This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 34

Number 4, 23 February 2017

Previous issue Next issue

Letter

04LT01

, and

We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of isotropic group field theory condensate states in the Gross–Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

Focus Papers

044001

, , , , , , , , , et al

The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

044002

, , , , , , , and

Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers.

044003

and

While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10−3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10−8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary's orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision.

044004

, , , , , , , , , et al

Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

Papers

045001

, , , and

We consider black hole solutions of Einstein gravity that describe deformations of CFTs at finite temperature in which spatial translations have been broken explicitly. We focus on deformations that are periodic in the non-compact spatial directions, which effectively corresponds to considering the CFT on a spatial torus with a non-trivial metric. We apply a DC thermal gradient and show that in a hydrodynamic limit the linearised, local thermal currents can be determined by solving linearised, forced Navier–Stokes equations for an incompressible fluid on the torus. We also show how sub-leading corrections to the thermal current can be calculated as well as showing how the full stress tensor response that is generated by the DC source can be obtained. We also compare our results with the fluid-gravity approach.

045002

and

We complete the intrinsic characterization of spherically symmetric solutions partially accomplished in a previous paper (Ferrando and Sáez 2010 Class. Quantum Grav. 27205024). In this approach we consider every compatible algebraic type of the Ricci tensor, and we analyze specifically the conformally flat case for perfect fluid and Einstein–Maxwell solutions. As a direct application we obtain the ideal labeling (exclusively involving explicit concomitants of the metric tensor) of the Schwarzschild interior metric and the Vaidya solution. The Stephani universes and some significative subfamilies are also characterized.

045003

, and

We show that asymptotically future de Sitter (AFdS) spacetimes carry 'genuine' cosmic hair; information that is analogous to the mass and angular momentum of asymptotically flat spacetimes and that characterizes how an AFdS spacetime approaches its asymptotic form. We define new 'cosmological tension' charges associated with future asymptotic spatial translation symmetries, which are analytic continuations of the ADM mass and tensions of asymptotically planar AdS spacetimes, and which measure the leading anisotropic corrections to the isotropic, exponential de Sitter expansion rate. A cosmological Smarr relation, holding for AFdS spacetimes having exact spatial translation symmetry, is derived. This formula relates cosmological tension, which is evaluated at future infinity, to properties of the cosmology at early times, together with a 'cosmological volume' contribution that is analogous to the thermodynamic volume of AdS black holes. Smarr relations for different spatial directions imply that the difference in expansion rates between two directions at late times is related in a simple way to their difference at early times. Hence information about the very early universe can be inferred from cosmic hair, which is potentially observable in a late time de Sitter phase. Cosmological tension charges and related quantities are evaluated for Kasner–de Sitter spacetimes, which serve as our primary examples.

045004

and

The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations.

The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers.

045005

and

It has recently been demonstrated (Frauendiener and Hennig 2014 Class. Quantum Grav. 31085010) that the conformally invariant wave equation on a Minkowski background can be solved with a fully pseudospectral numerical method. In particular, it is possible to include spacelike infinity into the numerical domain, which is appropriately represented as a cylinder, and highly accurate numerical solutions can be obtained with a moderate number of gridpoints. In this paper, we generalise these considerations to the spherically-symmetric wave equation on a Schwarzschild background. In the Minkowski case, a logarithmic singularity at the future boundary is present at leading order, which can easily be removed to obtain completely regular solutions. An important new feature of the Schwarzschild background is that the corresponding solutions develop logarithmic singularities at infinitely many orders. This behaviour seems to be characteristic for massive space-times. In this sense this work is indicative of properties of the solutions of the Einstein equations near spatial infinity. The use of fully pseudospectral methods allows us to still obtain very accurate numerical solutions, and the convergence properties of the spectral approximations reveal details about the singular nature of the solutions on spacelike and null infinity. These results seem to be impossible to achieve with other current numerical methods. Moreover, we describe how to impose conditions on the asymptotic behaviour of initial data so that the leading-order logarithmic terms are avoided, which further improves the numerical accuracy.

045006

, , and

We study Born–Infeld gravity coupled to a static, non-rotating electric field in 2  +  1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.

045007

, and

We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any $\text{SU}(2)$ invariant closed 3-form in the total space of the principal $\text{SU}(2)$ bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

045008

, and

There are three families of Lagrangians describing massive spin-2 particles via a general (nonsymmetric) rank-2 tensor. Each of those families depends on an arbitrary real parameter, one of them includes the paradigmatic Fierz–Pauli theory whose Hamiltonian positivity is known and reviewed here. Here we apply the plain Dirac–Bergmann procedure in the two remaining families. We identify all Hamiltonian constraints and prove both positivity of the reduced Hamiltonian and correct counting of degrees of freedom. The positivity of each spin mode contribution is demonstrated by using spin projection operators. The massless cases are also examined. In particular, we prove positivity of the reduced Hamiltonian and correct counting of degrees of freedom of a Weyl invariant description of massless spin-2 particles.

045009

, and

We show that a class of solutions of minimal supergravity in five dimensions is given by lifts of three-dimensional Einstein–Weyl structures of hyper-CR type. We characterise this class as most general near-horizon limits of supersymmetric solutions to the five-dimensional theory. In particular we deduce that a compact spatial section of a horizon can only be a Berger sphere, a product metric on ${{S}^{1}}\times {{S}^{2}}$ or a flat three-torus.

We then consider the problem of reconstructing all supersymmetric solutions from a given near-horizon geometry. By exploiting the ellipticity of the linearised field equations we demonstrate that the moduli space of transverse infinitesimal deformations of a near-horizon geometry is finite-dimensional.

045010

, and

We investigate diagonal Bianchi-I spacetimes in the presence of viscous fluids by using the shear and the anisotropic pressure components as the basic variables, where the viscosity is driven by the (second-order) causal thermodynamics. A few exact solutions are presented, among which we mention the anisotropic versions of de Sitter/anti-de Sitter geometries as well as an asymptotically isotropic spacetime presenting an effectively constant cosmic acceleration without any cosmological constant. The qualitative analysis of the solutions for barotropic fluids with linear equations of state suggests that the behaviour is quite general.

045011

We take a step towards characterising stationary data for the vacuum Einstein equations, by finding a necessary condition on initial data for which the evolution is a solution of the vacuum equations admitting a Killing vector, which is time-like at least in some region of the Cauchy development.

Note

047001

The 2015 Planck data release has placed tight constraints on the class of inflationary models allowed. The current best fit region favors concave downwards inflationary potentials, since they produce a suppressed tensor to scalar index ratio r. Concave downward potentials have a negative curvature ${{V}^{\prime \prime}}$ , therefore a tachyonic mass square that drives fluctuations. Furthermore, their use can become problematic if the field rolls in a part of the potential away from the extrema, since the semiclassical approximation of quantum cosmology, used for deriving the most probable wavefunction of the universe from the landscape and for addressing the quantum to classical transition, breaks down away from the steepest descent region. We here propose a way of dealing with such potentials by inverting the metric signature and solving for the wavefunction of the universe in the Euclidean sector. This method allows us to extend our theory of the origin of the universe from a quantum multiverse, to a more general class of concave inflationary potentials where a straightforward application of the semiclassical approximation fails. The work here completes the derivation of modifications to the Newtonian potential and to the inflationary potential, which originate from the quantum entanglement of our universe with all others in the quantum landscape multiverse, leading to predictions of observational signatures for both types of inflationary models, concave and convex potentials.