system based on the microcontroller (PIC16F84A) is described.

012049
The following article is Open access

, , , and

Malaysian government's aim to include nuclear energy for electricity generation has triggered various reactions from all especially the public. The objective of this study is to have a better understanding on the knowledge, sources of information of nuclear power and sources of energy chosen by Malaysian in 20 years' time. Besides that, we want to examine the level of acceptance and perception of Malaysian towards nuclear energy and we want to identify the correlation between public perceptions with the acceptance towards nuclear power in Malaysia, and also to study the differences between perception and acceptance of nuclear power with gender and educational level. For this research methodology, the research questions are given orally or through paper-pencil and also social networking site such as Facebook or through electronic media application such as WhatsApp and Google docs. The data were analysed using a SPSS version 22.0 (Statistical Package for the Social Sciences). Results showed that more than 50% of the respondents have the knowledge of nuclear energy. A part of from that, only 39 % are confident government can afford to build NPP in Malaysia and 41 % disagree nuclear energy is the best option for future energy. From analysis using SPSS 22 we estimate negative perception will give a negative acceptance in term of support towards the use of nuclear energy in power generation in Malaysia. There are also slight correlation that the higher the level of education of Malaysian, the more negative the perception of Malaysian in accepting nuclear energy as source of power in Malaysia. Therefore in shaping a positive acceptance of NPP in Malaysia, the authorities need to educate the people with the knowledge of nuclear in order to overcome the negative perception towards nuclear power.

012050
The following article is Open access

One of Nuklear Malaysia's top concerns is radiological and nuclear safety as well as security preparedness of its operational facility management, which was bonded by Act 304, Directive 20 and International Atomic Energy Agency (IAEA) guidelines. In 2012, the Malaysian government initialised the Business Continuity Management System under the supervision of Malaysian Administrative Modernization and Management Planning Unit (MAMPU), referring to MAMPU.BPICT.700-4/2/11 (3), ISO 22301:2012 and Business Continuity Good Practice Guidelines 2013 documentation. These standards are integral to the implementation of a resilient management program that indicates an organisation's capability to prevent any accident from occurring and spreading its impact, which includes sufficient recovery action to post-accident situation towards a normal operational and managerial state. Unfortunately, there is a lack of certified Business Continuity Management standard among the public sector agencies compared to local private sectors. Subsequently, Nuklear Malaysia has been selected by MAMPU and CyberSecurity Malaysia as one of the pioneering agencies to be certified accordingly. This paper significantly recognized Nuklear Malaysia's effort to plan, analyse, design, implement, review and validate the establishment of this standard currently. The project was implemented using a case study approach to complete the required certification activities. As a result, this paper proposed benchmarking the selected literature reviews against the Nuklear Malaysia experience to determine best practices in implementing and managing Business Continuity effectively. It concluded that a resilient Business Continuity Management program needs to be incorporated into Nuclear Malaysia's capabilities in ensuring its mitigation capacities to survive any unexpected event and subsequently overcome future challenges.

012051
The following article is Open access

and

Public participation is vital in demonstrating transparency and enhancing effectiveness of a nuclear regulatory process. As such, it is necessary for nuclear practitioners to involve the public in key nuclear delivery milestones. This paper specifically discusses challenges faced in attracting public participation throughout the nuclear regulatory decision-making process, and highlights the roles of women in nuclear (WiN) in initiating the said public discourse.

012052
The following article is Open access

, , , , and

Human factor can be affected by prevalence stress measured using Depression, Anxiety and Stress Scale (DASS). From the respondents feedback can be summarized that the main factor causes the highest prevalence stress is due to the working conditions that require operators to handle critical situation and make a prompt critical decisions. The relationship between the prevalence stress and performance shaping factors found that PSFFitness and PSFWork Process showed positive Pearson's Correlation with the score of .763 and .826 while the level of significance, p = .028 and p = .012. These positive correlations with good significant values between prevalence stress and human performance shaping factor (PSF) related to fitness, work processes and procedures. The higher the stress level of the respondents, the higher the score of selected for the PSFs. This is due to the higher levels of stress lead to deteriorating physical health and cognitive also worsened. In addition, the lack of understanding in the work procedures can also be a factor that causes a growing stress. The higher these values will lead to the higher the probabilities of human error occur. Thus, monitoring the level of stress among operators RTP is important to ensure the safety of RTP.

012053
The following article is Open access

, , , and

Prompt gamma-ray neutron activation analysis (PGNAA) measurements require efficient detectors for gamma-ray detection. Apart from experimental studies, the Monte Carlo (MC) method has become one of the most popular tools in detector studies. The absolute efficiency for a 2 × 2 inch cylindrical Sodium Iodide (NaI) detector has been modelled using the PHITS software and compared with previous studies in literature. In the present work, PHITS code is used for optimization of portable PGNAA system using the validated NaI detector. The detection geometry is optimized by moving the detector along the sample to find the highest intensity of the prompt gamma generated from the sample. Shielding material for the validated NaI detector is also studied to find the best option for the PGNAA system setup. The result shows the optimum distance for detector is on the surface of the sample and around 15 cm from the source. The results specify that this process can be followed to determine the best setup for PGNAA system for a different sample size and detector type. It can be concluded that data from PHITS code is a strong tool not only for efficiency studies but also for optimization of PGNAA system.

012054
The following article is Open access

, and

In order to keep abreast on issues related to CTBT in Malaysia, Malaysian Nuclear Agency (Nuklear Malaysia), as the CTBT National Authority in Malaysia, has collaborated with local partners to implement various stakeholder engagement programme. This paper aims at highlighting Malaysia's approach in promoting CTBT through stakeholder engagement programme targeted at multilevel stakeholders, both national and international. Such programmes includes participation in the international forums, inter-agency meetings, awareness seminars, training courses, technical visits to IMS station, promoting civil and scientific application of International Monitoring System (IMS) data and International Data Centre (IDC) products using Virtual Data Exploitation Center (vDEC), inviting youth groups to participate in the CTBTO Youth Group, and publications of CTBT-related topics. This approach has successfully fortify Malaysia's commitments at the international level, enhanced national awareness of global multilateral framework, increased stakeholders awareness and their roles related to CTBT, as well as building domestic capacity on CTBT matters. In conclusion, stakeholder engagement is crucial in promoting and enhancing stakeholders understanding on CTBT. Continuous engagement with relevant stakeholders will enable effective dissemination and smooth implementation of CTBT related matters that will eventually support global universalization of CTBT.

012055
The following article is Open access

, and

Critical claims by certain quarters that our local undergraduates are not performing well in Mathematics, Statistics and Numerical Methods needs a serious thinking and actions. Yearly examinations results from the Sijil Pelajaran Malaysia (SPM equivalent to A-Level) and Sijil Tinggi Pelajaran Malaysia (STPM equivalent to O-Level) levels have been splendid whereby it is either increasing or decreasing in a very tight range. A good foundation in mathematics and additional mathematics will tremendously benefit these students when they enter their university education especially in engineering and science courses. This paper uses SPM results as the primary data, questionnaires as secondary, and apply the Fish Bones technique for analysis. The outcome shows that there is a clear correlation between the causes and effect.

012056
The following article is Open access

, and

A study has been performed to determine the adsorption of Thorium (Th-232) onto three soil sample around Jimah Energy Venture coal-fired power plant located in Jimah, Port Dickson. Parameters that were set constant include soil dosage at 2.5g each; 50 ml of Th-232 solution. Parameters tested for optimum adsorption was based on initial concentration and pH of Th-232, and contact time. Highest percentage removal of Th-232 obtained for sample 1 and 3 at initial concentration of 25 ppm, pH 5 for 140 minutes are 99.69% and 99.98% respectively, while for sample 2, the highest percentage removal obtained at initial concentration of 25 ppm, pH 7 for 120 minutes are 99.92%. Freundlich and Langmuir isotherms were used to determine the adsorption isotherm for Th-232 adsorption. Based on this study, the result can be used as future reference regarding soil capability of adsorbing radionuclide. It is concluded that all soil sample has considerable ability of adsorbing Th-232 from entering the groundwater.