This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 856

Number 2, 2018 April 1

Previous issue Next issue

88

, , , , , , , , and

We perform an anisotropic clustering analysis of 1,133,326 galaxies from the Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey Data Release 12 covering the redshift range 0.15 < z < 0.69. The geometrical distortions of the galaxy positions, caused by incorrect assumptions in the cosmological model, are captured in the anisotropic two-point correlation function on scales of 6–40 h−1 Mpc. The redshift evolution of this anisotropic clustering is used to place constraints on the cosmological parameters. We improve the methodology of Li et al. to enable efficient exploration of high-dimensional cosmological parameter spaces, and apply it to the Chevallier–Polarski–Linder parameterization of dark energy, w = w0 + waz/(1 + z). In combination with data on the cosmic microwave background, baryon acoustic oscillations, Type Ia supernovae, and H0 from Cepheids, we obtain Ωm = 0.301 ± 0.008, w0 = −1.042 ± 0.067, and wa = −0.07 ± 0.29 (68.3% CL). Adding our new Alcock–Paczynski measurements to the aforementioned results reduces the error bars by ∼30%–40% and improves the dark-energy figure of merit by a factor of ∼2. We check the robustness of the results using realistic mock galaxy catalogs.

89

, , , , , , and

NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four "pure Seyfert" galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum Epeak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic Epeak from the effects of shock or H ii region contamination, but Epeak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H ii region grid. The NLR and H ii region model grids are provided with NebulaBayes for use by the astronomical community.

90

, , , , , and

We study the first electromagnetic (EM) pulse after the gravitational-wave (GW) chirp signal, focusing on its profile and duration. It is found that the light curve, especially the steep decay (SD) phase, can be very different by adopting different viewing angles θview of the jet shell. For an on-axis jet with a power-law radiation spectrum, the observed flux in the SD is proportional to ${t}_{\mathrm{obs}}^{-2-\beta }$ with β being the spectral index and tobs being the observer time. Here, tobs = 0 is set at the time we observe the jet being ejected from the central engine. The SD may become steep by increasing θview. We also study the bolometric luminosity L from a jet shell with a non-power-law radiation spectrum. For an on-axis jet, L ∝ tobs−3 is found in the SD. However, the SD is steeper than $L\propto {t}_{\mathrm{obs}}^{-3}$ for radiation from an off-axis jet. The higher value of the θview is, the steeper SD would be. Then, we suggest that the SD phase can be used to discriminate an off-axis jet from an on-axis jet. The reason for the above behaviors is discussed. In addition, we find that the duration of first EM pulse is close to its peak time, especially for θview ∼ 20°. This result is consistent with that found in GW 170817/GRB 170817A. Thus, the jet corresponding to the prompt emission of GRB 170817A should be ejected immediately after the merger. Our results also reveal that the duration of the first EM pulse can provide information on the time to search for GWs.

91

, , , , , , and

The $l=-1\buildrel{\circ}\over{.} 2$ region in the Galactic center has a high CO J = 3–2/J = 1–0 intensity ratio and extremely broad velocity width. This paper reports the detection of five expanding shells in the $l=-1\buildrel{\circ}\over{.} 2$ region based on the CO J = 1–0, 13CO J = 1–0, CO J = 3–2, and SiO J = 8–7 line data sets obtained with the Nobeyama Radio Observatory 45 m telescope and James Clerk Maxwell Telescope. The kinetic energy and expansion time of the expanding shells are estimated to be ${10}^{48.3\mbox{--}50.8}$ erg and ${10}^{4.7\mbox{--}5.0}$ yr, respectively. The origin of these expanding shells is discussed. The total kinetic energy of 1051 erg and the typical expansion time of ∼105 yr correspond to multiple supernova explosions at a rate of 10−5–10−4 yr−1. This indicates that the $l=-1\buildrel{\circ}\over{.} 2$ region may be a molecular bubble associated with an embedded massive star cluster, although the absence of an infrared counterpart makes this interpretation somewhat controversial. The expansion time of the shells increases as the Galactic longitude decreases, suggesting that the massive star cluster is moving from Galactic west to east with respect to the interacting molecular gas. We propose a model wherein the cluster is moving along the innermost x1 orbit and the interacting gas collides with it from the Galactic eastern side.

92

, , and

The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from ${ \mathcal R }\approx 1000$ Gpc−3 yr−1 beyond z ≈ 2 to ${ \mathcal R }\approx 1\mbox{--}10$ Gpc−3 yr−1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104M. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

93

, , , , , , , , , and

We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s−1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.

94

, , , , and

The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity Vsw, Alfvén speed VA, and IMF magnitude B0 are positively related to solar activity; (2) the fluctuating magnetic energy density $\langle {{z}^{\pm }}^{2}\rangle $, residual energy ED, and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy ED is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.

95

, , , , , , , , , et al

Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of ∼2.3 hr and a decay time of ∼36 min. The peak flux above 200 GeV is (4.2 ± 0.6) × 10−6 photon m−2 s−1 measured with a 4-minute-binned light curve, corresponding to ∼180% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.

96

, , , , , and

We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C ii] emission is consistent in velocity and line width with the strongest H i component produced by the cold neutral medium. The H i column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 ${\mathrm{cm}}^{-3}\leqslant n({{\rm{H}}}^{0})\,\leqslant 210$ cm−3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 ${\mathrm{cm}}^{-3}\leqslant n({{\rm{H}}}^{0}+{{\rm{H}}}_{2})\leqslant 190$ cm−3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm−3 K $\leqslant \,{P}_{\mathrm{th}}/k\leqslant $ 10,440 cm−3 K for H0 alone and 750 cm−3 K ≤ Pth/k ≤ 9360 cm−3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.

97

, , , , , and

Dense molecular gas tracers in the central 1 kpc region of the superwind galaxy NGC 1808 have been imaged by ALMA at a resolution of 1'' (∼50 pc). Integrated intensities and line intensity ratios of HCN (1–0), H13CN (1–0), HCO+ (1–0), H13CO+ (1–0), HOC+ (1–0), HCO+ (4–3), CS (2–1), C2H (1–0), and previously detected CO (1–0) and CO (3–2) are presented. SiO (2–1) and HNCO (4–3) are detected toward the circumnuclear disk (CND), indicating the presence of shocked dense gas. There is evidence that an enhanced intensity ratio of HCN (1–0)/HCO+ (1–0) reflects star formation activity, possibly in terms of shock heating and electron excitation in the CND and a star-forming ring at radius ∼300 pc. A non-local thermodynamic equilibrium analysis indicates that the molecular gas traced by HCN, H13CN, HCO+, and H13CO+ in the CND is dense (${n}_{{{\rm{H}}}_{2}}\sim {10}^{5}\,{\mathrm{cm}}^{-3}$) and warm (20 K ≲ Tk ≲ 100 K). The calculations yield a low average gas density of ${n}_{{{\rm{H}}}_{2}}\sim {10}^{2}\mbox{--}{10}^{3}\,{\mathrm{cm}}^{-3}$ for a temperature of ${T}_{{\rm{k}}}\gtrsim 30\,{\rm{K}}$ in the nuclear outflow. Dense gas tracers HCN (1–0), HCO+ (1–0), CS (2–1), and C2H (1–0) are detected for the first time in the superwind of NGC 1808, confirming the presence of a velocity gradient in the outflow direction.

98

, , , , and

PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

99

, , , , , , , , , et al

We report the AGILE detection and the results of the multifrequency follow-up observations of a bright γ-ray flare of the blazar 3C 279 in 2015 June. We use AGILE and Fermi gamma-ray data, together with Swift X-ray andoptical-ultraviolet data, and ground-based GASP-WEBT optical observations, including polarization information, to study the source variability and the overall spectral energy distribution during the γ-ray flare. The γ-ray flaring data, compared with as yet unpublished simultaneous optical data that will allow constraints on the big blue bump disk luminosity, show very high Compton dominance values of ∼100, with the ratio of γ-ray to optical emission rising by a factor of three in a few hours. The multiwavelength behavior of the source during the flare challenges one-zone leptonic theoretical models. The new observations during the 2015 June flare are also compared with already published data and nonsimultaneous historical 3C 279 archival data.

100

, , , , , , , and

Formation of OH+ in collisions of ground-state O+(4S) ions with normal H2 has been studied using a variable temperature 22-pole RF ion trap. From 300 to 30 K the measured reaction rate coefficient is temperature-independent, with a small decrease toward 15 K. The recent wave packet calculation predicts a slightly steeper temperature dependence. The rate coefficients at 300 and 15 K are almost the same, (1.4 ± 0.3) × 10−9 cm3 s−1 and (1.3 ± 0.3) × 10−9 cm3 s−1, respectively. The influence of traces of the two metastable ions, O+(2D) and O+(2P), has been examined by monitoring the H+ products of their reactions with H2, as well as by chemically probing them with N2 reactant gas.

101

, , and

The neutron star (NS) merger GW170817 was followed over several days by optical-wavelength ("blue") kilonova (KN) emission likely powered by the radioactive decay of light r-process nuclei synthesized by ejecta with a low neutron abundance (electron fraction Ye ≈ 0.25–0.35). While the composition and high velocities of the blue KN ejecta are consistent with shock-heated dynamical material, the large quantity is in tension with the results of numerical simulations. We propose an alternative ejecta source: the neutrino-heated, magnetically accelerated wind from the strongly magnetized hypermassive NS (HMNS) remnant. A rapidly spinning HMNS with an ordered surface magnetic field of strength B ≈ (1–3) × 1014 G and lifetime trem ∼ 0.1–1 s can simultaneously explain the velocity, total mass, and electron fraction of the blue KN ejecta. The inferred HMNS lifetime is close to its Alfvén crossing time, suggesting that global magnetic torques could be responsible for bringing the HMNS into solid-body rotation and instigating its gravitational collapse. Different origins for the KN ejecta may be distinguished by their predictions for the emission in the first hours after the merger, when the luminosity is enhanced by heating from internal shocks; the latter are likely generic to any temporally extended ejecta source (e.g., magnetar or accretion disk wind) and are not unique to the emergence of a relativistic jet. The same shocks could mix and homogenize the composition to a low but nonzero lanthanide mass fraction, ${X}_{\mathrm{La}}\approx {10}^{-3}$, as advocated by some authors, but only if the mixing occurs after neutrons are consumed in the r-process on a timescale ≳1 s.

102

, , , , , , , , , et al

We present a Hubble Space Telescope survey of extended [O iii] λ5007 emission for a sample of 12 nearby (z < 0.12), luminous Type 2 quasars (QSO2s), which we use to measure the extent and kinematics of their AGN-ionized gas. We find that the size of the observed [O iii] regions scale with luminosity in comparison to nearby, less luminous Seyfert galaxies and radially outflowing kinematics to exist in all targets. We report an average maximum outflow radius of ∼600 pc, with gas continuing to be kinematically influenced by the central active galactic nucleus (AGN) out to an average radius of ∼1130 pc. These findings question the effectiveness of AGNs being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O iii] radial extent and nuclear FWHM, where QSO2s with compact [O iii] morphologies typically possess broader nuclear emission lines.

103

, , , , , , , , , et al

We present five epochs of near-IR observations of the protoplanetary disk around MWC 480 (HD 31648) obtained with the SpeX spectrograph on NASA's Infrared Telescope Facility between 2007 and 2013, inclusive. Using the measured line fluxes in the Pa β and Br γ lines, we found the mass accretion rates to be (1.26–2.30) × 10−7M yr−1 and (1.4–2.01) × 10−7M yr−1, respectively, but which varied by more than 50% from epoch to epoch. The spectral energy distribution reveals a variability of about 30% between 1.5 and 10 μm during this same period of time. We investigated the variability using of the continuum emission of the disk in using the Monte-Carlo Radiative Transfer Code HOCHUNK3D. We find that varying the height of the inner rim successfully produces a change in the NIR flux but lowers the far-IR emission to levels below all measured fluxes. Because the star exhibits bipolar flows, we utilized a structure that simulates an inner disk wind to model the variability in the near-IR, without producing flux levels in the far-IR that are inconsistent with existing data. For this object, variable near-IR emission due to such an outflow is more consistent with the data than changing the scale height of the inner rim of the disk.

104

, , and

We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).

105

and

We report on Gemini, NuSTAR, and eight years of Fermi observations of the most distant blazar QSO J0906+6930 (z = 5.48). We construct a broadband spectral energy distribution (SED) and model the SED using a synchro-Compton model. The measurements yield a mass of ∼4 × 109 M for the black hole and a spectral break at ∼4 keV in the combined fit of the new NuSTAR and archival Chandra data. The SED fitting constrains the bulk Doppler factor δ of the jet to 9+2.5−3 for QSO J0906+6930. Similar, but weaker, constraints on δ are derived from SED modeling of the three other claimed z > 5 blazars. Together, these extrapolate to ∼620 similar sources, fully 20% of the optically bright, high-mass active galactic nuclei expected at 5 < z < 5.5. This has interesting implications for the early growth of massive black holes.

106

, , , , , and

The Fermi Large Area Telescope (LAT) Collaboration has recently released the Third Catalog of Hard Fermi-LAT Sources (3FHL), which contains 1556 sources detected above 10 GeV with seven years of Pass 8 data. Building upon the 3FHL results, we investigate the flux distribution of sources at high Galactic latitudes ($| b| \gt 20^\circ $), which are mostly blazars. We use two complementary techniques: (1) a source-detection efficiency correction method and (2) an analysis of pixel photon count statistics with the one-point probability distribution function (1pPDF). With the first method, using realistic Monte Carlo simulations of the γ-ray sky, we calculate the efficiency of the LAT to detect point sources. This enables us to find the intrinsic source-count distribution at photon fluxes down to 7.5 × 10−12 ph cm−2 s−1. With this method, we detect a flux break at (3.5 ± 0.4) × 10−11 ph cm−2 s−1 with a significance of at least 5.4σ. The power-law indexes of the source-count distribution above and below the break are 2.09 ± 0.04 and 1.07 ± 0.27, respectively. This result is confirmed with the 1pPDF method, which has a sensitivity reach of ∼10−11 ph cm−2 s−1. Integrating the derived source-count distribution above the sensitivity of our analysis, we find that (42 ± 8)% of the extragalactic γ-ray background originates from blazars.

107
The following article is Open access

, , , , , , , , , et al

Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C ii] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C ii] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ Jupp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C ii] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z < 3 and with stellar masses ${M}_{* }\gt {10}^{8}\,{M}_{\odot }$ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the "voxels" (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion ${m}_{{\rm{K}}}^{\mathrm{AB}}\lesssim 22$ (or ${M}_{* }\gtrsim {10}^{9}\,{M}_{\odot }$) at z < 1 and makes a [C ii]/COtot power ratio of ≳10 at k = 0.1 h/Mpc achievable, at the cost of a moderate ≲8% loss of total survey volume.

108

, , , , , , , , , et al

The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning 2008–2015. We present modeling of these velocity-resolved reverberation mapping data sets using a geometric and dynamical model for the broad-line region (BLR). By modeling each of the three data sets independently, we infer the evolution of the BLR structure in Arp 151 over a total of 7 yr and constrain the systematic uncertainties in nonvarying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of ∼2. The dynamics of the BLR are dominated by inflow, and the inferred black hole mass is consistent for the three data sets, despite the increase in BLR size. Combining the inference for the three data sets yields a black hole mass and statistical uncertainty of log10(${M}_{\mathrm{BH}}$/${M}_{\odot }$) = ${6.82}_{-0.09}^{+0.09}$ with a standard deviation in individual measurements of 0.13 dex.

109

, , , , , , , , , et al

Quasars (QSOs) hosting supermassive black holes are believed to reside in massive halos harboring galaxy overdensities. However, many observations revealed average or low galaxy densities around z ≳ 6 QSOs. This could be partly because they measured galaxy densities in only tens of arcmin2 around QSOs and might have overlooked potential larger-scale galaxy overdensities. Some previous studies also observed only Lyman break galaxies (LBGs; massive older galaxies) and missed low-mass young galaxies, like Lyα emitters (LAEs), around QSOs. Here we present observations of LAE and LBG candidates in ∼700 arcmin2 around a z = 6.61 luminous QSO using the Subaru Telescope Suprime-Cam with narrowband/broadband. We compare their sky distributions, number densities, and angular correlation functions with those of LAEs/LBGs detected in the same manner and comparable data quality in our control blank field. In the QSO field, LAEs and LBGs are clustering in 4–20 comoving Mpc angular scales, but LAEs show mostly underdensity over the field while LBGs are forming 30 × 60 comoving Mpc2 large-scale structure containing 3σ–7σ high-density clumps. The highest-density clump includes a bright (23.78 mag in the narrowband) extended (≳16 kpc) Lyα blob candidate, indicative of a dense environment. The QSO could be part of the structure but is not located exactly at any of the high-density peaks. Near the QSO, LAEs show underdensity while LBGs average to 4σ excess densities compared to the control field. If these environments reflect halo mass, the QSO may not be in the most massive halo but still in a moderately massive one.

110

, , and

The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.

111

, , , , and

Solar flares often happen after a preflare/preheating phase, which is almost or entirely thermal. In contrast, there are the so-called early impulsive flares that do not show a (significant) preflare heating, but instead often show the Neupert effect—a relationship where the impulsive phase is followed by a gradual, cumulative-like, thermal response. This has been interpreted as a dominance of nonthermal energy release at the impulsive phase, even though a similar phenomenology is expected if the thermal and nonthermal energies are released in comparable amounts at the impulsive phase. Nevertheless, some flares do show a good quantitative correspondence between the nonthermal electron energy input and plasma heating; in such cases, the thermal response was weak, which results in them being called "cold" flares. We undertook a systematic search for such events among early impulsive flares registered by the Konus-Wind instrument in the triggered mode from 11/1994 to 4/2017, and selected 27 cold flares based on relationships between hard X-ray (HXR) (Konus-Wind) and soft X-ray (Geostationary Operational Environmental Satellite) emission. For these events, we put together all available microwave data from different instruments. We obtained temporal and spectral parameters of HXR and microwave emissions of the events and examined correlations between them. We found that, compared to a "mean" flare, the cold flares: (i) are weaker, shorter, and harder in the X-ray domain; (ii) are harder and shorter, but not weaker in the microwaves; (iii) have a significantly higher spectral peak frequencies in the microwaves. We discuss the possible physical reasons for these distinctions and implication of the finding.

112

, , , and

The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

113

and

The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes' distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.

114

, , , , , and

Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than ${10}^{10}\,{M}_{\odot }$ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, fSR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of fSR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with ${M}_{\mathrm{vir}}\gt {10}^{12.5}\,{M}_{\odot }$, but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

115

, , , and

A recent determination of the relationships between the X-ray luminosity of the ISM (LX) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different LX values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed LX; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

116

, , , , , , , , , et al

We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope(HST), which assists in redshift determination by further constraining the shape of the broadband spectral energy distribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-infrared photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W < 26.5 AB mag with a redshift range of 0 < z < 6, we find a typical error of Δz = 0.03 ∗ (1 + z) for the purely photometric redshifts; with the addition of FIGS spectra, these become Δz = 0.02 ∗ (1 + z), an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the four fields. The strongest overdensity, matching a spectroscopically identified cluster at z = 0.85, has 28 potential member galaxies, of which eight have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at z = 1.84 has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find four overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.

117

, , , , , and

Turbulence is a fundamental parameter in models of grain growth during the early stages of planet formation. As such, observational constraints on its magnitude are crucial. Here we self-consistently analyze ALMA CO(2–1), SMA CO(3–2), and SMA CO(6–5) observations of the disk around TW Hya and find an upper limit on the turbulent broadening of <0.08cs (α < 0.007 for α defined only within 2–3 pressure scale heights above the midplane), lower than the tentative detection previously found from an analysis of the CO(2–1) data. We examine in detail the challenges of image plane fitting versus directly fitting the visibilities, while also considering the role of the vertical temperature gradient, systematic uncertainty in the amplitude calibration, and assumptions about the CO abundance, as potential sources of the discrepancy in the turbulence measurements. These tests result in variations of the turbulence limit between <0.04cs and <0.13cs, consistently lower than the 0.2–0.4cs found previously. Having ruled out numerous factors, we restrict the source of the discrepancy to our assumed coupling between temperature and density through hydrostatic equilibrium in the presence of a vertical temperature gradient and/or the confinement of CO to a thin molecular layer above the midplane, although further work is needed to quantify the influence of these prescriptions. Assumptions about hydrostatic equilibrium and the CO distribution are physically motivated, and may have a small influence on measuring the kinematics of the gas, but they become important when constraining small effects such as the strength of the turbulence within a protoplanetary disk.

118

, , , , , , , , , and

We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with Mstellar ∼ 1011M within 0.5R200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010M and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

119

, , , , and

The origin of the IceCube neutrinos is still an open question. Upper limits from diffuse gamma-ray observations suggest that the neutrino sources are either distant or hidden from gamma-ray observations. It is possible that the neutrinos are produced in jets that are formed in core-collapsing massive stars and fail to break out, the so-called choked jets. We study neutrinos from the jets choked in the hydrogen envelopes of red supergiant stars. Fast photo-meson cooling softens the neutrino spectrum, making it hard to explain the PeV neutrinos observed by IceCube in a one-component scenario, but a two-component model can explain the spectrum. Furthermore, we predict that a newly born jet-driven type-II supernova may be observed to be associated with a neutrino burst detected by IceCube.

120

and

We present a measurement of the cut-off energy, a proxy for the temperature of the corona in the nuclear continuum of the Seyfert 1 galaxy 3C 120 using ∼120 ks of observation from NuSTAR. The quality broadband spectrum from 3–79 keV enabled us to measure the Compton reflection component (R) and to constrain the temperature of the coronal plasma. Fitting one of the advanced Comptonization models, compPS, to the observed broadband spectrum, we derived the kinetic temperature of the electrons in the corona to be kTe = 25 ± 2 keV with a Compton y parameter of y = 2.2 ± 0.1 for a slab geometry and ${{kT}}_{e}={26}_{-0}^{+2}$ keV with a y of ${2.99}_{-0.18}^{+2.99}$ assuming a spherical geometry. We noticed excess emission from ∼10–35 keV arising due to Compton reflection and a broad Fe Kα line at 6.43 keV with an equivalent width of 60 ± 5 eV. The variations in count rates in the soft (3–10 keV) band are found to be larger compared to the hard (10–79 keV) band, with mean fractional variability amplitudes of 0.065 ± 0.002 and 0.052 ± 0.003 for the soft and hard bands respectively. 3C 120 is known to have a strong jet; however, our results indicate that it is either dormant or its contribution, if any, to the X-ray emission is negligible during the epoch of NuSTAR observation.

121

, , , , , , , , , et al

Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median re = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median $\mathrm{log}({M}_{* }/{M}_{\odot })=10.49\pm 0.32$). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = LIR/LUV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.

122

, , , , , , , , and

Future NASA concept missions that are currently under study, like the Habitable Exoplanet Imaging Mission (HabEx) and the Large Ultra-violet Optical Infra Red Surveyor, could discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, ${{\rm{H}}}_{2}{\rm{O}}$, ${\mathrm{CO}}_{2}$, and ${\mathrm{CH}}_{4}$. The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky planets (0.5–1.0 R), super-Earths (1.0–1.75 R), sub-Neptunes (1.75–3.5 R), sub-Jovians (3.5–6.0 R), and Jovians (6–14.3 R) based on their planet sizes, and "hot," "warm," and "cold" based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, ηplanet, using the community coordinated results of NASA's Exoplanet Program Analysis Group's Science Analysis Group-13 (SAG-13). These occurrence rate estimates are in turn used to estimate the expected exoplanet yields for direct imaging missions of different telescope diameters.

123

, , and

HD 176465 is a binary system for which both components are solar-like pulsators and oscillation frequencies were observed by the Kepler mission. In this paper, we have modeled the asteroseismic and spectroscopic data of the stars, and have determined their convection-zone helium abundances using the signatures left by the He ii ionization zone on the mode frequencies. As expected, we find that the components of the binary are of the same age within uncertainties (3.087 ± 0.580 Gyr and 3.569 ± 0.912 Gyr); they also have the same initial helium abundance (Yinit = 0.253 ± 0.006 and 0.254 ± 0.008). Their current metallicity ([Fe/H] = −0.275 ± 0.04 and −0.285 ± 0.04) is also the same within errors. Fits to the signature of the He ii acoustic glitch yield current helium abundances of YA = 0.224 ± 0.006 and YB = 0.233 ± 0.008 for the two components. Analyzing the complete ensemble of models generated for this investigation, we find that both the amplitude and acoustic depth of the glitch signature arising from the second helium ionization zone and the base of the convection zone (CZ) are functions of mass. We show that the acoustic depths of these glitches are positively correlated with each other. The analysis can help us to detect the internal structure and constrain the chemical compositions.

124

, , , , , , , , , and

Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.

125

, , , , , , , , and

We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar-scaled heavy element distribution. The main input physics that have been changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 M, 22 initial chemical compositions between [Fe/H] = −3.20 and +0.45, with helium to metal enrichment ratio dY/dZ = 1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, consistently take into account the pre-main-sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties, and isochrones are made available through a dedicated web site.

126

, , , , , , , , , and

We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude ${\overline{m}}_{i}$, and the calibration of the absolute ${\overline{M}}_{i}$ as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the $({u}^{* }-z)$ calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of $(g-i)$ and $(g-z)$ colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than BT ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

127

, , , , and

We report multiwavelength ultraviolet observations taken with the IRIS satellite, concerning the emergence phase in the upper chromosphere and transition region of an emerging flux region (EFR) embedded in the preexisting field of active region NOAA 12529 in the Sun. IRIS data are complemented by full-disk observations of the Solar Dynamics Observatory satellite, relevant to the photosphere and the corona. The photospheric configuration of the EFR is also analyzed by measurements taken with the spectropolarimeter on board the Hinode satellite, when the EFR was fully developed. Recurrent intense brightenings that resemble UV bursts, with counterparts in all coronal passbands, are identified at the edges of the EFR. Jet activity is also observed at chromospheric and coronal levels, near the observed brightenings. The analysis of the IRIS line profiles reveals the heating of dense plasma in the low solar atmosphere and the driving of bidirectional high-velocity flows with speed up to 100 km s−1 at the same locations. Compared with previous observations and numerical models, these signatures suggest evidence of several long-lasting, small-scale magnetic reconnection episodes between the emerging bipole and the ambient field. This process leads to the cancellation of a preexisting photospheric flux concentration and appears to occur higher in the atmosphere than usually found in UV bursts, explaining the observed coronal counterparts.

128

, , , , , , , , , and

We present broadband X-ray analyses of a sample of bright ultraluminous X-ray sources (ULX) with the goal of investigating the spectral similarity of this population to the known ULX pulsars, M82 X-2, NGC 7793 P13, and NGC 5907 ULX. We perform a phase-resolved analysis of the broadband XMM-Newton+NuSTAR data set of NGC 5907 ULX, finding that the pulsed emission from the accretion column in this source exhibits a similar spectral shape to that seen in both M82 X-2 and NGC 7793 P13, and that this is responsible for the excess emission observed at the highest energies when the spectra are fit with accretion disk models. We then demonstrate that similar "hard" excesses are seen in all ULXs in the broadband sample. Finally, for ULXs where the nature of the accretor is currently unknown, we test whether the hard excesses are all consistent with being produced by an accretion column similar to those present in M82 X-2, NGC 7793 P13, and NGC 5907 ULX. Based on the average shape of the pulsed emission, we find that in all cases a similar accretion column can successfully reproduce the observed data, consistent with the hypothesis that this ULX sample may be dominated by neutron star accretors. Compared to the known pulsar ULXs, our spectral fits for the remaining ULXs suggest that the non-pulsed emission from the accretion flow beyond the magnetosphere makes a stronger relative contribution than the component associated with the accretion column. If these sources do also contain neutron star accretors, this may help to explain the lack of detected pulsations.

129

Spectra of the intermediate-age star cluster NGC 1978 and the dwarf irregular galaxies NGC 55 and NGC 3109 are discussed. The spectra were recorded with the Gemini Multi-object Spectrograph on Gemini South and span the 0.7–1.1 μm wavelength interval. Five slit pointings were observed in NGC 1978, and these are used to examine stochastic effects on the integrated red light from an intermediate-age cluster. The removal of either the brightest M giant or the brightest C star from the co-added spectrum has minor effects on the equivalent withs of the Ca triplet. The most robust signature of C stars in the integrated cluster spectrum at these wavelengths is the CN band head near 7900 Å. The equivalent widths of Ca triplet lines in the NGC 1978 spectrum and in the spectra of individual cluster stars are larger than expected for a scaled-solar abundance system. It is suggested that these stars have a lower than expected surface gravity, which might occur if the stars in NGC 1978 have been subject to extra mixing processes, as suggested by Lederer et al. The near-infrared color profile of NGC 1978 is shown to contain a prominent red cusp in the central 10 arcsec, and the suppression of light from this cusp does not affect the depth of the Ca lines in the integrated spectrum. The NGC 55 spectra run parallel to the major axis, and a gradient is found in the strength of the Ca lines, in the sense that the Ca lines weaken with increasing distance from the disk plane. Comparisons with models suggest that the disk light is dominated by stars with ages 1–2 Gyr, in agreement with star-forming histories (SFHs) obtained from the analysis of color–magnitude diagrams (CMDs). The NGC 55 spectra also sample a large star-forming complex. The age of this complex inferred from comparisons with models is broadly consistent with that estimated from a near-infrared CMD of the same region. The CN band head at 7900 Å in this part of NGC 55 is detected, but this is likely a signature of red supergiants (RSGs) rather than C stars. The NGC 3109 observations sample three different parts of that galaxy but have a low signal-to-noise ratio. Comparisons with models suggest that the light from the NGC 3109 disk at red wavelengths is dominated by RSGs with ages of at most a few tens of Myr, in qualitative agreement with SFHs that are based on photometric measurements.

130

and

We obtain high-resolution spectra of red giant branch stars in NGC 6584 and NGC 7099 to perform a detailed abundance analysis. We confirm cluster membership for these stars based on consistent radial velocities measured in this study and small pixel offsets between the observations of Sarajedini et al. and Piotto et al. We find mean metallicities of [Fe/H] = −1.53 ± 0.08 dex and [Fe/H] = −2.29 ± 0.07 dex for NGC 6584 and NGC 7099, respectively. We also find these clusters to be enhanced in their [α/Fe] ratios, consistent with what is expected for metal-poor globular clusters. Additionally, we find evidence of a statistically significant Na–O anti-correlation in both clusters. Finally, with the use of HST photometry, we compare the location of the enhanced and pristine populations in chromosome maps of the clusters to confirm previous photometric evidence of multiple stellar populations. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences, our results can be used to constrain pollution models.

131

, , , , , , , and

Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z < 0.2, which leads to the question, what were these systems' progenitors? Such progenitors are expected to have imminent or ongoing major merging near the brightest group galaxy that, when concluded, will meet the fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems' galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.

132

and

Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter αMLT. We provide formulae linking changes in αMLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star's adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent αMLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable αMLT to these putative MLT reformulations.

133

, , and

We report new Chandra X-ray observations of the shell supernova remnant Kes 75 (G29.7−0.3) containing a pulsar and pulsar-wind nebula (PWN). Expansion of the PWN is apparent across four epochs—2000, 2006, 2009, and 2016. We find an expansion rate between 2000 and 2016 of the northwest edge of the PWN of 0.249% ± 0.023% yr−1, for an expansion age R/(dR/dt) of 400 ± 40 yr and an expansion velocity of about 1000 km s−1. We suggest that the PWN is expanding into an asymmetric nickel bubble in a conventional Type IIP supernova. Some acceleration of the PWN expansion is likely, giving a true age of 480 ± 50 yr. The pulsar's birth luminosity was larger than the current value by a factor of 3–8, while the initial period was within a factor of 2 of its current value. We confirm directly that Kes 75 contains the youngest known PWN, and hence the youngest known pulsar. The pulsar PSR J1846−0258 has a spindown-inferred magnetic field of 5 × 1013 G; in 2006, it emitted five magnetar-like short X-ray bursts, but its spindown luminosity has not changed significantly. However, the flux of the PWN has decreased by about 10% between 2009 and 2016, almost entirely in the northern half. A bright knot has declined by 30% since 2006. During this time, the photon indices of the power-law models did not change. This flux change is too rapid to be due to normal PWN evolution in one-zone models.

134

, , , , , and

The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star-forming galaxies: NGC 253, IC 342, NGC 6946, and NGC 2146. As part of this survey, we present Karl G. Jansky Very Large Array molecular line observations of three galaxies: IC 342, NGC 6946, and NGC 2146. NGC 253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3(1, 1) to (5, 5), the 22 GHz water (H2O) (616–523) transition, and the 36.1 GHz methanol (CH3OH) (4−1–30) transition. We use the NH3 metastable lines to perform thermometry of the dense molecular gas. We show evidence for uniform heating across the central kiloparsec of IC 342 with two temperature components for the molecular gas, similar to NGC 253, of 27 and 308 K, and that the dense molecular gas in NGC 2146 has a temperature <86 K. We identify two new water masers in IC 342, and one new water maser in each of NGC 6946 and NGC 2146. The two galaxies NGC 253 and NGC 2146, with the most vigorous star formation, host H2O kilomasers. Lastly, we detect the first 36 GHz CH3OH masers in IC 342 and NGC 6946. For the four external galaxies the total CH3OH luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer.

135

, , , and

With the aim of solving the decade-old problem of solar opacity, we report substantial photoabsorption uncertainty due to the effect of ion–ion correlations. By performing detailed opacity calculations of the solar mixture, we find that taking into account the ionic structure changes the Rosseland opacity near the convection zone by ∼10%. We also report a ∼15% difference in the Rosseland opacity for iron, which was recently measured at the Sandia Z facility, where the temperature reached that prevailing in the convection zone boundary while the density was 2.5 times lower. Finally, we propose a method to measure opacities at solar temperatures and densities that have never been reached in the past via laboratory radiation flow experiments, by using plastic foams doped with permilles of dominant photon absorbers in the Sun. The method is advantageous for an experimental study of solar opacities that may lead to a resolution of the solar abundance problem.

136

, , , and

We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H i, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of −3.23 ± 0.05 and −3.22 ± 0.05 for the uncorrected and opacity-corrected H i column density images. This result suggests that the H i in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of −2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of −3.08 ± 0.08 and −2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly −3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.

137

, , , , , , , , , et al

We investigate radial gradients in the recent star formation history (SFH) of 1917 galaxies with 0.01 < z < 0.14 from the Mapping Nearby Galaxies at Apache Point Observatory project. For each galaxy, we obtain two-dimensional maps and radial profiles for three spectroscopically measured parameters that are sensitive to the recent SFH: Dn(4000) (the 4000 Å break), EW(HδA), and EW(Hα) (the equivalent width of the Hδ absorption and the Hα emission line). The majority of the spaxels are consistent with models of a continuously declining star formation rate, indicating that starbursts occur rarely in local galaxies with regular morphologies. We classify the galaxies into three classes: fully star-forming (SF), partly quenched (PQ), and totally quenched (TQ). The galaxies that are less massive than 1010M present at most weak radial gradients in the diagnostic parameters. In contrast, massive galaxies with a stellar mass above 1010M present significant gradients in the three diagnostic parameters if they are classified as SF or PQ but show weak gradients in Dn(4000) and EW(HδA) and no gradients in EW(Hα) if they are in the TQ class. This implies the existence of a critical stellar mass (∼1010M) above which the star formation in a galaxy is shut down from the inside out. Galaxies tend to evolve synchronously from the inner to the outer regions before their mass reaches the critical value. We have further divided the sample at a fixed mass by both bulge-to-total luminosity ratio and morphological type, finding that our conclusions hold regardless of these factors; it appears that the presence of a central dense object is not a driving parameter but rather a by-product of the star formation cessation process.

138

and

The ultra-faint dwarf galaxy Reticulum II was enriched by a rare and prolific r-process event, such as a neutron star merger (NSM). To investigate the nature of this event, we present high-resolution Magellan/MIKE spectroscopy of the brightest star in this galaxy. The high signal-to-noise allows us to determine the abundances of 41 elements, including the radioactive actinide element Th and first ever detections of third r-process peak elements (Os and Ir) in a star outside the Milky Way. The observed neutron-capture element abundances closely match the solar r-process component, except for the first r-process peak, which is significantly lower than solar but matches other r-process enhanced stars. The ratio of the first peak to heavier r-process elements implies that the r-process site produces roughly equal masses of high and low electron fraction ejecta, within a factor of 2. We compare the detailed abundance pattern to predictions from nucleosynthesis calculations of NSMs and magnetorotationally driven jet supernovae, finding that nuclear physics uncertainties dominate over astrophysical uncertainties. We measure $\mathrm{log}{\rm{Th/Eu}}=-0.84\pm 0.06\,(\mathrm{stat})\pm 0.22\,(\mathrm{sys})$, somewhat lower than all previous Th/Eu observations. The youngest age we derive from this ratio is 21.7 ± 2.8 (stat) ± 10.3 (sys) Gyr, indicating that current initial production ratios do not describe the r-process event in Reticulum II. The abundances of light elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. They may eventually provide a way to distinguish between NSMs and magnetorotationally driven jet supernovae, but this would require more detailed knowledge of the chemical evolution of Reticulum II.

139

, , , , , , , , , et al

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the "strength" of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.

140

, , , , and

Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ∼1–3 $\,\mathrm{Gpc}$−3$\mathrm{yr}$−1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH.

141

, , , , , , , , , et al

Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2, and the PMO 13.7 m telescope. Thirty dense cores were identified in 16 PGCCs from 2D Gaussian fitting. The dense cores have dust temperatures of Td = 11–14 K, and H2 column densities of ${N}_{{{\rm{H}}}_{2}}$ = (0.36–2.5) × 1022 cm−2. We found that not all PGCCs contain prestellar objects. In general, the dense cores in PGCCs are usually at their earliest evolutionary stages. All the dense cores have non-thermal velocity dispersions larger than the thermal velocity dispersions from molecular line data, suggesting that the dense cores may be turbulence-dominated. We have calculated the virial parameter α and found that 14 of the dense cores have α <2, while 16 of the dense cores have α >2. This suggests that some of the dense cores are not bound in the absence of external pressure and magnetic fields. The column density profiles of dense cores were fitted. The sizes of the flat regions and core radii decrease with the evolution of dense cores. CO depletion was found to occur in all the dense cores, but is more significant in prestellar core candidates than in protostellar or starless cores. The protostellar cores inside the PGCCs are still at a very early evolutionary stage, sharing similar physical and chemical properties with the prestellar core candidates.

142

, , , , , , , , and

The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] < −3.0) and 21 carbon-enhanced metal-poor (CEMP) star candidates. Eight carbon-enhanced stars are classified with at least 2σ confidence, and five are confirmed as such with follow-up R ∼ 6000 observations using the Magellan Echellette Spectrograph on the Magellan-Baade 6.5 m telescope. We measure a CEMP fraction of 36% for stars below [Fe/H] = −3.0, indicating that the prevalence of carbon-enhanced stars in Sculptor is similar to that of the halo (∼43%) after excluding likely CEMP-s and CEMP-r/s stars from our sample. However, we do not detect that any CEMP stars are strongly enhanced in carbon ([C/Fe] > 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies.

143

, , and

We present the results of our ALMA observations of 11 (ultra)luminous infrared galaxies ((U)LIRGs) at J = 4–3 of HCN, HCO+, and HNC and J = 3–2 of HNC. This is an extension of our previously published HCN and HCO+J = 3–2 observations to multiple rotational J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ultraluminous infrared galaxies (ULIRGs) that contain or may contain luminous obscured active galactic nuclei (AGNs) tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J = 4–3 and J = 3–2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J = 3–2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v2 = 1f) HCN J = 4–3 emission line is seen in one ULIRG, IRAS 12112−0305 NE. P Cygni profiles are detected in the HCO+J = 4–3 and J = 3–2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ∼250–750 M yr−1. The SiO J = 6–5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.

144

and

Coronal seismology is a diagnostic tool used in solar physics for measuring parameters that are otherwise hard to measure; of these parameters, magnetic field values are arguably the most important. The parameters are inferred by combining observations of waves with magnetohydrodynamic (MHD) wave theory. To date, coronal seismology has successfully been applied to various single-oscillation events. Such events are relatively rare, resulting in rare occasions to use diagnostics. Ubiquitous waves in the solar atmosphere might, however, allow for the possibility of dynamic coronal seismology, which involves the continuous inversions of coronal parameters and would constitute a huge leap forward in many areas of solar physics. In this paper, we investigate the robustness and accuracy of magnetic field diagnostics applied to forward-modeled 3D MHD simulations of propagating Alfvénic waves. We find that the seismologically measured magnetic field values are reassuringly close to the input value (within ≈20%) for a range of setups studied, providing encouragement and confidence for the further development of dynamic coronal seismology.

145

, , and

The MeV spectral peak of gamma-ray bursts (GRBs) is best explained as photospheric emission from a dissipative relativistic jet. The observed non-blackbody spectrum shows that sub-photospheric dissipation involves both thermal plasma heating and injection of nonthermal particles, which quickly cool through inverse Compton scattering and emission of synchrotron radiation. Synchrotron photons emitted around and above the photosphere are predicted to dominate the low-energy part of the GRB spectrum, starting from roughly a decade in energy below the MeV peak. We show that this leads to a unique polarization signature: a rise in GRB polarization toward lower energies. We compute the polarization degree of GRB radiation as a function of photon energy for a generic jet model, and show the predictions for GRBs 990123, 090902B, and 110721A. The expected polarization is significant in the X-ray band, in particular for bursts similar to GRB 090902B. The model predicts that radiation in the MeV peak (and at higher energies) is unpolarized as long as the jet is approximately uniform on angular scales δθ ≳ Γ−1 where Γ is the bulk Lorentz factor of the jet.

146

and

Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

147

, , , , , , , and

We have investigated the TUKH122 prestellar core in the Orion A cloud using ALMA 3 mm dust continuum, N2H+ (J = 1−0), and CH3OH (${J}_{K}={2}_{K}-{1}_{K}$) molecular-line observations. Previous studies showed that TUKH122 is likely on the verge of star formation because the turbulence is almost dissipated and chemically evolved among other starless cores in the Orion A cloud. By combining ALMA 12 m and ACA data, we recover extended emission with a resolution of ∼5'' corresponding to 0.01 pc and identify six condensations with a mass range of 0.1–0.4 M and a radius of ≲0.01 pc. These condensations are gravitationally bound following a virial analysis and are embedded in the filament, including the elongated core with a mass of ∼29 M and a radial density profile of r−1.6 derived by Herschel. The separation of these condensations is ∼0.035 pc, consistent with the thermal Jeans length at a density of 4.4 × 105 cm−3. This density is similar to the central part of the core. We also find a tendency for the N2H+ molecule to deplete at the dust peak condensation. This condensation may be beginning to collapse because the line width becomes broader. Therefore, the fragmentation still occurs in the prestellar core by thermal Jeans instability, and multiple stars are formed within the TUKH122 prestellar core. The CH3OH emission shows a large shell-like distribution and surrounds these condensations, suggesting that the CH3OH molecule formed on dust grains is released into the gas phase by nonthermal desorption such as photoevaporation caused by cosmic-ray-induced UV radiation.

148

, , , , , , , , and

The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.

149

, , , and

Solar flares form and release energy across a large number of magnetic loops. The global parameters of flares, such as the total energy released, duration, physical size, etc., are routinely measured, and the hydrodynamics of a coronal loop subjected to intense heating have been extensively studied. It is not clear, however, how many loops comprise a flare, nor how the total energy is partitioned between them. In this work, we employ a hydrodynamic model to better understand the energy partition by synthesizing Si iv and Fe xxi line emission and comparing to observations of these lines with the Interface Region Imaging Spectrograph (IRIS). We find that the observed temporal evolution of the Doppler shifts holds important information on the heating duration. To demonstrate this, we first examine a single loop model, and find that the properties of chromospheric evaporation seen in Fe xxi can be reproduced by loops heated for long durations, while persistent redshifts seen in Si iv cannot be reproduced by any single loop model. We then examine a multithreaded model, assuming both a fixed heating duration on all loops and a distribution of heating durations. For a fixed heating duration, we find that durations of 100–200 s do a fair job of reproducing both the red- and blueshifts, while a distribution of durations, with a median of about 50–100 s, does a better job. Finally, we compare our simulations directly to observations of an M-class flare seen by IRIS, and find good agreement between the modeled and observed values given these constraints.

150

, , , , and

The stability limit for circumbinary planets (CBPs) is not well defined and can depend on initial parameters defining either the planetary orbit and/or the inner binary orbit. We expand on the work of Holman & Wiegert (1999) to develop numerical tools for quick, easy, and accurate determination of the stability limit. The results of our simulations, as well as our numerical tools, are available to the community through Zenodo and GitHub, respectively. We employ a grid interpolation method based on ∼150 million full N-body simulations of initially circular, coplanar systems and compare to the nine known Kepler CBP systems. Using a formalism from planet packing studies, we find that 55% of the Kepler CBP systems allow for an additional equal-mass planet to potentially exist on an interior orbit relative to the observed planet. Therefore, we do not find strong evidence for a pile-up in the Kepler CBP systems and more detections are needed to adequately characterize the formation mechanisms for the CBP population. Observations from the Transiting Exoplanet Survey Satellite are expected to substantially increase the number of detections using the unique geometry of CBP systems, where multiple transits can occur during a single conjunction.

151

, , , and

We present Jansky Very Large Array observations of 20–37 GHz absorption lines from nearby Galactic diffuse molecular gas seen against four cosmologically distant compact radio continuum sources. The main new observational results are that l-C3H and CH3CN are ubiqitous in the local diffuse molecular interstellar medium at ${\text{}}{A}_{{\rm{V}}}$ ≲ 1, while HC3N was seen only toward B0415 at ${\text{}}{A}_{{\rm{V}}}$ > 4 mag. The linear/cyclic ratio is much larger in C3H than in C3H2 and the ratio CH3CN/HCN is enhanced compared to TMC-1, although not as much as toward the Horsehead Nebula. More consequentially, this work completes a long-term program assessing the abundances of small hydrocarbons (CH, C2H, linear and cyclic C3H and C3${{\rm{H}}}_{2}$, and C4H and C4H) and the CN-bearing species (CN, HCN, HNC, HC3N, HC5N, and CH3CN): their systematics in diffuse molecular gas are presented in detail here. We also observed but did not strongly constrain the abundances of a few oxygen-bearing species, most prominently HNCO. We set limits on the column density of CH2CN, such that the anion CH2CN is only viable as a carrier of diffuse interstellar bands if the N(CH2CN)/N(CH2CN) abundance ratio is much smaller in this species than in any others for which the anion has been observed. We argue that complex organic molecules (COMS) are not present in clouds meeting a reasonable definition of diffuse molecular gas, i.e., ${\text{}}{A}_{{\rm{V}}}$ ≲ 1 mag.

152

and

We present the discovery of new star clusters in the central plane region ($| l| \lt 30^\circ $ and $| b| \lt 6^\circ $) of the Milky Way. In order to overcome the extinction problem and the spatial limit of previous surveys, we use the Wide-field Infrared Survey Explorer (WISE) data to find clusters. We also use other infrared survey data in the archive for additional analysis. We find 923 new clusters, of which 202 clusters are embedded clusters. These clusters are concentrated toward the Galactic plane and show a symmetric distribution with respect to the Galactic latitude. The embedded clusters show a stronger concentration to the Galactic plane than the nonembedded clusters. The new clusters are found more in the first Galactic quadrant, while previously known clusters are found more in the fourth Galactic quadrant. The spatial distribution of the combined sample of known clusters and new clusters is approximately symmetric with respect to the Galactic longitude. We estimate reddenings, distances, and relative ages of the 15 class A clusters using theoretical isochrones. Ten of them are relatively old (age >800 Myr) and five are young (age ≈4 Myr).

153

, , and

We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

154

, , , , , , , , , et al

We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the AV to the hydrogen column densities (${N}_{{\rm{H}}}$) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by AV toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

155

, , and

The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of "giant neighbors" can reduce a terrestrial planet's chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

156

, , , and

Lyα is a powerful astrophysical probe. Not only is it ubiquitous at high redshifts, it is also a resonant line, making Lyα photons scatter. This scattering process depends on the physical conditions of the gas through which Lyα propagates, and these conditions are imprinted on observables such as the Lyα spectrum and its surface brightness profile. In this work, we focus on a less-used observable capable of probing any scattering process: polarization. We implement the density matrix formalism of polarization into the Monte Carlo radiative transfer code tlac. This allows us to treat it as a quantum mechanical process where single photons develop and lose polarization from scatterings in arbitrary gas geometries. We explore static and expanding ellipsoids, biconical outflows, and clumpy multiphase media. We find that photons become increasingly polarized as they scatter and diffuse into the wings of the line profiles, making scattered Lyα polarized in general. The degree and orientation of Lyα polarization depends on the kinematics and distribution of the scattering H i gas. We find that it generally probes spatial or velocity space asymmetries and aligns itself tangentially to the emission source. We show that the mentioned observables, when studied separately, can leave similar signatures for different source models. We conclude by revealing how a joint analysis of the Lyα spectra, surface brightness profiles, and polarization can break these degeneracies and help us extract unique physical information on galaxies and their environments from their strongest, most prominent emission line.

157

A theoretical approach based on B-splines has been developed to calculate atomic structures and discrete spectra of Li atoms in a strong magnetic field typical of magnetic white dwarf stars. Energy levels are presented for 20 electronic states with the symmetries 20+, 20, 2(−1)+, 2(−1), and 2(−2)+. The magnetic field strengths involved range from 0 to 2350 MG. The wavelengths and oscillator strengths for the electric dipole transitions relevant to these magnetized atomic states are reported. The current results are compared to the limited theoretical data in the literature. A good agreement has been found for the lower energy levels, but a significant discrepancy is clearly visible for the higher energy levels. The existing discrepancies of the wavelengths and oscillator strengths are also discussed. Our investigation shows that the spectrum data of magnetized Li atoms previously published are obviously far from meeting requirements of analyzing discrete atomic spectra of magnetic white dwarfs with lithium atmospheres.

158

, , , , , , , , , et al

We report the results of spectroscopic and photometric observations of the emission-line object AS 386. For the first time we found that it exhibits the B[e] phenomenon and fits the definition of an FS CMa type object. The optical spectrum shows the presence of a B-type star with the following properties: Teff = 11,000 ± 500 K, log L/L = 3.7 ± 0.3, a mass of 7 ± 1 M, and a distance D = 2.4 ± 0.3 kpc from the Sun. We detected regular radial velocity variations of both absorption and emission lines with the following orbital parameters: Porb =131.27 ± 0.09 days, semiamplitude K1 = 51.7 ± 3.0 km s−1, systemic radial velocity γ = −31.8 ± 2.6 km s−1, and a mass function of f(m) = 1.9 ± 0.3 M. AS 386 exhibits irregular variations of the optical brightness (V = 10.92 ± 0.05 mag), while the near-IR brightness varies up to ∼0.3 mag following the spectroscopic period. We explain this behavior by a variable illumination of the dusty disk inner rim by the B-type component. Doppler tomography based on the orbital variations of emission-line profiles shows that the material is distributed near the B-type component and in a circumbinary disk. We conclude that the system has undergone a strong mass transfer that created the circumstellar material and increased the B-type component mass. The absence of any traces of a secondary component, whose mass should be ≥7 M, suggests that it is most likely a black hole.

159

and

The modulation of low-energy electrons in the heliosphere is extremely sensitive to the behavior of the dissipation range slab turbulence. The present study derives approximate expressions for the wavenumber at which the dissipation range on the slab turbulence power spectrum commences, by assuming that this onset occurs when dispersive waves propagating parallel to the background magnetic field gyroresonate with thermal plasma particles. This assumption yields results in reasonable agreement with existing spacecraft observations. These expressions are functions of the solar wind proton and electron temperatures, which are here modeled throughout the region where the solar wind is supersonic using a two-component turbulence transport model. The results so acquired are compared with extrapolations of existing models for the dissipation range onset wavenumber, and conclusions are drawn therefrom.

160

, , , and

Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h−1 kpc at the relative velocities of 1500–1600 km s−1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

161

, , , , and

We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of −1.9 < [Fe/H] < −0.9 and 4200 < Teff(K) < 4950, using the HIRES spectrograph at the Keck Observatory (R ≈ 105 and 200 ≤ S/N ≤ 300). We obtain magnesium isotopic abundances by spectral synthesis on three MgH features and compare our results with galactic chemical evolution models. With the current sample, we almost double the number of metal-poor stars with Mg isotopes determined from the literature. The new data allow us to determine the metallicity when the 26Mg abundances start to become important, [Fe/H] ∼ −1.4 ± 0.1. The data with [Fe/H] > −1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr.

162

, , and

We studied the prominent bow shock in the merging galaxy cluster A520 using a deep Chandra X-ray observation and archival VLA radio data. This shock is a useful diagnostic tool, owing to its clear geometry and relatively high Mach number. At the "nose" of the shock, we measure a Mach number of $M={2.4}_{-0.2}^{+0.4}$. The shock becomes oblique away from the merger axis, with the Mach number falling to ≃1.6 around 30° from the nose. The electron temperature immediately behind the shock nose is consistent with that from the Rankine–Hugoniot adiabat, and is higher (at a 95% confidence) than expected for adiabatic compression of electrons followed by Coulomb electron–proton equilibration, indicating the presence of equilibration mechanisms faster than Coulomb collisions. This is similar to an earlier finding for the Bullet cluster. We also combined four archival VLA data sets to obtain a better image of the cluster's giant radio halo at 1.4 GHz. An abrupt edge of the radio halo traces the shock front, and no emission is detected in the pre-shock region. If the radio edge were due only to adiabatic compression of relativistic electrons in pre-shock plasma, we would expect a pre-shock radio emission detectable in this radio data set; however, an interferometric artifact dominates the uncertainty, so we cannot rule this model out. Other interesting features of the radio halo include a peak at the remnant of the cool core, suggesting that the core used to have a radio minihalo, and a peak marking a possible region of high turbulence.

163

, , , , , , and

The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A*. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A*. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.

164

, , , , and

We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO ($J=2\to 1$), C18O ($J=2\to 1$), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R−1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M.

165

The recent detection of Earth-sized planets in the habitable zone of Proxima Centauri, Trappist-1, and many other nearby M-type stars has led to speculations whether liquid water and life actually exist on these planets. To a large extent, the answer depends on their yet unknown atmospheres, which may, however, be within observational reach in the near future by JWST, ELT, and other planned telescopes. We consider the habitability of planets of M-type stars in the context of their atmospheric properties, heat transport, and irradiation. Instead of the traditional definition of the habitable zone, we define the biohabitable zone, where liquid water and complex organic molecules can survive on at least part of the planetary surface. The atmospheric impact on the temperature is quantified in terms of the heating factor (a combination of greenhouse heating, stellar irradiation, albedo, etc.) and heat redistribution (horizontal energy transport). We investigate the biohabitable domain (where planets can support surface liquid water and organics) in terms of these two factors. Our results suggest that planets orbiting M-type stars may have life-supporting temperatures, at least on part of their surface, for a wide range of atmospheric properties. We apply this analyses to Proxima Cen b and the Trappist-1 system. Finally, we discuss the implications for the search of biosignatures and demonstrate how they may be used to estimate the abundance of photosynthesis and biotic planets.

166

, , , , , and

The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H ii region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H ii regions. From our emission line spectroscopy, we show that the metal content of the thick disk H ii region is a factor of ≈2 lower than gas in H ii regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by −0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed "fountain-driven" accretion models.

167

, , , , , and

We present observations of an Hα-emitting knot in the thick disk of NGC 4013, demonstrating it is an H ii region surrounding a cluster of young hot stars z = 860 pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show that this H ii region has an Hα luminosity ∼4–7 times that of the Orion nebula, with an implied ionizing photon production rate log Q0 ≈ 49.4 (photons s−1). HST/WFPC2 imaging reveals an associated blue continuum source with MV = −8.21 ± 0.24. Together, these properties demonstrate that the H ii region is powered by a young cluster of stars formed in situ in the thick disk, with an ionizing photon flux equivalent to ∼6 O7 V stars. If we assume ≈6 other extraplanar Hα-emitting knots are H ii regions, the total thick disk star formation rate of NGC 4013 is ∼5 × 10−4M yr−1. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.

168

and

We developed a one-dimensional photochemical model for the dayside ionosphere of Titan for calculating the density profiles of negative ions under steady-state photochemical equilibrium condition. We concentrated on the T40 flyby of the Cassini orbiter and used the in situ measurements from instruments on board Cassini as input to the model. Using the latest available reaction rate coefficients and dissociative electron attachment cross sections, the densities of 10 anions are calculated. Our study shows CN as the dominant anion, followed by C3N, which agrees with the results of previous calculations. We suggest that H could be an important anion in Titan's ionosphere and is the second most abundant anion at altitudes greater than 1200 km. The main production channel of the major ion CN is the reaction of H with HCN. The H also play a major role in the production of anions C2H, C6H, and OH. We present a comparison of the calculated ion density profiles with the relative density profiles derived using recently reported Cassini CAPS/ELS observations.

169

, , and

PO and PN have been newly identified in several oxygen-rich circumstellar envelopes, using the Submillimeter Telescope of the Arizona Radio Observatory. The J = 5 → 4 and J = 6 → 5 transitions of PN near 235 and 282 GHz, and the lambda doublets originating in the J = 5.5 → 4.5 and J = 6.5 → 5.5 lines of PO at 240 and 284 GHz, have been detected toward the shells of asymptotic giant branch (AGB) stars TX Cam and R Cas. A similar set of lines has been observed toward the supergiant NML Cyg, and new transitions of these two molecules were also measured toward the AGB star IK Tau. Along with the previous data from VY Canis Majoris (VY CMa), these spectral lines were analyzed using the non-local thermodynamic equilibrium (non-LTE) circumstellar modeling code, ESCAPADE. For the AGB stars, peak abundances found for PN and PO were f ∼ (1–2) × 10−8 and (0.5–1) × 10−7, respectively, while those for the supergiants were f(PN) ∼ (0.3–0.7) × 10−8 and f(PO) ∼ (5–7) × 10−8. PN was well modeled with a spherical radial distribution, suggesting formation near the stellar photosphere, perhaps enhanced by shocks. PO was best reproduced by a shell model, indicating a photochemical origin, except for VY CMa. Overall, the abundance of PO is a factor of 5–20 greater than that of PN. This study suggests that phosphorus-bearing molecules are common in O-rich envelopes, and that a significant amount of phosphorus (>20%) remains in the gas phase.

170

I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of "extreme" single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 μm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2–3 Gyr.

171
The following article is Open access

and

We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O iii] λ5007/Hβ line ratio and the [O iii] λ5007 emission line width (σ[O iii]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O iii] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin−Phillips−Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O iii]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ[O iii] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 < z < 1 in the DEEP2 Galaxy Redshift Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ[O iii] due to evolution effects.

172

, , , , , and

We use the dense HectoMAP redshift survey to explore the properties of 104 redMaPPer cluster candidates. The redMaPPer systems in HectoMAP cover the full range of richness and redshift (0.08 < z < 0.60). Fifteen of the systems included in the Subaru/Hyper Suprime-Cam public data release are bona fide clusters. The median number of spectroscopic members per cluster is ∼20. We include redshifts of 3547 member candidates listed in the redMaPPer catalog whether they are cluster members or not. We evaluate the redMaPPer membership probability spectroscopically. The purity (number of real systems) in redMaPPer exceeds 90% even at the lowest richness. Three massive galaxy clusters (M ∼ 2 × 1013M) associated with X-ray emission in the HectoMAP region are not included in the public redMaPPer catalog with λrich > 20, because they lie outside the cuts for this catalog.

173

and

Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ≲ M ≲ 150 M to form ∼40 M black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

174

, , , , , , , , , et al

We detect bright emission in the far-infrared (far-IR) fine structure [O iii] 88 μm line from a strong lensing candidate galaxy, H-ATLAS J113526.3-014605, hereafter G12v2.43, at z = 3.127, using the second-generation Redshift (z) and Early Universe Spectrometer (ZEUS-2) at the Atacama Pathfinder Experiment Telescope (APEX). This is only the fifth detection of this far-IR line from a submillimeter galaxy at the epoch of galaxy assembly. The observed [O iii] luminosity of 7.1 × 109$\left(\tfrac{10}{\mu }\right)$L likely arises from H ii regions around massive stars, and the amount of Lyman continuum photons required to support the ionization indicate the presence of (1.2–5.2) × 106$\left(\tfrac{10}{\mu }\right)$ equivalent O5.5 or higher stars, where μ would be the lensing magnification factor. The observed line luminosity also requires a minimum mass of ∼2 × 108$\left(\tfrac{10}{\mu }\right)$M in ionized gas, that is 0.33% of the estimated total molecular gas mass of 6 × 1010$\left(\tfrac{10}{\mu }\right)$M. We compile multi-band photometry tracing rest-frame ultraviolet to millimeter continuum emission to further constrain the properties of this dusty high-redshift, star-forming galaxy. Via SED modeling we find G12v2.43 is forming stars at a rate of 916 $\left(\tfrac{10}{\mu }\right)$M yr−1 and already has a stellar mass of 8 × 1010$\left(\tfrac{10}{\mu }\right)$M. We also constrain the age of the current starburst to be $\leqslant 5$ Myr, making G12v2.43 a gas-rich galaxy lying above the star-forming main sequence at z ∼ 3, undergoing a growth spurt, and it could be on the main sequence within the derived gas depletion timescale of ∼66 Myr.

175

and

The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.

176
The following article is Open access

, , , , , and

Using simulated data-driven, 3D resistive MHD simulations of the solar atmosphere, we show that 3D magnetic reconnection may be responsible for the formation of jets with the characteristics of Type II spicules. We numerically model the photosphere-corona region using the C7 equilibrium atmosphere model. The initial magnetic configuration is a 3D potential magnetic field, extrapolated up to the solar corona region from a dynamic realistic simulation of the solar photospheric magnetoconvection model that mimics the quiet-Sun. In this case, we consider a uniform and constant value of the magnetic resistivity of 12.56 Ω m. We have found that the formation of the jet depends on the Lorentz force, which helps to accelerate the plasma upward. Analyzing various properties of the jet dynamics, we found that the jet structure shows a Doppler shift close to regions with high vorticity. The morphology, the upward velocity covering a range up to 130 km s−1, and the timescale formation of the structure between 60 and 90 s, are similar to those expected for Type II spicules.

177

and

Recently, the cubic Galileon gravity (CGG) model has been suggested as an alternative gravity theory to general relativity. The model consists of an extra field potential term that can serve as the "fifth force." In this article, we examine the possibility of whether or not this extra force term can explain the missing mass problem in galaxies without the help of dark matter. By using the Milky Way rotation curve and the Spitzer Photomery and Accurate Rotation Curves data, we show that this CGG model can satisfactorily explain the shapes of these rotation curves without dark matter. The CGG model can be regarded as a new alternative theory to challenge the existing dark matter paradigm.

178

, , , , , , , and

We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff (${E}_{{\rm{C}}}$) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s−1) in the IRIS Si iv lines, which thermal conduction cannot reproduce. The ${E}_{{\rm{C}}}$ threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and ${E}_{{\rm{C}}}$. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si iv intensity enhancements and flows are observed only for initially low-density loops (<109 cm−3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg ii chromospheric lines can help further constrain the properties of the heating mechanisms.

179

, , , , and

Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures because the characteristics of the oscillations depend on their interplay with the solar corona. Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim of comparing the oscillation periods with those predicted by various simplified models and examining the restoring force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the pendulum model where the field-aligned component of gravity serves as the restoring force. In contrast, the horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when magnetic pressure overwhelms it.

180
The following article is Open access

, , , , , , , , , et al

New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622–4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100× larger than during its dormant state. The X-ray flux one month after reactivation was at least 800× larger than during quiescence, and has been decaying exponentially on a 111 ± 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3–6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6–8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.