
Classical and Quantum Gravity      

NOTE

Predictions of the quantum landscape multiverse
To cite this article: Laura Mersini-Houghton 2017 Class. Quantum Grav. 34 047001

 

View the article online for updates and enhancements.

You may also like
Testing predictions of the quantum
landscape multiverse 1: the Starobinsky
inflationary potential
Eleonora Di Valentino and Laura Mersini-
Houghton

-

A brief history of the multiverse
Andrei Linde

-

Bubble collisions and measures of the
multiverse
Michael P. Salem

-

This content was downloaded from IP address 18.117.8.216 on 19/05/2024 at 08:44

https://doi.org/10.1088/1361-6382/34/4/047001
https://iopscience.iop.org/article/10.1088/1475-7516/2017/03/002
https://iopscience.iop.org/article/10.1088/1475-7516/2017/03/002
https://iopscience.iop.org/article/10.1088/1475-7516/2017/03/002
https://iopscience.iop.org/article/10.1088/1361-6633/aa50e4
https://iopscience.iop.org/article/10.1088/1475-7516/2012/01/021
https://iopscience.iop.org/article/10.1088/1475-7516/2012/01/021


1

Classical and Quantum Gravity

Predictions of the quantum landscape 
multiverse

Laura Mersini-Houghton

Department of Physics and Astronomy, UNC-Chapel Hill, NC 27599, USA

E-mail: mersini@physics.unc.edu

Received 20 September 2016, revised 26 November 2016
Accepted for publication 29 November 2016
Published 18 January 2017

Abstract
The 2015 Planck data release has placed tight constraints on the class of 
inflationary models allowed. The current best fit region favors concave 
downwards inflationary potentials, since they produce a suppressed tensor to 
scalar index ratio r. Concave downward potentials have a negative curvature 
″V , therefore a tachyonic mass square that drives fluctuations. Furthermore, 

their use can become problematic if the field rolls in a part of the potential 
away from the extrema, since the semiclassical approximation of quantum 
cosmology, used for deriving the most probable wavefunction of the universe 
from the landscape and for addressing the quantum to classical transition, 
breaks down away from the steepest descent region. We here propose a way 
of dealing with such potentials by inverting the metric signature and solving 
for the wavefunction of the universe in the Euclidean sector. This method 
allows us to extend our theory of the origin of the universe from a quantum 
multiverse, to a more general class of concave inflationary potentials where a 
straightforward application of the semiclassical approximation fails. The work 
here completes the derivation of modifications to the Newtonian potential and 
to the inflationary potential, which originate from the quantum entanglement 
of our universe with all others in the quantum landscape multiverse, leading to 
predictions of observational signatures for both types of inflationary models, 
concave and convex potentials.

Keywords: wavefunction of universe, quantum cosmology, landscape, 
quantum theory, field theory

1. Introduction

Once again Planck has spoken. The 2015 release [1, 2], which includes polarization data, 
tightened the constraints on the plethora of the allowed inflationary models. At the same 
time it strengthened the evidence for the existence of some of the CMB anomalies. The best 
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fit region for inflationary models is now that of concave downwards potentials, such as the 
Starobinsky R2-model [6] and the hilltop class of models [7]. The reason for favoring concave 
downward potentials is simple: they produce a suppressed tensor to scalar ratio r. The tensor 
to scalar ratio is tightly constrained by Planck 2015 [1] to be ⩽r 0.07. Since r is related to the 
amplitude of scalar fluctuations As, the new constraints in r have induced a small change in As 
relative to its 2013 reported value [3]. Consequently, bounds on As constrain the energy scale 
of inflation at the start of slow roll V0, and affect the significance of the low multipole power 
suppression in temperature autocorrelations. However the accuracy of measuring the power 
at low multipoles is partially impeded by cosmic variance. The 2015 data [2, 3] also provides 
additional support and information about the anomalies, increasing their significance to σ4  in 
some cases, such as the cold spot.

The big mystery from Planck 2013 data, namely the intriguing friction between the best 
fit inflationary models and the anomalies’ best fit region, persists in the Planck 2015 data [2]. 
The parameters favored by the anomalies are σ4  away from the best fit region of inflationary 
models, and vice versa. The new hints and constraints from the Planck satellite data [1, 2] help 
us to further probe the physics of the universe as it came into existence and, possibly, even 
before it emerged. Understandably, the search for a coherent theory with predictive powers, 
that simultaneously accommodate the constraints placed on the inflationary models and on the 
anomalies, is well motivated.

2. The quantum landscape multiverse

In 2004, when the string theory landscape [5] was announced, I proposed that we take the 
landscape to be the space of the initial states of the universe, and allow the wavefunction of 
the universe to propagate on this landscape [8] in order to address the selection of the initial 
conditions for our universe through a concrete calculation by means of quantum cosmology. 
The purpose of the proposal was to find a way to derive, from first principles rather than by 
a postulate, the selection criterion for the initial state of the universe based on the dynamics 
of the system on a superspace of initial states. The three assumptions made were: firstly, the 
formalism of quantum theory, including quantum cosmology, can be relied upon in these 
regimes; secondly, the vast landscape provides the space of the initial conditions; and, thirdly 
that the semiclassical approximation is valid. In this theory, the most probable universe is 
derived from the solutions to a generalized Wheeler DeWitt equation [9] for the wavefunc-
tional of the universe propagating through landscape energy ‘valleys’.

The solutions for the wavefunction of the universe derived in this approach, taught us that: 
the landscape can not be reduced to a quantum double well otherwise important quant um 
effects which induce localization of the wavefuntion and quantum interference, are not cap-
tured. The landscape has to be treated as a quantum N- body problem; and the fine details 
of the distribution of vacua on the landscape do not matter as long as this distribution is 
disordered. Solutions for the wavefunction of the universe depend only on the strength of the 
disorder, the dimensionality of the landscape, and on the boundary conditions. So, in a sense, 
these solutions are universal, since any disordered quantum gravity ‘landscape’ of the same 
dimensionality, including that from string theory, would yield the same family of solutions 
independently of the detailed distribution of their respective vacua, for as long as they had the 
same disorder strength. On the other hand, any perfectly ordered landscape, such as the SUSY 
sector of the landscape [8], cannot produce classical universes, since the wavefunction of the 
universe solutions for periodic potentials are not localized around a single vacua—rather they 
are of the ‘Bloch waves’ type, extended over the whole landscape. Therefore, a disordered 

Class. Quantum Grav. 34 (2017) 047001



Note

3

landscape seems to be a generic requirement of any theory of quantum gravity that aims to 
explain the emergence of a quantum to a classical universe. The requirement of a ‘disordered 
landscape’ from quantum gravity implies that only two of the three assumptions in the list 
above are needed for deriving the selection of the initial conditions of our universe and test-
able predictions for the theory. The two assumptions are: the validity of quantum cosmology, 
and the validity of the semiclassical approximation.

Decoherence was included in this proposal in 2005 [9], by considering the backreaction of 
long wavelength fluctuations comprised of fluctuations around the landscape vacua and the 
metric of 3 geometries.The long wavelength fluctuations make up the ‘environment’, while 
the wavefunction branches comprise the ‘system’. Including the effect of the ‘environment’, 
which contains an infinite number of flucutuations fn coupled weakly to the ‘system’, triggers 
decoherence among the wavefunction branches localized on landscape vacua. Decoherence is 
responsible for the derived selection mechanism of the most probable initial state. The selec-
tion mechanism emerges from the quantum dynamics of gravitational and scalar degrees of 
freedom. Solutions to the generalized Wheeler DeWitt equation, (WdW), now residing on an 
infinite size midi-superspace that included fn, showed that the most probable universes select 
the high energy vacua on the landscape (see [9] for the detailed derivation).

Coherence and decoherence are closely related. Therefore we can use entanglement among 
the wavefunction branches to our advantage to derive a series of testable predictions. Using 
the semiclassical approximation, we calculated in [10] the entanglement strength from the 
backreaction term which had triggered decoherence among the branches/wavepackets of the 
wavefunctional of the universe. We found that entanglement modifies the CMB and gravi-
tational potential in our universe by contributing a nonlocal and scale dependent, quantum 
correction term to the inflation potential and an additional source for the CMB perturbations, 
which we then evolved forward in time to the present day. We calculated a series of predictions 
in 2006 [10] by estimating the effect of entanglement of our branch-universe wavepacket, with 
all other surviving universes, including: the existence of a giant void/cold spot, a lack of power 
at the lowest wavenumber �k 2 leading to the hemisphere power asymmetry, a suppressed 
σ � 0.88 , and, a giant void of about 10 degrees at redhsift ≈z 1 now known as the ‘cold spot’. 
The derivation of these signatures starting from a theory of the origin of the universe from the 
landscape multiverse, was computationally intense. Therefore we used a simple inflationary 
model, the exponential type in [10], to illustrate the theory of the origin of the universe from a 
quantum landscape multiverse, and to derive the predictions listed in [10].

We now know that the exponential potential and most other convex type potentials with 
″>V 0, are ruled out by Planck data because they predict a higher tensor to scalar ratio r than 

the one constrained by Planck [1]. Since the data favors concave downwards potentials ″<V 0 
which predict suppressed tensor perturbations [4], we here calculate the effect of entangle-
ment and derive the corrections to the inflaton potential and the gravitational potential of 
our universe, for the case of concave inflationary potentials with ″<V 0. These corrections 
provide the source of modification for the CMB and gravitational potential of our universe 
which lead to a series of predictions for convex potentials similar to the anomalies derived in 
[10] for convex potentials. These modifications can be tested against current data and we carry 
this analysis in the companion paper [16]. The derivation of the modification to the gravita-
tional potential produced by the quantum entanglement of our universe with all others in the 
quant um multiverse, is considerably subtler for the case of concave potentials. The subtlety is 
due to the fact that fluctuations are driven by ″= <m V 02 , and the validity of the semiclassi-
cal approximation based on a saddle point expansion of the action for the wavefunctional of 
the universe, becomes questionable when the slow rolling field is away from its vacuum state, 
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as is the case for some of the concave downwards potentials favored by data. If we ‘blindly’ 
applied the results of [9, 10] to the case of these concave potentials, in the region away from 
the saddle point and with fluctuations driven by a tachyonic mass m2  <  0, then the ‘decoher-
ence factor’ among the wavefunction branches would appear to grow instead of being sup-
pressed, which is clearly wrong. The latter demonstrates that using the semiclassical method 
to estimate the decoherence factor in a regime where the method breaks down is an incorrect 
procedure.

But, the predicted contributions from the entanglement of our universe with all other wave-
function branches to the CMB and the gravitational potential of the universe, provide a power-
ful way of testing the quantum origin of the universe from a landscape multiverse. We perform 
the calculation in this paper. We calculate the entanglement of our branch with all others for 
the case of inflationary concave potentials with ″<V 0, and derive its effect on the observables 
of our universe in the present sky. The analysis of these predictions for concave and convex 
potentials, against the data from the Planck satellite, is shown in companion papers [16]. The 
current treatment thus completes the study of the effect that quantum entanglement from the 
landscape has in modifying the observables in our sky, for both concave and convex inflation-
ary potentials.

3. Entanglement and decoherence in the quantum multiverse

In the theory of the origins of the universe from the landscape multiverse given in [8–10], the 
wavefunctional of the universe Ψ propagates through the landscape vacua. The landscape is 
captured by a collective variable [5], the moduli field φ with a potential ( )φV , consisting of 
a large number of vacua with energies randomly distributed. Details can be found in [8] and 
[9, 10]. The wavefunctional [ ]φΨ a,  is defined on a minisuperspace parametrized by the scale 
factor a of 3-geometries with an FRW line element, and the landscape moduli φ. The wave-
functional satisfies a Wheeler DeWitt (WdW) equation

[ ( )] [ ]φ φ+ Ψ =H H a, 0g (1)

sometimes known as the constraint equation. The conjugate momentum φp p,a  and variables 
( )φa,  are promoted to quantum operators. Hg is the gravitational Hamiltonian derived from the 
Hilbert–Einstein action, and ( )φH  is the Hamiltonian of a scalar field with kinetic energy, and 
potential energy ( )φV . In our case the landscape structure provides ( )φH  with φ the moduli 
field, and the landscape vacua energies are captured by the potential ( )φV . Explicitly, rewrit-
ing the scale factor as = αa e  [9], leads to the following expression for the total Hamiltonian 

( )φ= +H H Hg

( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
α φ

αφ=
∂
∂

−
∂
∂
+αH

M
V

1

2e

4

3
,

p
3 2

2

2

2

2 (2)

where Hg is identified with the first term in equation (2), and ( ) ( )α φ φ κ= −α αV V, e e6 4 , with 
κ = 0, 1 for flat or closed universes and ( )φV  the landscape potential. Note that ( )φV  is the 
potential of a very large number N  of vacua, a lattice of vacua sites, all with different energies 
described by a parameter b which we can think of as the local SUSY breaking parameter for 
each vacuum site. This approach and the probability distribution of the solutions for the wave-
funcion of the universe, found from equation (1), (given in [8]) have not yet accounted for 
decoherence among the wavefunction branches, and for the quantum to classical transition.
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3.1. Expanding around the minimum of a convex potentials ″>V 0

To address decoherence among the branches of the wavefunction and therefore derive the 
emergence of a classical universe, we included an ‘environment’ comprised of long wave-
length massive fluctuations labelled by fn . These are fluctuations around a vacua field 
φ φ= +Σ f a Qn n n0 ( )  with Qn the scalar field harmonics in the unperturbed metric of the 3 
sphere, and also perturbations around the 3-geometry FRW metric (= Ω + εh aij ij ij

2  where 
Ωij is the FRW spatial metric and εij is the perturbation around it (both scalar and tensor per-
turbations). The index n is an integer denoting the mode number with physical wavenumber 
k  =  n/a. The detailed procedure was laid out in [9]. The semiclassical approximation in [10] 
was valid since the saddle point expansion in [10] was performed near the minimum of a con-
vex potential with ″>V 0. The long wavelength modes comprising the environment are the 
ones with wavelengths longer than the horizon. Thus superhorizon wavelength fluctuations 
are weakly (gravitationally) coupled to the ‘system’ or the branches of the wavefunction, 
localized on some vacua. The fluctuation modes are also independent of each other. Normally, 
both tensor and scalar fluctuations contribute to the ‘environment’ and their derivation is iden-
tical. But, the CMB fluctuation strength is of order 10−5 and tensor perturbations are much 
weaker than the scalar ones. So, the tensor fluctuations are orders of magnitude smaller than 
the scalar fluctuations, which is why we can focus on the effect of scalar fluctuations [9] only, 
without loss of generality [14].

The approach is based on the validity of the semiclassical approximation [12].The total 

action is expanded to second order around the saddle point, ″+ Σ�S S S fn n n0
1

2
2. In the WKB 

approx imation, the total wavefunction can be written as ħ/Ψ� e Si . Expanding the action 

around some vacua φj, where for example the branch that becomes our universe is localized, 
we have ( )φ φ φ≈ + x t,j j

n
j

0  with ( ) ( )φ = Σf a Q xn
j

nlm
nlm . Here (nlm) is collectively denoted by 

n, Qn are the scalar harmonics on a 3-sphere. We also drop the j- index from now by taking φ 
to be a continuous variable, since the number of vacua in the landscape is so large, about 10600 
,that we can safely consider φ to be a continuous instead of a discreet variable, in a nearly 
infinitely long lattice with a potential given by ( )φV .

The total wavefunction can then be written as

[ ] [ ] [ ]φ φ ψ φΨ = Ψ Πa f a a f, , , , ,n n n n0 (3)

where ħ/Ψ � e S
0

i 0  is the unperturbed part of the wavefunction, S0 the zero order term of the 
action evaluated at φ0, and ψn denotes the contribution to the wavefunction from the pertur-
bation modes. Of course we have to solve for ψn and ψ0. Including these fluctuation modes 
results in an infinite sized midi-superspace parametrized by the ( )φa f, , n . Their contribution 
generalizes the WdW equation (1) into a ‘Master Equation’. Using the expression 3 for the total 
wavefunction Ψ, inserting the perturbed metric hij and field ( )φ φ= +Σf a Qn n0 , into the action, 
and expanding the action up to quadratic order around the saddle point, gives the Hamiltonian 
modes Hn for the contribution from fn perturbations to the total Hamiltonian = +ΣH H Hn n0 . 
At the quadratic level of expansion, these Hn’s are decoupled from each other [14, 15].

The total wavefunctional of the universe then in the WKB approximation, up to the quad-
ratic order expansion of the action, satisfies

[ ( )] [ ] ( ) [ ]φ φ φ φ+ Ψ = Σ ΨH H a H a f a f, , , , ,g n n n n (4)

where Hn is the contribution to the Hamiltonian from the individual modes fn, i.e. the backre-
action term added to the total Hamiltonian of the WdW equation, obtained from the steepest 
descent expansion of the action.
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A semiclassical time parameter is defined from the action ∇ ∇ = ∂
∂

S
t0  where ∇ is a deriva-

tive with respect to the minisuperspace variable a. The semiclassical definition of time is such 
that Einstein equations are recovered when the quantum to classical transition occurs, and the 
universe is a classical universe obeying general relativity equations, as shown in [14]. With 
this definition of the time parameter, plugging in the ansatz for the wavefunction equation (3) 
to the master equation equation (4), and the solution for the unperturbed wavefunction Ψ0, 
yields an equation for the perturbations ψn, see [9]. These fluctuations obey a ‘Schrodinger’ 
type equation

( )⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥
⎥

ψ ψ
ψ

= −
∂
∂
+

−
+ =

∂
∂

H
a f

f
n a m a

t

1 1

2

1

2 2
in n

n
n n

n
3

2

2
2

2 4 2 6

 (5)

Previously we expanded around the vacua of a convex potential [9] where the semiclassical 
approximation is valid, when calculating the backreaction term and predicting the series of 
signatures that test this theory. In [9] we considered the full wavefunction to be of the WKB 

form of equation (3), with the unperturbed part of the wavefunction ħΨ = A e0 0
i

S0
 and took the 

ansatz for the perturbations to be

( )ψ =
Ω

N t en
fi

2
n

n
2 (6)

The semiclassical approach leads to the emergence of a classical universe. The time param-

eter in equation (6) identified with ∇ ∇ = ∂
∂

S
t0  is the same parameter for all the branches.

With the inclusion of perturbations ψn, the WdW equation becomes the Master equation of 
equation (4) and the sum over the perturbation Hamiltonians Hn, given in equation (5), pro-
vides the backreaction term. From here on we will drop the index n in Ωn as a shorthand 
notation, but the reader should nto be confused into thinking all Ωn’s are the same, since they 
depend on a and n. Inserting the ansatz for ψn of equation (6) into the Schrodinger type equa-
tion for ψn in equation (5), gives the following two equations for N(t) and Ωn

= Ω
N

t
i
dln

d
Tr (7)

and,

ω−
∂Ω
∂
= −Ω +

t
i 2 2 (8)

where ( )ω = − + ≈ +n m a n m a12 2 2 2 2 2 2 for n large, is the ‘mass term’ in the perturbation 
Hamiltonian Hn with ″= >m V 02 . The notation Ω Ω,R I denotes the real and imaginary parts of Ω.  
The first, equation (7), can be easily integrated and we have

( ) / ( )⎜ ⎟
⎛
⎝

⎞
⎠π

=
Ω − ΩN t det

2
e1 2 R iTr R (9)

To solve equation (8) following [14] we used the ansatz

Ω = − a
y

y
i

˙3
 (10)

which led to an equation for y
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( )+ + + =y
a

a
y

n

a
m y¨ 3

˙
˙ 0

2

2
2 (11)

that is solved by Bessel functions.
The reduced density matrix is obtained by tracing out the ‘environment’ degrees of free-

dom, i.e. by integrating out the fluctuations fn, as follows

( ) ( ) ( )∫ρ φ φ ρ ψ φ ψ φ= Π �a a f a f a f; , di i j j n n n j j n n i i n0 (12)

where ( ) ( )ρ φ φ= Ψ Ψ�a ai i j j0 0 0  is the unperturbed part. Once we have the solutions for ψn, we 
can calculate the reduced density matrix from equation  (12), which yields the following: 

( )ρ ρ= Ω
Ω

det0
R .

From the reduced density matrix we obtain two crucial pieces of information: (i) how fast, 
the branches with 3-geometries a a,i j localized on the landscape vacua φ φ,i j, are decohering 
from each other. (This information is given by the decoherence factor [ ]−DExp , which is the 
real part in the exponent of the reduced density matrix equation (12) which shows how fast the 
cross term of the branches is suppressed, see below); (ii) and, how the backreaction from the 
‘environment’ shifts the classical trajectories of the branches peaked around some energies Ei 
in the midi-superspace, to a new value δ−E Ei i. As the branch undergoes a quantum to clas-
sical transition to become a universe, the energy shift around which a classical path in phase 
space is peaked, becomes a nonlocal correction to the inflationary energy and the gravitational 
potential of the universe, as shown in [9, 10].

Information about the energy shift δ φE  of the classical path of the branch, which is induced 
by interaction with the ‘environment’ of Σ Hn n, is contained in the imaginary terms of the 
exponent of the reduced density matrix equation (12). It can also be calculated directly from 
evaluating Hn as

⟨ ⟩
( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟δ

Ψ|Σ Ψ
= = − Ω +

Ω
Ω

φ
H

a
E

a

1
Tr Tr

˙

2
n

3 3 R
I

R
 (13)

After the emergence of a classical universe,the shift in the classical path of the branch, 
which would have been peaked around the energy ( )φV  if the backreaction term were ignored, 
corresponds to a shift of the inflaton energy ( ) → ( ) ( )φ φ φ δ= − φV V b V E,eff  that enters the 
Friedmann equation

( ) ( )φ φ δ= = − φHM V b V E3 ,2 2
eff (14)

where M is the Planck mass and H the Hubble parameter.
Using the expansion

( ) [ ] ( ) ( )Ω
Ω
= − + Ω

Ω
− Ω

Ω
− Ω

Ω
−�det e eR Trln 1 i iTr 1

2
Tr ...I

R

I

R

I

R

2

 (15)

in the reduced density matrix allows us to immediately identify: the imaginary terms with 

the backreaction to the Hamiltonian equation  (13), Ω
Ω

I

R
 with the interference length, and 

the real term with the suppression factor among the branches, i.e. the decoherence factor 

( )= Ω
Ω

D Tr1

2
2

R

I . For the problem at hand, decoherence is dominated by ( )−π�D a aam H

b i j4
2

3
0
2

2 . 

We now need to apply these key steps in the derivation of the wavefunction of the universe 

and of quantum entanglement, to the subtler case of concave downwards potentials, when the 
wavefunction is in a region where the semiclassical approximation breaks down.
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3.2. Concave downwards potentials, ″<V 0

All semiclassical approximations are based on saddle point evaluations of the WKB wave-
function ħ/Ψ� Ae Si , where A is the amplitude and S the action. Since Ψ is oscillatory and 

ħ/1  is large, then Ψ and ρ are dominated by points where =′S 0 at S  =  S0, and averages to 
zero otherwise due to the rapid phase oscillation. Therefore in the semiclassical approach we 
can write ( )ħΨ ″δφ+ +� Ae S S ...i

0
1
2

2
 where prime is a derivative with respect to the variable of S 

around which it is expanded and δφ = fn. Problems with the semiclassical formalism arise if 
we move away from the saddle point region of the potential. For this regime we cannot justify 
the WKB ansatz for Ψ of equation (3). Also a ‘semiclassical’ time parameter needed to solve 
equation (5) can not be defined. That is to say that the correspondence between the quantum 
wavefunction branches and classical universes is not a one to one mapping, there exist wave-
function solutions which have no classical universes counterpart.

We now know from the Planck results [1] that the best fit to the data inflationary models 
are the concave downwards potentials with ″<V 0, such as the Starobinsky type R2- model [6] 
or the hilltop model [7]. In these potentials the field is slow rolling in a part of the potential 
which is far from the minimum. A blind application of the above semiclassical approximation 
is unjustified and leads to erronous results. If we were to apply this method naively it would 
lead to unstable fluctuations fn driven by ″= <m V 02  and an oscillatory or growing, instead 

of a suppressed decoherence factor, ( )− + −�e eD m a a ai m Ho

b
i j

2 2

4 2
2
.

For these reasons, the case of concave potentials with ″<V 0, in region away from the 
steepest descent, is subtle and it is not clear how one can apply the semiclassical approach to 
these potentials. In terms of the landscape potential where the wavefunction propagates, this 
situation is similar to performing an expansion of the wavefunction when its branches local-
ize somewhere near the plateau of the landscape potential barriers instead of being localized 
around its vacua.

In a different context, the authors of [11] studied a similar case for AdS solutions of the 
wavefunctions of the universe, i.e. when V  <  0 and fluctuations are unstable ″<V 0. Our case 
here is similar to theirs where fluctuations are concerned since we have ″<V 0, but differs 
in the sense of the 3  −  geometries being nearly DS spaces since we have V  >  0, instead of 
AdS geometries with V  <  0 studied in [11]. This situation was further considered in [13] 
who pointed out an important symmetry in quantum cosmology, namely: changing the signa-
ture of the metric −>−g gij ij is equivalent to inverting the potential ( ) ( )φ φ−>−V V  thereby 
rotating to the Euclidean sector, and it is a symmetry of the WdW equation. Thus by invert-
ing the potential we are rotating to the Euclidean sector where the fluctuations are stable 
since ″− >V 0. We use this symmetry to our advantage and perform the whole semiclassical 
calcul ation for the perturbations and the decoherence factor in the Euclidean sector where the 
concave potential is inverted to to a potential well ( ) ( )φ φ−>− <V V 0. Fluctuations in the 
inverted potential are stable and driven by ″= | | >m V 02 . At the end of the calculation we go 
back to the Lorentzian sector and translate our results in real time.

Let us now use the symmetry [13] of the WdW equation  −>− −>−g g V V,ij ij  to perform 
the perturbation expansion around the minimum of the inverted concave potential. In this case, 

the unperturbed wavefunction ħ/Ψ = A e S
0 0

i 0  of the Lorentzian sector, goes to ħΨ = −Ae0

SE
0
 in 

the Euclidean plane. The Euclidean version of the ‘Schrodinger’ equation for the perturba-
tions ψn becomes

( )⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥
⎥

ψ
τ

ψ
∂
∂
=

∂
∂
−

−
+

a f
f

n a m a1 1

2

1

2 2
n

n
n n3

2

2
2

2 4 2 6

 (16)

Class. Quantum Grav. 34 (2017) 047001



Note

9

where we have the ‘Euclidean’ time parameter τ defined, by the Euclidean action − =S SiE
0 0 

through = ∇ ∇
τ
∂
∂

SE
0 . This is consistent with the semiclassical definition of the Lorentzian 

action, = ∇ ∇∂
∂

S
t 0  by identifying τ = it, at the end of the calculation when we analytically 

continue to Lorentzian time.The mass term entering the equation is defined with respect to the 
inverted potential ″ ″= − = | | >m V V 02 , and therefore is positive.

We now assume the following ansatz for the perturbations

( )ψ τ= −
Ω

N en
E f

2
n
E

n
2 (17)

Replacing this form in equation (16) leads to

τ
∂
∂
= −

ΩN

a2
n
E

3
 (18)

and

ω
−Ω =

Ω −
a

˙
n
E n

E2 2

3
 (19)

where the dot here, equation (26), means 
τ
∂
∂

. From the next line on we drop the indices (n, E) 

unless it is neccessary to emphasize that we are performing the calculation in the Euclidean 
plane. Considering

Ω =
a y

y

˙E
3

 (20)

and replacing it in equation (26) yields

⎛
⎝
⎜

⎞
⎠
⎟

τ
ωΩ

= + − =
−Ω

a a
y

y
a

y

y

y

y a

d

d
3 ˙

˙ ¨ ˙2 3
2

2

2 2

3 (21)

This equation, in terms of a ‘conformal’ time defined by τ η=d ad E, becomes

⎛
⎝
⎜

⎞
⎠
⎟″ + − + =

′
′y

a

a
y

n

a
m y2 0

2

2
2 (22)

where prime is equal to 
η
∂
∂ E. In the Lorentzian sector, a nearly exponential expansion with a Hubble 

constant H corresponds to a DS 3-geometry with scale factor ( )η = −
ηH

a 1 . In the Euclidean sector 

we can see that τ−> ti  is equivalent to the transformation ( ) ( )η η= − =
ηH

a aiE i  consistent with 

a Euclidean rotation, (or )η η= iE . We now replace ( )η =
ηH

aE i  in equation (22) and drop the E 

notation, to get

⎛
⎝
⎜

⎞
⎠
⎟″

η η
− + − =′

H
y y

m
n y

2
0

2

2 2
2 (23)

Equation (23) can be solved exactly. First, let’s write ( )/η η=y Z3 2 , which leads to an equa-
tion for ( )ηZ

⎡

⎣
⎢
⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥″

η η
+ + − − =′

H
Z Z

m
n Z

1 9

4

1
0

2

2 2
2 (24)
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Equation (24) is solved by the modified Bessel functions ( )νK x  since the argument x is 

imaginary, κ η=x n  with κ = −nn
2 2, and /ν = − �

H
9 4m2 9

4

2

2 . We can not choose the other mod-

ified Bessel function ( )νI x  that solves this equation since νI  would give a purely real Ω which 
eventually leads to a decoherence factor D  =  0 when moving to the Lorentz sector. It should 
be noted that for /ν = 1 2 the choice νI  corresponds to an exponentially growing function while 
νK  to a decaying function.Therefore viewing equation  (16) as a Schrodinger equation of a 

wave in a potential well, the choice of the decaying solution νK  is the physically relevant solu-
tion, since the other function, the exponentially growing solution denotes instability. Under 
the unitary evolution of equation (16), a decaying solution will evolve into a decaying solution 
and not an unstable exponentially growing one, therefore these solutions form a closed subset 
in the Hilbert space.

We need a solution that allows Ω to have a real and an imaginary part, since the reduced 
density matrix is obtained by the wavefucntion sqaured, traced over the fluctuation modes 
fn. Therefore we obtain a decoherence factor (given by the real part in the exponent of the 
reduced density matrix) and an energy shift (the phase shift of the wavefunction from its 
classical path in midisuperspace, given by the imaginary part of the exponent of the reduced 
density matrix), only when Ω is complex.

Choosing ( )ηνK ni  allows Ω to be complex, therefore the suppression factor among the 
branches is not zero. Ω is imaginary for the other choice of the function ( )νI x . We can use the 
transformation properties of νK  in terms of the Hankel function of the first kind ( )

νH 1

( ) ( )( )π=ν
νπ

ν
π

K x H x
1

2
ie e

i
2

1 i
2 (25)

from which

( ) ( ) ( ) ( )/ /
( )

/ /
( )π π

= =
π π

K x H x K x H x
i

2
e i ,

i

2
e i .1 2

i
4 1 2

1
3 2

i3
4 3 2

1

and thus with η=x ni  we have

/

/

/
( )

/
( )= = = − = −

H H H
x

n

a

n

a
x

n

a

K

K

H

H

i
, i , i .

E
1 2

3 2

1 2
1

3 2
1

where

( ) ( ) ( ) ( ) ( )( ) ( )= = =
−

ν ν ν ν νH H H
K x K

n

a
K

n

a
H x H

n

a

i
, i .

E
1 1

Finally from 
( )

( )
/

/

/
( )

/
( )= −
−

−
H

H

iK

K

H

H

n

a
n

a

1 2

3 2

1 2
1

3 2
1  we get

( )
( )
( )

/
( )

/
( )

⎡

⎣
⎢

⎤

⎦
⎥

η η
Ω =

−
+ −

H H

m
n

H x

H x

1

3
i i

i

i
E

2 2

2

2
1 2
1

3 2
1 (26)

3.3. Analytic continuation

Applying the WKB approximation near the saddle point of the inverted potential in the 

Euclidean sector, ( ) ( )η η= −a iaE  allows us to write the total wavefunction as: ħψΨ −� eE
n
ES0
 

with ( )ψ τ= −ΩN en
E f

E
n2
2
. From equations (10) and (20) we can see that
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( )Ω = − Ω = − Ω + Ω = Ω + Ωi i i iE
I

E E
R R I (27)

Therefore when rotating back to the Lorentz time t, the real part of ΩE which in Euclidean 
space contributes to the energy shift, becomes the imaginary part of its Lorentzian equiva-
lent and vice versa from equation (27). From equation (27) and using the solution of equa-

tion (26), we have the following identification: ( )( ) ( )Ω = Ω = + Ω = +
+
H

H H
Re iImE E n a

n a

m a
R 3

2 3

2 2 2

2 3

 

and ( ) ( )Ω = Ω = − Ω = −
+ H

Im ReE E n a

n aI

3 2

2 2 2. (Note that the sign of the energy correction term 

given by ( )ΩIm E  is inverted to ( )− ΩRe  when going back to the Lorentzian sector).
We thus have the following result for the total effective potential and the energy shift 

induced by fluctuation that are driven by ″= | | >m V 02 , when moving back from Euclidean to 
the Lorentz sector, with respect to real time t, and the dot now being given by the ‘Lorentzian’ 
/ / τ=td d id d

( ) ( ) ( )φ φ δ φ= − − = −φV V E b V,E E
eff eff (28)

where now,

( ) ( )φ δ φ= + φV V E b,eff (29)

since → ( )φ−V VE  and,

→ ( [ ]) ( / ( ) )
⎡
⎣⎢

⎤
⎦⎥

δ δ− = + Ω +
Ω
Ωφ φE E

a

t1
Tr Re Tr

id d i

2
E

3
I

R
 (30)

So we have just shown that applying the WKB approximation for concave potentials with 
″<V 0 required some subtlety involving a rotation to the Euclidean sector. Back in the Lorentz 

plane, not only is the effective potential energy sign flipped, for both (φV  and δ φE , but the 
energy shift for concave potentials is induced by fluctuations that are driven by ″| |V  in equa-
tion (29), i.e. from fluctuations around a saddle point of the inverted ‘convex’ potential with 
m2  >  0. It can be seen that the decoherence factor, [ ]−DExp , back in the Lorentzian sector, 
with the identifications above of [ ]Ω = Ω = −ΩRe E

R I  becomes

( )
⎛
⎝
⎜

⎞
⎠
⎟=

Ω
Ω

= Σ
Ω
Ω

D n2 Tr I
n

R

2 2 I

R

2

 (31)

i.e. it remains exactly the same for both, concave and convex potentials. The integrals and 
summations of these expressions are calculated in the appendix (see also [9] for convex 
potentials).

After the emergence of a classical universe, the energy shift in the concave potential equa-
tion (32), contributes to the Friedmann equation by modifying the inflationary concave down-
ward potential as follows

( ) ( )φ φ δ= + φV V Eeff
concave concave (32)

which is to be contrasted to the energy correction for convex potentials calculated directly in 
the Lorentz sector illustrated with an exponential potential in [9].

Defining the entanglement length Li(k,b) as in [10], we can now obtain the modification 
to the Newtonian potential of the universe Φ0, from the nonlocal modification ( )δ φE b,  to the 
effective potential, by using the Poisson equation  ( )δ π δ φ∇ Φ = G E b4 ,N

2 , where Φ0 is obtained 

from V and Φ from Veff since ( ) π− Φ = G4k

aH N
2

3
2 . Thus, with Li defined in [10] we have
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( ) (
( )

)
⎡
⎣⎢

⎤
⎦⎥

δ
δ φ
ρ

Φ = Φ + Φ≈Φ +
E b r

L k b
1

,

,i
0 0

2 (33)

Note that the correction to the effective potential δE is negative. The giant void and the 
other anomalies arise from the correction δΦ of the Newtonian potential, discussed in [10]. We 
present in detail the implication of this modification to Φ and the comparison of the anomalies 
nested in this effective potential, modified Newtonian potential, and the modified field solu-
tions, against the best fit parameters of the data from the Planck satellite soon in [16].

Although the real part of the exponent in the wavefunction (or equivalently in the reduced 
density matrix) in the Lorentz frame gives the same decoherence factor −e D for concave poten-
tials as for the convex case, it is important to remember that the curvature of the inverted 
potential driving the fluctuation and determining the mass term in the equations  above is 
given by ″= | | >m V 02 , not by ″= <m V 02 , and it remains so after rotating from Euclidean 
to Lorentz sectors.

The method presented here of an Euclidean rotation for the case of fluctuation around con-
cave potentials with ″<V 0, is a similar technique to the one used for instantons in quantum 
mechanics. The results presented here for the energy correction, decoherence and the defini-
tion of m2  >  0 are applicable to all concave downward potentials with ″<V 0. The main dif-
ference with the case of convex potentials which have stable fluctuations since ″>V 0 is the 
sign of the energy correction calculated from entanglement in the landscape: the energy shift 
is added to the energy of concave potentials and it is subtracted from that of convex potentials. 
Decoherence is the same in both cases with the understanding that ″= | | >m V 02  always.

We will apply the signatures derived here which originate from the quantum entanglement 
of our branch of the wavefunction with others in the quantum multiverse, to two examples of 
concave downward potentials: the Starobinsky model and the hilltop model, as well as revisit 
the convex potential of [10] in the light of the new data from Planck satellite in two companion 
papers [16].

4. Conclusions

We have extended the applicability of our theory of the origin of the universe from a quantum 
multiverse to a class of inflationary models which are subtle and require careful treatment, 
because a straightforward application of semiclassical methods is not possible.

We derived the effect of quantum entanglement of our branch universe with other branches 
of the wavefunction of the universe, for the case of concave downwards inflationary potentials 
with ″<V 0 when the field is in a part of its potential away from an extrema, thus the semiclas-
sical approach fails. The reason is: expansion of the action around the saddle point can not be 
justified since the slow rolling field is in a part of the potential away from the saddle point and 
fluctuations are driven by ″<V 0.

Here we performed the flucutations calculation and the WKB expansion in the Euclidean 
sector which inverts the potential. In the inverted potential, fluctuations are driven by 

″= − >m V 02 , and a semiclassicalexpansion around the potential ‘well’ of the inverted 
potential is justified.

Inverting the potential, by moving to the Euclidean sector, is justified from an inherent 
symmetry of quantum cosmology [11, 13]. At the end we rotate back to Lorentzian geometries 
and find that the energy shift is added to the concave potential, in contrast to being substracted 
from convex potentials, but the decoherence factor remains the same. We also show why 
naively considering ″= <m V 02  and from there perform a WKB expansion to estimate the 
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effect of fluctuations in Lorentzian sector, is erronous and produces a growing instead of sup-
pressing decoherence factor.

We will report in a companion publications, how the list of modifications to the Newtonian 
potential and the Friedmann equation derived here from entanglement comapres with the new 
data from Planck satellite.
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Appendix

Here we show the summation involved in all the trace terms that enter the expression for the 
energy shift, interference length, and for the decoherence factor, performed after rotation in 
the Lorentz plane.

In what follows we replace the infinite sum with an integral over all the modes < <Hb n

a
 

with comoving wavelengths from the horizon size Ha  to the wavelengths which probe the 
coherence of the wavepacket in the midi-superspace. Those are the modes whose inverse 
wavelength corresponds the width of the wavepacket (or branch), ab [10].

The interference length is the length at which the quantum nature of the universe such as 
the entanglement with other branches becomes important, and can be read off from the imagi-
nary term in the reduced density matrix ( )− −Ω

Ωe DiTr I
R . It is given by /HA1 , where

( ) ( )

( ) ( / ) [ ]

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫=
Ω
Ω
≈

+ +

− + + −�

H H

H

H
H H

H

H

H

A na
m n a n

n

a
m

b
m

b

b

Tr d
3

3

3
3 Log

6
Exp

I

R
ab

a

1

2 2 2 2 2 2

3

2 2

2

2

2

 

(A.1)

The real part in the exponent of the density matrix gives the decoherence factor as in 
equation (31)

( ) ( ) ( / ) [ ]
⎡
⎣⎢

⎤
⎦⎥∫= Σ

Ω
Ω

≈ − + + −
H

H H
H

H

H
D n n na

m
b

m

b

b1

2
d

3
3 Log

6
Expn

R ab

a
2 I 2 2

2 2

2

2

2

2

 

(A.2)

which is a simple integral but long. So if we focus on the limit where a grows, ma  >  1 for 

example, then the above is roughly: ( )− − − −� �
H

e e eD m a a 10 0a

b
3 2

2 1 2
2 5

 very efficient decoherence.
Now we go on to estimate

( ) ( ) [ / ]
⎡
⎣⎢

⎤
⎦⎥∫= Ω =

+
= − −

H

H

H
H

H
A ndn

n a

n a

a b
bTr

2
1 LogR

ab

a

3

2 2

2 2 2

4 2 2

2 (A.3)

Finally we estimate the last term that contributes to the energyshift below, by using 
( )( / )Ω = ΩHa a˙ d dI I , so,

( ) ( ) (
(

)∫=
Ω
Ω
= −

+
H H

H
A A n

a

na n a
Tr

˙

2

3

2
d

1
4

I

R
1

4

2 2 2 (A.4)
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We now have the energy shift for concave potentials, which modulo the sign in front of it 
and the definition of [ ]″=m Abs V2  , is the same as the correction calculated for convex poten-
tials in [10]. Using the Friedmann equation to relate ( )φVeff  to H2 allows us to write

[ ] ( ) [ ( )]δ
φ

φ= + = +φE
a

A A
V

M
F b V

1

18
,

3 3 4

2

4
 (A.5)

where

[ ] ( ) [ ] ( )
⎡
⎣⎢

⎤
⎦⎥

= + − + −

H
F b V

m M b

V

m

b
,

3

2
2

3
Log

1

2
1 e

b M
V

2

2

2 2 2

2
3

2 2

 (A.6)

In summary, with ″= | |m V2  for concave potentials we find

( ) [ ( )]φ
φ= = +H M V V

V

M
F b V3

18
,2 2

eff
concave concave

concave 2

4
concave

and for convex potentials with ″=m V2  we had [10]

( ) [ ( )]

( ) [ ( )]

φ
φ

φ
φ

= = −

= + | |

H M V V
V

M
F b V

V
V

M
F b V

3
18

,

18
, .

2 2
eff
convex convex

convex 2

4
convex

convex
convex 2

4
convex

 

(A.7)

Note that F[b,V] is always negative, thus [ ] [ ]− = | |F b V F b V, ,  used in the last line of 
equation (A.7).
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