Brought to you by:

Table of contents

Volume 118

February 2018

Previous issue Next issue

Global Colloquium on GeoSciences and Engineering 201718–19 October 2017, Bandung, Indonesia

Accepted papers received: 07 February 2018
Published online: 22 February 2018

Preface

011001
The following article is Open access

Preface

The annual colloquium of Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI) have highlighted the achievements and challenges of pure and applied geosciences researches since the early 60's. This year we present this forum as a the first Global Colloquium on GeoSciences and Engineering (GCGE) that plays as an interdisciplinary conference for sharing new advances and research results in the fields of earth sciences and technology. This conference that has been held in Bandung, Indonesia during November 18–19, 2017 brought together leading academic scientists, researchers, university students and scholars as well as industries and NGOs, to promote international cooperation among participants.

The proceedings of GCGE 2017 presents research contributions describing original and unpublished results of conceptual, constructive, empirical, experimental, or theoretical work in all areas of interests. 78 papers have been selected based on the originality, technical merit, and interest to the audience. Those papers have been presented in talk and poster technical sessions. The technical sessions include geodynamics, groundwater & surface water, Earth hazards & climate changes, and contamination and natural resources.

List of Organizing Committees and Photographs are available in this pdf.

011002
The following article is Open access

All papers published in this volume of IOP Conference Series: Earth and Environmental Science have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Papers

Geodynamic

012001
The following article is Open access

The accuracy of active fault map, slip rate and its seismic parameters is crucial for seismic hazard analysis. Fault maps, segmentations and slip rates of the Sumatran Fault Zone (SFZ) have been revised in relation with ongoing activities for updating Indonesian seismic hazard map. In the northern part, several secondary fault strands in the eastern side of the main SFZ are added, including the Pidie, Biruen, Lhok-Sumawe, Peusangan, and Oreng faults. The Batee fault is now considered active. In the southern part, from Suoh pull-apart graben, SFZ branches into two major strands: the west and east Semangko fault segments. Toward south, the west and east Semangko faults are connected with series of marine grabens in the Sunda Strait, forming a 70-km-wide pull-apart structure that is bounded by SFZ and the Ujung Kulon fault, which carries SFZ dextral movement further south into southwest of Java island. Previously, slip rates along SFZ are considered increasing northward from about 5 mm/yr in Sunda Strait to 30 mm/yr in Toba Area. Consequently, fore arc region was thought to be stretched. Nowadays, according to the latest geological and GPS studies, slip rates appear to be more constant at ∼15 mm/yr. The total amount of parallel-SFZ extension on the Sunda-strait marine grabens is estimated to be about 18.7 km, almost identical with the largest geomorphic offset along SFZ. In assumption, the SFZ onset since 2 Ma indicates a slip rate of about 9 mm/yr in Sunda Strait. New slip rate measurement near Lake Ranau yields 8-12 mm/yr. Revised slip-rate measurements in both Lake Maninjau and Lake Toba yield about similar rates, ∼14-15 mm/yr. Thus, Sumatran fore-arc acts move northward along SFZ, which is more like a rigid block instead of much stretched.

012002
The following article is Open access

Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

012003
The following article is Open access

, and

The origin of mélange complexes has been the subject of speculation of geologists since their first recognition in the 1900s. Type of mélange complex plays a role in the tectonic reconstruction of active margin. Several locations in the southern Sundaland margin expose remnant of Mesozoic subduction zone as basement and sedimentary rocks in mélange complexes. Ciletuh, Luk Ulo, and Meratus formed along the southern margin of Cretaceous Sundaland subduction system have been known as tectonic mélanges based on observation of the exposed rocks and its structural configuration. However, mélange complexes in the western Sunda arc (Nias) and Banda arc (Timor) have been concluded to form as diapiric mélange rather than tectonic origin. Recent studies in these two areas showed that mud diapirism was developed in a dynamically active environment. The role of tectonism in these mélange complexes appears to be indirect. Here, we described results of published results on mélanges along the Sunda and Banda arc to understand the mechanism of their processes.

012004
The following article is Open access

, , , and

The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.

012005
The following article is Open access

and

Karangsambung area, Central Java-Indonesia, records tectonic evolution of the western part of Sundaland margin. The area is thought to have undergone a long tectonic evolution from palaeosubduction, collision with the continental fragments of Gondwana, to the formation of the recent subduction zone. An interesting phenomenon in this area is the presence of the Late Cretaceous ophiolitic blocks with an east northeast (ENE) trending-direction surrounded by the east trend of Eocene - Oligocene sedimentary melange formation. There was also an ENE trending Dakah volcanic rocks unit found in this area, with approximately equivalent age with the sedimentary mélange formation. There are two main interpretations regarding this volcanic unit, as an olistostrome and as an insitu shallow subduction magmatic product. Detailed mechanism of the emplacement of the Late Cretaceous ophiolite and the genesis of the volcanic rocks unit and their implications to the regional tectonic model is still open for discussion. Geophysical research in this key area may help to reveal the geometry, relationship among rocks units, and tectonic evolution. Unfortunately, geophysical studies in this area are still lacking. Previous geophysical work in Karangsambung still leaves uncertainty, especially in depth control and spatial resolution issue. Here we describe the results of previous works in Karangsambung as basic knowledge for the upcoming geophysical study.

012006
The following article is Open access

and

One of measurement methods to investigate the condition of the subsurface is by using geoelectric method. This research uses wenner-Schlumberger arrays configuration geoelectrical method which is mapping resistivity that is commonly known as profiling (2D) in order to identify the lateral and vertical anomaly of material resistivity. 2D resistivity cross section is obtained from the result of data- processing on software Res2Dinv. The data were obtained along 70 m using Wenner-Schlumberger configuration with 5 m spaced electrode. The approximated value of resistivity obtained from the data processing ranged from 1000-1548 Ωm and with the iteration error 87.9%. Based on the geological map of Ujung Pandang sheet, the location of the research is an alluvium and coastal precipitation area with grain in forms of gravel, sand, clay, mud, and coral limestone. Thus, by observing and analyzing the variety of the resistivity cross-section from the inversion data, there are areas (a) showing resistivity values ranged from 0.1-0.2 Ωm which is estimated to be salt water intrusion based on the resistivity table of Earth materials, and region (b) which is a mixture of sand and clay material with the range of resistivity values between 1-1000 μm.

012007
The following article is Open access

and

Engineering geology investigation through Cone Penetration Test (with pore-pressure measurements) approach is one of the most effective methods to find out sub surface layer. This method is generally used in Late Quaternary and typical deposit and can also be used for sedimentological purposes. CPTu and drilling core for high-resolution stratigraphy sub surface have been done in many research. These combined data can also be used to detail correlations of sub surface stratigraphy, to identify facies change and to determine the interpretation of sequence stratigraphy. The determination facies distribution research based on CPTu profile, which was included in quantitative data, is rarely done especially in Indonesia which has a different climate. Whereas drilling core description using grain size analysis will provide information on validation about physical lithology characteristics which are developed in research area. The interpretation is given using CPTu curve pattern and cone resistance parameter of CPTu's data correlated with physical characteristics of drilling core. The cone resistance will provide the strength of the sediment layer which also gives the range of data between clay and sand. Finally, the review will show that each of developing facies characteristic provides a specific curve pattern and every sediment deposit facies can be determined by the transformation of CPTu curve profile. Despite the fact that the research using those methods are quite comprehensive, a review is presented on each of these methods related with the chronologic factor seen by the geological time and different characteristics sediment of different location.

012008
The following article is Open access

The presence of oil seepage in Central Java indicates that there is an effective petroleum system. The problem is where the oil was derived from. Biomarker characteristic is used to provide information on source rock organic matter input, depositional environment and correlation between source rock and oil seepage. The method used for this study is GC and GCMS analyses of the rock extract and oil seepage. The biomarker characteristic suggests that oil seepage in Banjarnegara is derived from the Totogan Formation, while that in Bayat is derived from the Wungkal Formation. Oil seepage in Cipluk area is deposited in the estuarine environment. Therefore, it cannot be correlated with the Kerek Formation. Oil seepage in Kedungjati and Bantal area is not derived from the Kerek and Pelang Formation.

012009
The following article is Open access

, , , and

The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

012010
The following article is Open access

Paleogene stratigraphy of Karangsambung consists of Karangsambung and Totogan olistostrome deposit. The previous biostratigraphy research for those formations used the olistostrome matrix as the main sample. In fact, the olistostrome matrix is also a mixed material that might consist of the mixed material of the older and young sediment, making this sample unrepresentative for biostratigraphy analysis. The previous biostratigraphy research based on the matrix sample should be evaluated and should also consider new criteria for the representative sample. The most suitable biostratigraphy analysis sample from the olistostrome deposit is soft fraction sediment and laminated sediment which represent the suspension deposition phase in the part of olistostrome depositional process. On the other hand, diatom biostratigraphy could be applied in the representative sample related to the diatom living strategy in deep marine as lamination form and also their progressive spreading in Cenozoic. However, the application of diatom biostratigraphy in olistostrome deposit is still new and it lacks of reference, especially for diatom research in Indonesia. Though the application would be difficult to realize, it might open the chance for new research and discovery in Karangsambung biostratigraphy.

012011
The following article is Open access

Planktonic foraminifera is widely used for marine sediment biostratigraphy. Foraminiferal biostratigraphy of Karangsambung Formation is relatively rare to be investigated by previous researchers. A review of foraminiferal biostratigraphy is expected to be early work to perform a research about the ages of Tertiary rock formations in Karangsambung. The research area is formed by olistostrome process; a sedimentary slide deposit characterized by bodies of harder rock mixed and dispersed in a matrix. Biostratigraphic studies based on foraminifera and nannoplankton in Karangsambung Formation are still qualitative analysis using fossils biomarker. However, the age of this formation is still debatable based on foraminifera and nannofossil analysis. Two explanations of debatable ages in Karangsambung Formation that is possibly developed in Karangsambung area: firstly, Karangsambung Formation is characterized by normal sedimentation in some places and other regions such Kali Welaran and Clebok, Village as a product of olistostrome, and secondly, Karangsambung Formation is olistostrome deposit. However, micropaleontology sampling and analysis in matrix clays from olistostrome were ignored causing biostratigraphical results in those matrix clays occurred in normal sedimentation process and achieving the age of middle Eocene to Oligocene. We suppose previous authors picked samples in matrix of Karangsambung Formation from several river sections, which will make misinterpretation of the age of Karangsambung Formation. The age of middle to late Eocene probably is the dates of the older sediment that was reworked by sliding and sampling process and accumulated in Karangsambung Formation. The date of Karangsambung Fm is in Oligocene period based on a finding of several calcareous nannofossils. Detailed micropaleontological analysis of olistostrome deposits in Karangsambung Formation should be reevaluated for new finding of the accurate dating. Re-evaluation should start from detailed sedimentological mapping of Karangsambung Fm transects based on previous authors especially Kali Welaran, Jatibungkus transect and Clebok section followed by systematic sampling of normal sedimentation process from olistostrome products and matrix clays of olistostrome Karangsambung Formation. Finally, quantitative method of micropaleontological analysis can be applied to identify the age of Karangsambung Formation.

012012
The following article is Open access

Pollen analyses of marine sediments contribute to reconstructions of the vegetation and climate, as well as to environment changes and human-environment interactions, which is reflected in marine sediments of Indonesian waters. Furthermore, factors controlling pollen deposition are of particular importance, like in the Indonesian region where the whole climate system is driven mostly by the monsoon reversal. In this paper, I review some palynology studies in Indonesia, and I found out that there were not any marine pollen studies during the Last Glacial – Holocene in Indonesia area, especially in the Eastern Indonesia. Review results show that during that time, although temperatures were lower, there were differences on humid-arid climate indications in each region which were characterized by discrepancy vegetation. Detailed analysis of past environmental, climate and land use history in the Indonesian region is essential to obtain better understanding of human-environment relationships and to prevent uncertainties in future development of the region.

012013
The following article is Open access

and

Many oil and gas reservoirs in the world are reserved in fossil carbonate sediment. Knowledge of modern carbonate sedimentology is important for a better understanding of ancient carbonate sedimentation. Equatorial coral reefs comprise almost half of the world coral reef production, and yet their dynamics, distributions, and cycles are still not well understood. Contrary to their subtropical counterpart, South East Asian carbonate system is known to be strongly influenced by the combination of oceanographic and climatic conditions. Hence carbonate sediments in the tropics have a distinct depositional system, and ought to be treated differently since common distribution models were developed from the (sub-tropical) Atlantic and Pacific regions. This paper systematically summarizes carbonate sediment studies in Seribu Islands and its dominant oceanographic configuration to provide insights and a sense of research direction in the future.

012014
The following article is Open access

Geopark is an area that has an outstanding geological evidence, including archaeological, ecological and cultural values in which local people are invited to participate in protecting and enhancing the function of natural heretage. Its sustainable development concept has proven to increase economic and conservation benefits. Geopark introduces the earth's heritage, protected areas, geo-development, economic development and implementation of various science and technology. Geoparks have unique geological, cultural and biological that can be utilized for conservation and geotourism. Indonesia has 2 global geoparks, 4 national geoparks and 15 geopark candidates. Karangsambung-Karangbolong area is one of the geopark candidates which is a subduction zone that underwent an uplift and now is dominated with conical hills karst. The Kebumen local government is preparing a master plan for Karangsambung Geopark except Karangbolong, and LIPI is supporting the scientific studies. To initiate the development of Karangsambung-Karangbolong Geopark, an integrated geosite identification has to be done. Field observation of geodiversity, bio diversity and culture diversity, followed by rating of geosite based on scoring method using weighting 3 for geodiversity, 2 for biodiversity and 2 for culture diversity. Geosite of Karangbolong High includes geosite of karst-nonkarst morphology of Wanalela Hill and Tugu Village. Cave geosites are Barat, Petruk and Jatijajar caves. Beach geosite include Lampon, Menganti, G. Hud, Logending, Karangbolong and Karangagung beaches. Very good geosites are Petruk cave, Hud hill and Barat cave. Good geosite includes Lampon, Menganti, Karangpamuran, Pelus, Jatijajar, Wanalela, Logending and Karangbolong. Geosite at Karangbolong High provides good support for the development of Karangsambung-Karangbolong Geopark.

Groundwater and Surface Water

012015
The following article is Open access

, , , , , and

Labuan groundwater basin currently has an abundance of water. As a deltaic area of Lada Bay, groundwater supply comes from local precipitation and also from recharge region in mountain ranges surrounding. However, Labuan has been experiencing a fast economic development with high population and tourism industry growth. Such progress would lead to the increase of water consumption. A comprehensive groundwater management should be prepared for possible future problems. Therefore, a groundwater investigation is a necessary step towards that purpose. Gravity method was applied to identify the regional condition of the basement. The assessment of deep buried basin and basement relationship using gravity data is a challenge in groundwater investigation, but previous studies had indicated the efficiency of the method to obtain basic information and can be used as a foundation for more advanced studies.

012016
The following article is Open access

Indonesia is one of the archipelagic countries that has the longest coastline in the world. Because it is located in the tropics, in general it has a very high rainfall. Each island has a different morphology which is composed of a variety of rocks with different hydrogeological properties. This natural condition allows for the presence of groundwater in different amount in each island. The difference in groundwater hydraulics gradients in aquifer continuous to the sea has triggered the discharge of groundwater to offshore known as submarine groundwater discharge (SGD). Its presence can be as seepage or submarine springs with components derived from land and sea and a mixture between them. The understanding of SGD phenomenon is very important because it can be useful as a source of clean water in coastal areas, affecting marine health, and improving marine environment.

012017
The following article is Open access

, and

This paper is to review how to investigate the interactions between groundwater and seawater. Those interactions divide into two, which are submarine groundwater discharge and seawater intrusion. This investigation is important because the interactions can give impact to coastal aquifer and marine ecosystem. On land, fresh groundwater is vulnerable to seawater disturbance. Coastal aquifer is under pressure from abstraction caused by population, industry, and agriculture. The pumping can induce seawater intrusion and land subsidence. Then in marine, seawater mixes with freshwater and it decreases salinity. Low salinity will influence marine ecosystem. The ecosystem will be disturbed by groundwater discharge if that water is contaminated. Based on the argue investigation of groundwater-seawater interactions is important and must be accurate because the results are used for coastal water management. To investigate the interactions data, i.e., lithology, pumping tests, hydrochemical data, sea level rise estimates, precipitation data, geophysics, environmental isotopes, and drilling information, should be compiled. The interaction can feed a model to determine how much groundwater extraction happening on coastal areas to prevent seawater intrusion and land subsidence. Water resources management on coasts should consider groundwater-seawater interactions.

012018
The following article is Open access

Pollution of groundwater is a primary issue because aquifers are susceptible to contamination from land use and anthropogenic impacts. Groundwater susceptibility is intrinsic and specific. Intrinsic vulnerability refers to an aquifer that is susceptible to pollution and to the geological and hydrogeological features. Vulnerability assessment is an essential step in assessing groundwater contamination. This approach provides a visual analysis for helping planners and decision makers to achieve the sustainable management of water resources. Comparative studies are applying different methodologies to result in the basic evaluation of the groundwater vulnerability. Based on the comparison of methods, there are several advantages and disadvantages. SI can be overlaid on DRASTIC and Pesticide DRASTIC to extract the divergence in sensitivity. DRASTIC identifies low susceptibility and underestimates the pollution risk while Pesticide DRASTIC and SI represents better risk and is recommended for the future. SINTACS method generates very high vulnerability zones with surface waters and aquifer interactions. GOD method could be adequate for vulnerability mapping in karstified carbonate aquifers at small–moderate scales, and EPIK method can be used for large scale. GOD method is suitable for designing large area such as land management while DRASTIC has good accuracy and more real use in geoenvironmental detailed studies.

012019
The following article is Open access

Conductivity (EC) and total dissolved solids (TDS) are water quality parameters, which are used to describe salinity level. These two parameters are correlated and usually expressed by a simple equation: TDS = k EC (in 25 °C). The process of obtaining TDS from water sample is more complex than that of EC. Meanwhile, TDS analysis is very important because it can illustrate groundwater quality, particularly in understanding the effect of seawater intrusion better than EC analysis. These conditions make research in revealing TDS/EC ratios interesting to do. By finding the ratio value, TDS concentration can be measured easily from EC value. However, the ratio cannot be defined easily. Previous research results have found that the correlation between TDS and EC are not always linear. The ratio is not only strongly influenced by salinity contents, but also by materials contents. Furthermore, the analysis of TDS concentration from EC value can be used to give an overview of water quality. For more precision, TDS concentrations need to be analyzed using the gravimetric method in the laboratory.

012020
The following article is Open access

and

Groundwater has different characteristics in each location influenced by mineral content in rocks that dissolves as water travels through the pores of rocks or soil or when stored in the soil (aquifer). Different minerals dissolving in rocks will lead to differences in anion content in groundwater. Chloride and bromide are the major ions that can be found in groundwater. The concentration of chloride is 500 times greater than the concentration of bromide. In addition, the high chloride concentration is a tracer for the influence of sea water. The ratio between chloride and bromide (Cl/Br ratio) can be used as a determinant of groundwater quality, as well as a determinant of groundwater contamination, sea water intrusion and the origin of sea water intrusion.

012021
The following article is Open access

and

Saltwater or seawater intrusion into groundwater aquifers occurs mostly in big cities and developing coastal cities. Coastal hydrology is associated with complex and highly dynamic environmental characteristics of interactions between groundwater, surface water, and water from the estuary. The rise of sea levels and excessive use of groundwater for clean water source trigger saltwater intrusion. Identification of saltwater intrusion into groundwater can be done by groundwater sampling and major ion analysis. The major ions dissolved in water are Ca, Mg, Na, K, Cl, HCO3, and SO4; the major ion ratios are Cl/Br, Ca/Mg, Ca/ (HCO3 and SO4), and Na/Cl. By knowing whether groundwater quality has been or has not been influenced by saltwater, groundwater zones can be determined in every coastal area. In addition, by analyzing and reviewing some concepts about the intrusion or contamination of saltwater into groundwater, there will be sufficient results for the identification of saltwater intrusion.

012022
The following article is Open access

In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

012023
The following article is Open access

, , and

The water-food nexus is promoted as an approach to look at the linkages between water and food. The articles of Water's Special Issue "Water-Energy-Food Nexus in Large Asian River Basins" look at the applicability of the nexus approach in different regions and rivers basins in Asia. Citarum River was selected for the case of Indonesia study site of RIHN Water-food Nexus Project with a focus on the Juanda/Jatiluhur dam as the downstream of the three large cascaded reservoirs and river estuary at the Jakarta Bay. As a result, there are a variety of interpretations for the nexus. These include three complementary perspectives that perceive nexus as an analytical approach, governance framework and emerging discourse. Secondly, nexus is a predominantly water-sector driven and water-centered concept. Evaluation of water quality of Citarum River and the increasing demands for water-food nexus revealed the critical status even at present condition that requires strategic decision to modify the water allocation policy to ensure human-environmental sustainability water security.

012024
The following article is Open access

, , , and

When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December–January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake's temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities' decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.

012025
The following article is Open access

, , , and

Tropical reservoir is the one ecosystem which is functioning in both ecological and economical services. As the settling of water volume, it harbors many species of fish. The objective of this study is to analyze the utilization and management of reservoirs related to their water quality conditions, represent by tropical reservoirs from Indonesia and Malaysia. Survey at Jatiluhur and Saguling (Indonesia) was conducted in March 2014 and September 2015, respectively while in Temengor and Chenderoh (Malaysia), the survey was done in January 2014 and April 2017, respectively. Based on elevation, Saguling and Temengor are upstream reservoirs. On the contrary, Jatiluhur and Chenderoh are downstream reservoirs. The results of the surveys in Jatiluhur and Saguling reservoirs showed that the average depths are 32.9m and 17.9m, respectively. On the other hand, Temengor and Chenderoh reservoirs are 100m and 16.2m, respectively. All of them play multi-functional roles including as a source of power plant, fisheries and tourism, as well as water sources for irrigation. In addition, Saguling and Temengor reservoirs are relatively dendritic in shape. In Indonesia, there are three consecutive reservoirs along Citarum River, whereas in Malaysia there are four consecutive reservoirs along Perak River. The results showed the potential impact of fish cages as pollutant, especially at Indonesian reservoirs. In addition, these tropical reservoirs have become famous tourism getaway. The capabilities of economic values of these reservoirs and ecosystem should be balanced. Basic ecological information is necessary for the next study.

012026
The following article is Open access

The concept of carrying capacity is widely used in various sectors as a management tool for sustainable development processes. This idea has also been applied in watershed or basin scale. Bandung Basin is the upstream of Citarum watershed known as one of the national strategic areas. This area has developed into a metropolitan area loaded with various environmental problems. Therefore, research that is related to environmental carrying capacity in this area becomes a strategic issue. However, research on environmental carrying capacity that has been done in this area is still partial either in water balance terminology, land suitability, ecological footprint, or balance of supply and demand of resources. This paper describes the application of the concept of integrated environmental carrying capacity in order to overcome the increasing complexity and dynamic environmental problems. The sector that becomes the focus of attention is the issue of water resources. The approach method to be carried out is to combine the concept of maximum balance and system dynamics. The dynamics of the proposed system is the ecological dynamics and population that cannot be separated from one another as a unity of the Bandung Basin ecosystem.

012027
The following article is Open access

This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

012028
The following article is Open access

, and

Drainage basin/watershed analysis based on morphometric parameters is very important for watershed planning. Morphometric analysis of watershed is the best method to identify the relationship of various aspects in the area. Despite many technical papers were dealt with in this area of study, there is no particular standard classification and implication of each parameter. It is very confusing to evaluate a value of every morphometric parameter. This paper deals with the meaning of values of the various morphometric parameters, with adequate contextual information. A critical review is presented on each classification, the range of values, and their implications. Besides classification and its impact, the authors also concern about the quality of input data, either in data preparation or scale/the detail level of mapping. This review paper hopefully can give a comprehensive explanation to assist the upcoming research dealing with morphometric analysis.

012029
The following article is Open access

, and

Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

012030
The following article is Open access

, , and

Cimanuk watershed is one of the national priority watersheds for rehabilitation considering its critical condition. In this area, Jatigede Reservoir operates, which is the second largest reservoir in Indonesia, after Jatiluhur Reservoir. The reservoir performs several functions, including flood control, irrigation for 90.000 ha of rice fields, water supply of 3.500 litres per second, and power generation of 110 MW. In 2004 the Jatigede Reservoir catchment area had a critical land area of 40.875 ha (28% of the catchment area). The sedimentation rate in Cimanuk River at Eretan station shows a high rate (5.32 mm/year), which potentially decreases the function of Jatigede Reservoir. Therefore, a strategy of Best Management Practice's (BMP's) is required to mitigate the problem by using SWAT hydrology modelling. The aim of this study is to examine the impact of BMP's on surface runoff and sediment yield in Jatigede Reservoir Catchment Area. Simulations were conducted using land use in 2011. The results of this study suggest that SWAT model is considered as a reasonable modelling of BMP's simulation concerning Nash-Sutcliffe Coefficients (0.71). The simulation is using terraces, silt pit, and dam trenches as BMP's techniques. The BMP's application can reduce surface runoff from 99.7 mm to 75.8 mm, and decrease sediment yield from 61.9 ton/ha/year to 40.8 ton/ha/year.

012031
The following article is Open access

, , and

Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.

012032
The following article is Open access

, and

Lake Toba in North Sumatera, Indonesia, is now designated to be a world-class tourism destination. Aside from its infrastructure development, this largest lake in the Southeast Asia needs to be restored, especially its water quality. While an oligotrophic status is required for tourism purposes, several studies showed that Toba is mesotrophic at its best and hyper-eutrophic at its worst. Numerous studies and reports blame floating net fishery (FNF) for water quality decline in Lake Toba and propose limitation for its production. While the central government allowed FNF to be positioned in certain areas according to its depth and distance from the lakeshore, increasing number of FNF means adding more nutrients to the lake and thus may inhibit the lake's restoration process. Hence, it is important to identify which areas are potential for FNF location to assist the authorities to regulate FNF. This study used SPOT-6, SPOT-7, and Pleiades satellite imagery to locate the position of existing FNF and to analyse the result to identify a potential location for FNF.

Earth Hazard and Climate Change

012033
The following article is Open access

and

Tsunami in Indonesia is defined as local tsunami due to its occurrences which are within a distance of 200 km from the epicenter of the earthquake. A local tsunami can be caused by an earthquake, landslide, or volcanic eruption. Tsunami arrival time in Indonesia is generally between 10-60 minutes. As the estimated time of the tsunami waves to reach the coast is 30 minutes after the earthquake, the community should go to the vertical or horizontal evacuation in less than 30 minutes. In an evacuation, the city frequently does the evacuation after obtaining official directions from the authorities. Otherwise, they perform an independent evacuation without correct instructions from the authorities. Both of these ways have several strengths and limitations. This study analyzes these methods regarding time as well as the number of people expected to be saved.

012034
The following article is Open access

and

Tsunami disaster occurred relatively very fast. Thus, it has a very large-scale impact on both non-material and material aspects. Community evacuation caused mass panic, crowds, and traffic congestion. A further research in spatial based modelling, traffic engineering and splitting zone evacuation simulation is very crucial as an effort to reduce higher losses. This topic covers some information from the previous research. Complex parameters include route selection, destination selection, the spontaneous timing of both the departure of the source and the arrival time to destination and other aspects of the result parameter in various methods. The simulation process and its results, traffic modelling, and routing analysis emphasized discussion which is the closest to real conditions in the tsunami evacuation process. The method that we should highlight is Clearance Time Estimate based on Location Priority in which the computation result is superior to others despite many drawbacks. The study is expected to have input to improve and invent a new method that will be a part of decision support systems for disaster risk reduction of tsunamis disaster.

012035
The following article is Open access

Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

012036
The following article is Open access

Rainfall-induced landslides pose a substantial risk to people and infrastructure. For this reason, there have been numerous studies to understand the landslide mechanism. Most of them were performed on the numerical analysis and laboratory experiment. This paper presents a review of existing research on field hydrological condition of soil slopes leading to the initiation of rainfall-induced landslide. Existing methods to study field hydrological response of slopes are first reviewed, emphasizing their limitations and suitability of application. The typical hydrological response profiles in the slope are then discussed. Subsequently, some significant findings on hydrological condition leading to rainfall-induced landslides are summarized and discussed. Finally, several research topics are recommended for future study.

012037
The following article is Open access

, and

Takengon is an area prone to earthquake disaster and landslide. On July 2, 2013, Central Aceh earthquake induced large numbers of landslides in Takengon area, which resulted in casualties of 39 people. This location was chosen to assess the landslide susceptibility of Takengon, using a statistical method, referred to as the weight of evidence (WoE). This WoE model was applied to indicate the main factors influencing the landslide susceptible area and to derive landslide susceptibility map of Takengon. The 251 landslides randomly divided into two groups of modeling/training data (70%) and validation/test data sets (30%). Twelve thematic maps of evidence are slope degree, slope aspect, lithology, land cover, elevation, rainfall, lineament, peak ground acceleration, curvature, flow direction, distance to river and roads used as landslide causative factors. According to the AUC, the significant factor controlling the landslide is the slope, the slope aspect, peak ground acceleration, elevation, lithology, flow direction, lineament, and rainfall respectively. Analytical result verified by using test data of landslide shows AUC prediction rate is 0.819 and AUC success rate with all landslide data included is 0.879. This result showed the selective factors and WoE method as good models for assessing landslide susceptibility. The landslide susceptibility map of Takengon shows the probabilities, which represent relative degrees of susceptibility for landslide proneness in Takengon area.

012038
The following article is Open access

, , , , and

Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

012039
The following article is Open access

West Bandung has the potential for landslides and other disasters such as floods, earthquakes, and volcanic eruptions. One of the most frequent hazards in West Bandung Regency is landslide; some critical occurrences for landslides cover these important locations, including Lembang districts, Cililin: Padalarang, Cikalong Wetan, and Cipatat, etc. In this study the landslide data will be matched to spatial data, resulting in correction of spatial arrangement in west Bandung.

012040
The following article is Open access

and

Research on landslide susceptibility has been carried out using several different methods. TRIGRS is a modeling program for landslide susceptibility by considering pore water pressure changes due to infiltration of rainfall. This paper aims to present a current state-of-the-art science on the development and application of TRIGRS. Some limitations of TRIGRS, some developments of it to improve its modeling capability, and some examples of the applications of some versions of it to model the effect of rainfall variation on landslide susceptibility are reviewed and discussed.

012041
The following article is Open access

, and

Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.

012042
The following article is Open access

and

Cities on the north coast of Java such as Jakarta, Semarang, Pekalongan, and Surabaya are vulnerable to environmental pressures such as sea level change and land subsidence. Land subsidence can be caused by natural and anthropogenic processes. Geologically, the north coastal plain of Java consists of unconsolidated Holocene alluvial deposit. The recent alluvial deposit is prone to compaction, and further aggravated by anthropogenic forces such as groundwater extraction and land development. Understanding the complex interaction of natural and manmade factors is essential to establish mitigation strategy. Although the impacts of land subsidence are widely felt, many do not realize that land subsidence is taking place. This paper presents a brief review of the land subsidence threats in the North coast of Java and proposes a recommendation for suitable management response.

012043
The following article is Open access

, and

Understanding soil dynamics is needed to understand soil behaviour, including the parameters of earthquake acceleration amplification. Many researchers now conduct single microtremor tests to obtain amplification of velocity and natural periods of soil at test sites. However, these amplification parameters are rarely used, so a method is needed to convert the velocity amplification to acceleration amplification. This paper will discuss the proposed process of changing the value of amplification. The proposed method is to integrate the time histories of the synthetic earthquake acceleration of the soil surface under the deaggregation at that location so the time histories of the velocity earthquake will be obtained. Next is to conduct a "fitting curve" between amplification by a single microtremor test with amplification of the synthetic earthquake velocity time histories. After obtaining the fitting curve time histories of velocity, differentiation will be conducted to obtain fitting curve acceleration time histories. The final step after obtaining the fitting curve is to compare the acceleration of the "fitting curve" against the histories time of the acceleration of synthetic earthquake at bedrocks to obtain single microtremor acceleration amplification factor.

012044
The following article is Open access

and

One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

012045
The following article is Open access

and

Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

012046
The following article is Open access

, and

The spatial planning in Indonesia needs to consider the information on the potential disaster. That is because disaster is a serious and detrimental problem that often occurs and causes casualties in some areas in Indonesia as well as inhibits the development. Various models and research were developed to calculate disaster risk assessment. GIS is a system for assembling, storing, analyzing, and displaying geographically referenced disaster. The information can be collaborated with geodatabases to model and to estimate disaster risk in an automated way. It also offers the possibility to customize most of the parameters used in the models. This paper describes a framework which can improve GIS and Geodatabase for the vulnerability, capacity or disaster risk assessment to support the spatial planning activities so they can be more adaptable. By using this framework, GIS application can be used in any location by adjusting variables or calculation methods without changing or rebuilding system from scratch.

012047
The following article is Open access

and

Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.

012048
The following article is Open access

The urban heat island (UHI) is defined as the temperature difference between the urban and suburban areas and rural areas in the same region. Researchers have discussed several different techniques for evaluating the phenomenon. This paper reviews some of the causes and effects of urban heat islands, mainly on urban climate. Both directly and indirectly, the UHI influences multiple sectors. According to this, it is needed to develop a strategic mitigation between government and scientists to reduce the temperature.

012049
The following article is Open access

Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

012050
The following article is Open access

, , , , , , , , , et al

The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan's vegetation has high potential for reducing greenhouse gas effects.

012051
The following article is Open access

, and

Severe coral bleaching events are always associated with El-Ninō phenomenon which caused a rise in ocean temperature between 1-2°C and that they potentially kill the corals worldwide. There were at least four severe coral bleaching events occurred in the Indonesian waters. This study aims to compare the coral bleaching events of the 2010 and 2016 and their impact on corals in Indonesian waters. Long-term (2002-2017) remotely sensed night time sea surface temperature (SST) data acquired from Aqua MODIS Satellite were used in the analysis. Here, we calculated the mean monthly maximum (MMM)of SST as SST in normal condition in which coral can adapt to temperature; the differences between high SST in each pixel during coral bleaching events of the 2010/2016 and MMM SST, called hot spot (HS); and how long has HS occupied a certain water body, called degree of heating weeks (DHW, °C-week) and then mapped it. Results show that the MMM SST for the Indonesian waters is 29.1°C. Both bleaching events of 2010 and 2016 started and finished in the same periods of Mar-Jun and they nearly have the same pattern, but bleaching magnitude of the 2016 was stronger than 2010 with the mean SST about 0.4°C higher in May-June. The percentage of impacted areas of strong thermal stress on corals of Alert-1 plus Alert-2 status was higher in 2016 (39.4%) compared to 2010 (31.3%). Coral bleaching events in the 2010 and 2016 spread in almost all Indonesian waters and relatively occurred in the same places but with small variation in the bleaching sites that was caused by the strength/weakness of El-Ninō and upwelling phenomenon as well as the role of Indonesian through flow (ITF).

012052
The following article is Open access

and

Indonesia is located in the prominent site to study climate variability as it lies between Pacific and Indian Ocean. It has consequences to the regional climate in Indonesia that its climate variability is influenced by the climate events in the Pacific oceans (e.g. ENSO) and in the Indian ocean (e.g. IOD), and monsoon as well as Indonesian Throughflow (ITF). Northwestern monsoon causes rainfall in the region of Indonesia, while reversely Southwestern monsoon causes dry season around Indonesia. The ENSO warm phase called El Nino causes several droughts in Indonesian region, reversely the La Nina causes flooding in some regions in Indonesia. However, the impact of ENSO in Indonesia is different from one place to the others. Having better understanding on the climate phenomenon and its impact to the region requires long time series climate data. Paleoclimate study which provides climate data back into hundreds to thousands even to million years overcome this requirement. Coral Sr/Ca can provide information on past sea surface temperature (SST) and paired Sr/Ca and δ18O may be used to reconstruct variations in the precipitation balance (salinity) at monthly to annual interannual resolution. Several climate studies based on coral geochemical records in Indonesia show that coral Sr/Ca and δ18O from Indonesian records SST and salinity respectively. Coral Sr/Ca from inshore Seribu islands complex shows more air temperature rather than SST. Modern coral from Timor shows the impact of ENSO and IOD to the saliniy and SST is different at Timor sea. This result should be taken into account when interpreting Paleoclimate records over Indonesia. Timor coral also shows more pronounced low frequency SST variability compared to the SST reanalysis (model). The longer data of low frequency variability will improve the understanding of warming trend in this climatically important region.

012053
The following article is Open access

Sunda Epicontinental Shelf occupies a large area between Asia and Indonesian Maritime Continent. This shallow shelf developed soon as stability of this area since Pliocene was achieved. Sedimentation and erosion started, following sea level variation of Milankovitch cycle that changed this area to, partly to entirely become a low lying open land. These changes imply a difference height of about 135 m sea level. Consequence of this changes from shallow sea during interglacial to the exposed low land during glacial period is producing different land cover that might influence to the surrounding area. As the large land surface, this area should be covered by low land tropical forest, savanna to wet coastal plain. This large low-lying land belongs an important river drainage system of South East Asia in the north (Gulf of Thailand) and another system that curved from Malay Peninsula, Sumatra, Bangka-Belitung and Kalimantan, named as Palaeo Sunda River. The total area of this land is about 1 million km2, this must bring consequences to the environmental condition. This change belongs to the global change on which the signal may be sent to a distance, then is preserved as geological formation. Being large and flat land, it has a long and winding river valley so this land influences the life of biota as fauna and flora but also human being that may live or just move on the passing through around East Asia. Global sea level changes through time which is then followed by the change of the area of land or water have indeed influenced the hydrology and carbon cycle balance. Through studying the stratigraphy and geology dynamic, based on seismic images and core samples from drilling work, one can be obtained, the better understanding the environmental change and its impact to the regional but could be global scale.

Contamination and Natural Resources

012054
The following article is Open access

Coastal development in Ambon Bay has been contributing to coastal ecosystem degradations in recent years. One of the negative effects was the over sedimentation that changes the landscape of coastal ecosystem such as seagrass beds. These changes have made this ecosystem lost some of its functions especially as the habitat for other biotas, because the vegetation has been buried and reduced in density. So, in December 2015, a rehabilitation effort has been done at Kate-kate Beach with transplantation techniques of Enhalus acoroides. After 3-11 months of observation, it was noticed that only the transplants in the deeper area survived; on the contrary, the transplants in exposed and dry area during low tide did not survive. Overall, the survival rate of the transplantation project was 49.73% because the transplants need enough submerged condition to support their lives. The study recommends that to rehabilitate damaged seagrass beds due to the over sedimentation, we have to remove the sediment until certain depth during low tide to ensure the transplants are submerged in seawater. On top of that, the local government has to reduce the sedimentation rate from land because over sedimentation will make the beach profile become too shallow and too exposed during the low tide.

012055
The following article is Open access

, , and

Indonesia has a variety of coastal systems such as coral reef, mangrove, seagrass, mudflat, and dune, each of which has high biodiversity of species. The primary concern in Indonesia is that rapid economic growth would endanger some essential natural ecosystems and resources, and cause deterioration of environmental condition. As a part of bioindicator development to recognize pollutants with small fish of the genus Oryzias, this study was conducted to assess baseline status of PAHs distribution and sources in seawater, sediments and Oryzias fish. The ecological risk of PAHs in sediments was also evaluated. Concentrations of fifteen USEPA PAH based on GCMS analysis in seawater, sediments, and Oryzias fish vary from 0.00 to 30,600 ng/l, 6.7 to 138.6 ng/g dry weight (dw) and 25.2 to 30.5 ng/g dw, respectively. Based on the diagnostic ratio of PAH compounds, the potential sources of PAHs originated mainly from pyrogenic sources. The status of sediment from this Oryzias fish habitat was considered to be low polluted with PAHs.

012056
The following article is Open access

, and

The use of single-celled and shelled biota, such as foraminifera that lives as benthic, in coastal environmental monitoring activity is very efficient. Several species of the Ammonia have been used as a proxy of various aquatic environmental monitoring activities. Chemical constituents screening in foraminiferal shell is a step ahead to identify the capacity of benthic foraminifera in responding to anthropogenic metal contamination in coastal water areas. The initial hypothesis of this study is the calcite test of Ammonia beccarii binds the anthropogenic metal in its shell structure and triggers the deformation test. The normal and abnormal shells of Ammonia specimens from Jakarta Bay and Batam waters are used in this study. The Ponar grab was used to sample surface sediment in Jakarta Bay and Batam waters in 2015, and the short core was used to acquire substratum sediment in Jakarta Bay in 2011.The Ammonia beccarii shell was analyzed using SEM and EDX detectors (Scanning Electron Microscope and Energy Dispersive X-ray). The shooting was performed three times in each test, i.e. in the first chamber (proloculus), the last chamber and the chamber between the two. The main building blocks of the foraminifera test are oxygen with an average weight range of 42.86 - 58.79% and carbon with an average weight range of 17.69 - 26.32%. There is a tendency for low levels of C and O elements in the abnormal tests.

012057
The following article is Open access

and

Makassar Strait is located in the entrance of Indonesian Through Flow (ITF). However, the geochemistry of metals in sediment within Makassar Strait remains unexplored. The aim of this study was to measure the concentration of metals in sediment and to assess the sediment quality based on those metals concentrations. The sediment was collected from 632-4730 m in depth using giant piston corer on R/V Baruna Jaya VIII in December 2014. In each observation point, three layers of sediment were sub-sampled from the core i.e. surface layer (0-5 cm), middle layer (45-55 cm) and bottom layer. The metals were analyzed using acid digestion procedure followed by Atomic Absorption Spectrophotometer. The result indicated that the metal has spatially insignificant differences in sediment and the increase of metal concentration by depth was noticed. The Enrichment factor presented as no enrichment to minor enrichment of metal in sediment.

012058
The following article is Open access

and

Mercury is a toxic heavy metal element that can damage embryo development. Although this element is highly toxic, some human activities such as mining and industries are still using it. The uncontrolled usage of this element leads to pollution problem in the environment, which includes the seagrass ecosystem in the coastal area of Seribu Islands. For that, to gather more information about mercury pollution in the seagrass beds of these islands, the concentration of mercury (Hg) was measured in sediment, rhizomes, roots and leaves of two species of seagrass (Enhalus acoroides and Thalassia hemprichii) from Lancang Island, Pari Island and Panggang Island at Seribu Islands, Indonesia in April-May 2017. The highest concentration of mercury was found in sediment on Lancang Island. The concentration of mercury was significantly higher on leaves compare to on roots or rhizomes in E. acoroides on Lancang Island and Panggang Island. T. hemprichii accumulate mercury higher than E. acoroides on Lancang Island. Overall, mercury accumulation on both species ranges at 7.12 – 87.41 ug/kg dw and this shows that they have the potential as bio-indicator of mercury bio accumulation.

012059
The following article is Open access

, and

Banten Bay is categorized as a marine area that is busy with marine tourism activities, settlements and also industries. One potential impact of the condition is the occurrence of pollution from both industrial and domestic sources, erosion and sedimentation in the coastal environment. Samples were collected from 25 representative stations in April 2016. Chemical speciation of three heavy metals (Cu, Ni, and Zn) was studied using a modified sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR). The aims of this study are to determine geochemical speciation of 4 bounds of metal: acid-soluble, reducible, oxidizable and residual, and to assess their impacts in the sediments of Banten Bay, Indonesia. The result shows that the percentage of Copper (45.90-83.75%), Nickel (18.28-65.66%), and Zinc (30.45-79.51%) were mostly accumulated in residual fraction of the total concentrations. The Risk Assessment Code (RAC) reveals that about 0-7.07% of Copper and 1.11-24.35 % of Zinc at sites exist in exchangeable fraction and therefore, they are in low risk category. While 7.34-34.90 of Ni at sites exists in exchangeable fraction and therefore, it is in medium risk category to aquatic environment.

012060
The following article is Open access

, , and

Marine microalgae is the primary producer at the base of the marine food chain. Their sensitivity to metal contamination provides important information for predicting the environmental impact of pollution. Toxicity testing using marine microalgae Pavlova sp. was carried out to assess the toxicity of copper on the growth and chlorophyll-a content. Results of this study show that adverse effects were observed by the increase of copper concentration. Cell number began to decrease at the lowest concentration (13 μg/L) and reduced drastically at 98 μg/L. Minimum cell number was observed at the highest concentration (890 μg/L). The inhibition concentration (IC50) value of copper for Pavlova sp. was 51.46 μg/L and at concentrations >29 μgL-1 the chlorophyll-a content decreased dramatically compared to the control. A variation in cell size and morphology was also observed at the higher concentration by the increase in the cell size and loss of setae compared to normal cells.

012061
The following article is Open access

, , and

Phytoplankton is a primary producer in marine aquatic ecosystem. Their sensitivity to metal makes them important to study to predict the environmental impact of pollution. Copper is an essential nutrient for aquatic life as micronutrients on an organism but toxic at high levels. The focus of this study was to assess the toxicity of copper to Chaetoceros sp. on growth and chlorophyll-a content. The result shows that inhibition concentration (IC50) of copper on the microalgae, Chaetoceros sp. was 30.25 μg L-1. Growth of Chaetoceros sp. decreased 16.84% in 16 μg L-1 and 81.97% in 44 μg L-1. Chlorophyll-a content decreased dramatically at 44 μg L-1 compared to control. Increase of the cell size, deformation of cell wall and loss of setae were observed at higher concentration of copper.

012062
The following article is Open access

, , and

Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

012063
The following article is Open access

Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

012064
The following article is Open access

Indonesia's position on the path of ring of fire makes it rich in mineral resources. Nevertheless, in the past, the exploitation of Indonesian mineral resources was uncontrolled resulting in environmental degradation and marginal reserves. Exploitation of excessive mineral resources is very detrimental to the state. Reflecting on the occasion, the management and utilization of Indonesia's mineral resources need to be good in mining practice. The problem is how to utilize the mineral reserve resources effectively and efficiently. Utilization of marginal reserves requires new technologies and processing methods because the old processing methods are inadequate. This paper gives a result of Multi Blending Technology (MBT) Method. The underlying concept is not to do the extraction or refinement but processing through the formulation of raw materials by adding an additive and produce a new material called functional materials. Application of this method becomes important to be summarized into a scientific paper in a book form, so that the information can spread across multiple print media and become focused on and optimized. This book is expected to be used as a reference for stakeholder providing added value to environmentally marginal reserves in Indonesia. The conclusions are that Multi Blending Technology (MBT) Method can be used as a strategy to increase added values effectively and efficiently to marginal reserve minerals and that Multi Blending Technology (MBT) method has been applied to forsterite, Atapulgite Synthesis, Zeoceramic, GEM, MPMO, SMAC and Geomaterial.

012065
The following article is Open access

Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is the production of magnesium metals from dolomite. The discussion is emphasized to the requirements of certain aspects prior to the application of this technology in Indonesia. Other technologies that are still in research and development stage are also presented and discussed. The discussion is aimed to find further possible research and development in carbonate processing.

012066
The following article is Open access

, and

The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

012067
The following article is Open access

To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

012068
The following article is Open access

, and

Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

012069
The following article is Open access

, and

Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG–DTA) analyses, 13C NMR and also other supporting analytical equipment.

012070
The following article is Open access

, and

Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

012071
The following article is Open access

, and

Abundant geothermal systems in Indonesia suggest high heat and mass transfer associated with recent or paleovolcanic arcs. In the active geothermal system, the upflow of mixed fluid between late stage hydrothermal and meteoric water might contain mass of minerals associated with epithermal mineralisation process as exemplified at Lihir gold mine in Papua New Guinea. In Indonesia, there is a lack of study related to the precious metals occurrence within active geothermal area. Therefore, in this paper, we investigate the possibility of mineralization process in active geothermal area of Guci, Central Java by using geochemical analysis. There are a lot of conducted geochemical analysis of water, soil and gas by mapping the temperature, pH, Hg and CO2 distribution, and estimating subsurface temperature based on geothermometry approach. Then we also apply rock geochemistry to find minerals that indicate the presence of mineralization. The result from selected geothermal area shows the presence of pyrite and chalcopyrite minerals on the laharic breccias at Kali Putih, Sudikampir. Mineralization is formed within host rock and the veins are associated with gold polymetallic mineralization.

012072
The following article is Open access

Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.

012073
The following article is Open access

, , and

Geothermal manifestations existed in West Java (Cilayu, Papandayan Mountain, Telagabodas, Karaha, Tampomas Mountain), Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain) show a difference in their mineral and geochemical compositions. The petrographic analysis of volcanic rocks from Garut (West Java) are basalt, andesite basaltic and andesite. However, based on SiO2 vs K2O value, those volcanic rocks have wide ranges of fractionated magma resulting basalt – basaltic andesite to dacitic in composition rather than those of Slamet Mountain, Dieng, and Argopuro Mountain areas which have a narrower range of fractionation magma resulting andesite basaltic and andesite in compositions. The volcanic rocks from Garut show tholeiitic affinity and calc-alkaline affinity. The geothermal potential of Java is assumed to be related to the magma fractionation level. Geothermal potential of West Java (Garut) is higher than that of Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain).

012074
The following article is Open access

, , , , , , and

Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

012075
The following article is Open access

Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.

012076
The following article is Open access

and

The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

012077
The following article is Open access

and

Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.

012078
The following article is Open access

and

Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.