This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

Table of contents

Volume 32

Number 22, 19 November 2015

Previous issue Next issue

Focus issue on Gravity Probe B

Preface

220301

A focus issue providing full technical details of Gravity Probe B, a NASA space mission designed to measure the general relativistic precession of orbiting gyroscopes.

Papers

Overview of mission

224001
The following article is Open access

, , , , , , , , , et al

The Gravity Probe B mission provided two new quantitative tests of Einstein's theory of gravity, general relativity (GR), by cryogenic gyroscopes in Earth's orbit. Data from four gyroscopes gave a geodetic drift-rate of −6601.8 ± 18.3 marc-s yr−1 and a frame-dragging of −37.2 ± 7.2 marc-s yr−1, to be compared with GR predictions of −6606.1 and −39.2 marc-s yr−1 (1 marc-s = 4.848 × 10−9 radians). The present paper introduces the science, engineering, data analysis, and heritage of Gravity Probe B, detailed in the accompanying 20 CQG papers.

224002

The Gravity Probe B (GP-B) experiment is complete and the results are in agreement with the predictions of general relativity (GR) for both the geodetic precession, 6.6 arcsec yr−1 to about 0.3%, and the Lense–Thirring precession, 39 marcsec to about 19%. This note is concerned with the theoretical basis for the predictions. The predictions depend on three elements of gravity theory, firstly that macroscopic gravity is described by a metric theory such as GR, secondly that the Lense–Thirring metric provides an approximate description of the gravitational field of the spinning Earth, and thirdly that the spin axis of a gyroscope is parallel displaced in spacetime, which gives its equation of motion. We look at each of these three elements to show how each is solidly based on previous experiments and well-tested theory. The agreement of GP-B with theory strengthens our belief that all three elements are correct and increases our confidence in applying GR to astrophysical phenomena. Conversely, if GP-B had not verified the predictions a major theoretical quandary would have occurred.

224003

It is more important than ever to push experimental tests of gravitational theory to the limits of existing technology in both range and sensitivity. This brief review focuses on spin-based tests of general relativity and their implications for alternative, mostly non-metric theories of gravity motivated by the challenge of unification with the standard model of particle physics. The successful detection of geodetic precession and frame-dragging by Gravity Probe B places new constraints on a number of these theories, and increases our confidence in the theoretical mechanisms underpinning current ideas in astrophysics and cosmology.

Payload technologies

224004

, , , and

The Gravity Probe B (GP-B) gyroscope, a unique cryogenically operated mechanical sensor, was used on-orbit to independently test two predictions of general relativity (GR). Here, we describe the development and performance of the GP-B gyroscope, its geometry and fabrication, spin-up and vacuum approach, magnetic considerations, and static charge management. The history of electrically suspended gyroscopes puts the current work in context. Fabrication and ground testing of the GP-B gyroscope are detailed, followed by a review of on-orbit initialization, calibration, operation, and performance. We find that the performance was degraded relative to the mission goals, but was still sufficient to provide excellent new tests of GR. The degradation is partially due to the existence of gyroscope torques due to an unanticipated interaction between patch potentials on the rotor and the housing. We discuss these patch potentials and describe the effect of related torques on gyro drift. It was essential to include models for the effects due to the patch potentials in the complete data analysis model to yield determinations of the two GR effects.

224005
The following article is Open access

, , , , , , and

A spaceflight electrostatic suspension system was developed for the Gravity Probe B (GP-B) Relativity Mission's cryogenic electrostatic vacuum gyroscopes which serve as an indicator of the local inertial frame about Earth. The Gyroscope Suspension System (GSS) regulates the translational position of the gyroscope rotors within their housings, while (1) minimizing classical electrostatic torques on the gyroscope to preserve the instrument's sensitivity to effects of General Relativity, (2) handling the effects of external forces on the space vehicle, (3) providing a means of precisely aligning the spin axis of the gyroscopes after spin-up, and (4) acting as an accelerometer as part of the spacecraft's drag-free control system. The flight design was tested using an innovative, precision gyroscope simulator Testbed that could faithfully mimic the behavior of a physical gyroscope under all operational conditions, from ground test to science data collection. Four GSS systems were built, tested, and operated successfully aboard the GP-B spacecraft from launch in 2004 to the end of the mission in 2008.

224006

, , , , and

We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

224007

, , and

Spherical gyroscope rotors for a fundamental experiment to test two predictions of General Relativity Theory, geodetic precession and frame dragging, were manufactured out of fused quartz and single-crystal silicon. These rotors required a mass unbalance and asphericity of less than 25 nm (1 μin), a fractional difference in the moments of inertia of less than 10−5, and a diameter within 0.5 μm (20 μin) of a standard sphere with a diameter of 37.996 mm (1.4959 in). We describe the manufacturing process and the associated metrology.

224008

, , , , , , , , , et al

The Gravity Probe B spacecraft was launched on 20 April 2004 to measure the geodetic and frame-dragging effects predicted by the theory of general relativity. A cryogenic optical telescope was used to establish the inertial reference frame for the measurements by tracking a reference or guide star. The motion of this star was independently checked by reference to background galaxies. With the mission now over, we describe the design, construction and evaluation of the optical and electrical performance of the telescope, comparing ground and flight results. We find that the pointing noise was sufficiently low to meet the mission requirements and in fair agreement with extrapolations from ground tests. Due to slight defocusing, the linear range of the telescope output was significantly wider than expected.

224009
The following article is Open access

, , , , , , , , , et al

This paper gives a detailed account of the Gravity Probe B cryogenic payload comprised of a unique Dewar and Probe. The design, fabrication, assembly, and ground and on-orbit performance will be discussed, culminating in a 17 month 9 day on-orbit liquid helium lifetime.

224010

, , , and

The confinement of superfluid helium for a Dewar in space poses a unique challenge due to its propensity to minimize thermal gradients by essentially viscous-free counterflow. This poses the risk of losing liquid through a vent pipe, reducing the efficiency of the cooling process. To confine the liquid helium in the Gravity Probe B (GP-B) flight Dewar, a porous plug technique was invented at Stanford University. Here, we review the history of the porous plug and its development, and describe the physics underlying its operation. We summarize a few missions that employed porous plugs, some of which preceded the launch of GP-B. The design, manufacture and flight performance of the GP-B plug are described, and its use resulted in the successful operation of the 2441 l flight Dewar on-orbit for 17.3 months.

224011
The following article is Open access

Gravity Probe B was a cryogenic, space-based mission that successfully measured two effects predicted by general relativity. The mission required a 2400 l liquid helium Dewar. In this paper we describe the design and performance of the approach taken to control the distribution of the liquid in the Dewar on-orbit. Such an approach may be applied to other spacecraft containing significant liquid mass.

Spacecraft technologies

224012

, , , , and

The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.

224013

The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed's earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the 'guide star valid' data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed's independent research and development effort, will be discussed.

224014

, , , and

In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16fo clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency3. The 16fo clock and the 10 Hz data strobe, which was divided down from the 16fo clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests.

224015

, , , , , , , , , et al

The Gravity Probe B satellite used ultra-precise gyroscopes in low Earth orbit to compare the orientation of the local inertial reference frame with that of distant space in order to test predictions of general relativity. The experiment required that the Gravity Probe B spacecraft have milliarcsecond-level attitude knowledge for the science measurement, and milliarcsecond-level control to minimize classical torques acting on the science gyroscopes. The primary sensor was a custom Cassegrainian telescope, which measured the pitch and yaw angles of the experiment package with respect to a guide star. The spacecraft rolled uniformly about the direction to the guide star, and the roll angle was measured by star trackers. Attitude control was performed with sixteen proportional thrusters that used boil-off from the experiment's liquid Helium cryogen as propellant. This paper summarizes the attitude control system's design and on-orbit performance.

224016

, , , and

The Gravity Probe B (GP-B) satellite used electrostatically suspended gyroscopes to test two predictions of general relativity. Here, we describe the satellite's proportional thrusters, which utilized boil-off helium gas for attitude and translation Control (ATC). The evolution of the design and its successful effect on orbit performance is reported.

224017

, , , and

The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s−1. Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements.

Data analysis/results

224018
The following article is Open access

, , , , , , and

Gravity Probe B (GP-B) was a cryogenic, space-based experiment testing the geodetic and frame-dragging predictions of Einstein's theory of general relativity (GR) by means of gyroscopes in Earth orbit. This first of three data analysis papers reviews the GR predictions and details the models that provide the framework for the relativity analysis. In the second paper we describe the flight data and their preprocessing. The third paper covers the algorithms and software tools that fit the preprocessed flight data to the models to give the experimental results published in Everitt et al (2011 Phys. Rev. Lett.106 221101–4).

224019
The following article is Open access

, , , , , , , , , et al

The results of the Gravity Probe B relativity science mission published in Everitt et al (2011 Phys. Rev. Lett.106 221101) required a rather sophisticated analysis of experimental data due to several unexpected complications discovered on-orbit. We give a detailed description of the Gravity Probe B data reduction. In the first paper (Silbergleit et al Class. Quantum Grav.22 224018) we derived the measurement models, i.e., mathematical expressions for all the signals to analyze. In the third paper (Conklin et al Class. Quantum Grav.22 224020) we explain the estimation algorithms and their program implementation, and discuss the experiment results obtained through data reduction. This paper deals with the science data preparation for the main analysis yielding the relativistic drift estimates.

224020
The following article is Open access

, , , , , , , , , et al

This paper provides detailed descriptions of the numerical estimation algorithms used to fit physics-based models to the data from the Gravity Probe B spacecraft, as well as the scientific results of the experiment, and the statistical and systematic uncertainties. The first paper in this series of three data analysis papers derives the mathematical expressions for the signals to be analyzed, and the second paper deals with science data acquisition and their preparation for the relativistic drift rate estimation. The data from each of the four gyroscopes are partitioned into six segments, each spanning several weeks to several months. These segments are first analyzed individually to check the validity of the mathematical models and the accuracy of the estimation routine by examining the consistency of the relativistic drift rate estimates from each of these 24 gyro-segments. Then, the drift rate estimates and uncertainties are calculated for each individual gyroscope and for the four gyroscopes combined. These results are presented and compared with each other and with the prediction of general relativity.

224021

, , , , and

We review the radio very long baseline interferometry (VLBI) observations of the guide star, IM Peg, and three compact extragalactic reference sources, made in support of the NASA/Stanford gyroscope relativity mission, Gravity Probe B (GP-B). The main goal of the observations was the determination of the proper motion of IM Peg relative to the distant Universe. VLBI observations made between 1997 and 2005 yield a proper motion of IM Peg of $-20.83$ ± 0.09 mas yr−1 in α and $-27.27$ ± 0.09 mas yr−1 in δ in a celestial reference frame of extragalactic radio galaxies and quasars virtually identical to the International Celestial Reference Frame 2 (ICRF2). They also yield a parallax for IM Peg of 10.37 ± 0.07 mas, corresponding to a distance of 96.4 ± 0.7 pc. The uncertainties are standard errors with statistical and estimated systematic contributions added in quadrature. These results met the pre-launch requirements of the GP-B mission to not discernibly degrade the estimates of the geodetic and frame-dragging effects.