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Abstract

Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate
oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic
and thermal structures because the characteristics of the oscillations depend on their interplay with the solar corona.
Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional
ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim of
comparing the oscillation periods with those predicted by various simplified models and examining the restoring
force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the
pendulum model where the field-aligned component of gravity serves as the restoring force. In contrast, the
horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period
of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the
magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when

magnetic pressure overwhelms it.

Key words: magnetohydrodynamics (MHD) — methods: numerical —

oscillations

1. Introduction

Magnetic field plays an important role in the heating and all
kinds of dynamics of the solar atmosphere. However, the
magnetic field in the corona can hardly be measured directly.
Luckily, bodily oscillations of coronal structures such as
coronal loops (Aschwanden et al. 1999; Nakariakov
et al. 1999) and solar filaments (Tripathi et al. 2009) open a
new window to diagnose the corona. Solar filaments, called
prominences when observed above the solar limb (the two
terminologies are used interchangeably in this paper), are cold
dense plasma magnetically suspended in the corona. Their
oscillations can provide some clues from which to infer the
local magnetic structure (Arregui et al. 2012). Compared with
coronal loops, oscillations of the solar prominences have been
studied more extensively since the discovery of winking
filaments (Dodson 1949; Hyder 1966; Ramsey & Smith 1966;
Kleczek & Kuperus 1969). Ramsey & Smith (1966) analyzed
several oscillating filaments, and one of them oscillates four
times, being triggered by four different flares. The fact that the
periods are the same in the four episodes indicates that the
oscillation period is determined by the intrinsic properties of
the filament, regardless of the origin of the trigger.

Prominence oscillations can be classified in different ways.
Early on, they were classified into short- and long-period
oscillations, with the periods being <10 minutes (e.g., Tsubaki
& Takeuchi 1986) for the former and >40 minutes for the latter
(e.g., Bashkirtsev et al. 1983; Bashkirtsev & Mashnich 1984). It
is noted that oscillations with short and long periods can co-exist
in one prominence (Bocchialini et al. 2011). Recent studies have
usually classified them according to their velocity amplitudes
into small-amplitude oscillations (~2-3 km s_l; see Oliver &
Ballester 2002; Oliver 2009; Arregui et al. 2012, for a review)
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and large-amplitude oscillations (=20 km s™'; see Tripathi
et al. 2009, for a review). Another widely used classification is
based on the oscillation direction relative to the magnetic field.
In this case, prominence oscillations can be divided into
longitudinal oscillations, whose direction of motion is parallel
to the local magnetic field inferred from the filament threads, and
transverse oscillations, where the displacements are perpend-
icular to the filament threads. On average, longitudinal
oscillations show a longer period than transverse oscillations.
This kind of classification might be more physical since it seems
that longitudinal and transverse oscillations have their own
individual restoring forces, which are the crucial factor for
oscillations. However, it should be emphasized here that it is not
straightforward to distinguish the longitudinal and transverse
modes: whether an oscillation is longitudinal or transverse is
determined by the oscillation direction relative to the local
magnetic field (or filament threads) rather than to the filament
spine. Since the filament threads are skewed from the filament
spine with an angle from several degrees to 30° (Athay
et al. 1983; Hanaoka & Sakurai 2017), longitudinal oscillations
would also manifest transverse displacement relative to the
filament spine in Ha images (Pant et al. 2015; Chen et al. 2017).
Note that the transverse oscillations can be further divided into
horizontal ones (Isobe & Tripathi 2006; Asai et al. 2012; Gosain
& Foullon 2012; Shen et al. 2014) and vertical ones (Eto
et al. 2002; Okamoto et al. 2004; Gilbert et al. 2008).
Transverse oscillations of prominences with a typical period
of 10-20 minutes have been investigated theoretically since the
1960s. In early studies, Hyder (1966) and Kleczek & Kuperus
(1969) approximated an oscillating prominence as a single
mass harmonic oscillator, with the magnetic tension force being
the restoring force. Later the prominence was modeled as a
dense cold slab embedded in the hot tenuous corona along a
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magnetic flux tube (see Joarder & Roberts 1992, for an
example), where the slab has a finite length but infinite width
and height. In such a slab model, the global oscillation of the
prominence is described by the string model, with the
oscillation period determined by

P = 2m(WL)'/2 /v, (1)

where L is the half-length of the flux tube, W is the half-length
of the prominence, while v represents a typical fast, slow, or
Alfvén speed in the prominence. Following these pioneering
explorations, more complicated models for transverse oscilla-
tions were proposed. In these models, more observational facts
are considered, such as gravity (Oliver et al. 1993), the angle
between the prominence and magnetic lines (Joarder &
Roberts 1993), the prominence—corona transition region
(PCTR, Oliver & Ballester 1996), the finite transverse extent
of the prominence (Diaz et al. 2001, 2002), non-adiabatic
effects (Terradas et al. 2001), mass flows (Soler et al. 2008),
ion—neutral collisions (Soler et al. 2010), and so on (see
Arregui et al. 2012, for a review). It is noticed that the
increased complexity usually fails to allow a simple analytical
solution. Moreover, the magnetic flux tube that supports the
prominence has a three-dimensional (3D) nature with strong
curvature. As a result, the vertical and horizontal transverse
oscillations might display significant differences. However, in
various simplified models, horizontal and vertical transverse
oscillations are identical. All these features can be better
captured with 3D magnetohydrodynamic (MHD) simulations,
and the results in the above-mentioned analytical models can be
examined or verified with 3D MHD simulations.

Longitudinal oscillations were discovered only 15 years ago
(Jing et al. 2003). Since then, many cases have been reported
(Jing et al. 2006; Vr$nak et al. 2007; Li & Zhang 2012; Zhang
et al. 2012, 2017; Luna et al. 2014; Shen et al. 2014).
Oscillations of this type have a period of the order of 1 hr,
several times longer than that of typical transverse oscillations.
Jing et al. (2003) proposed several mechanisms for the
restoring force to explain the longitudinal oscillations of
filaments, such as field-aligned gravity and pressure enhance-
ment due to an Alfvén wave package bouncing back and forth
along the anchored magnetic loop. They also considered the
possibility that the observed longitudinal oscillations might be
an apparent motion due to successive transverse oscillations
of neighboring threads of the filament. Vr$nak et al. (2007)
suggested the magnetic pressure gradient to be the restoring
force of the longitudinal oscillations, where the increase in
magnetic pressure was thought to result from the injection of
poloidal magnetic flux into the filament via magnetic
reconnection. In their model, an expression for the oscillation
period P was derived as P = 4.4L/va4, where L is the half-
length of the magnetic flux rope and v, is the Alfvén speed
based on the equilibrium poloidal field of the filament.

Later, more effort was devoted to the field-aligned comp-
onent of gravity as the restoring force. For example, Luna &
Karpen (2012) proposed the “pendulum model” to explain the
filament longitudinal oscillations, where the field-aligned
component of gravity serves as the restoring force for the
filament threads to oscillate along the magnetic dips. With
an analogy to the pendulum, the oscillation period is
determined by the curvature radius (R) of the magnetic dip,
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ie., P =2mwJR/g, where g is the solar gravitational accelera-
tion near the solar surface. More convincingly, Zhang et al.
(2012) compared one-dimensional (1D) radiative hydrody-
namic numerical simulations with observations of prominence
longitudinal oscillations. In the setup of their simulation, the
geometry of the magnetic dip, which determines the curvature
radius R, was taken from observations. It turned out that
the oscillation period in the simulation is consistent with the
observations. Since they found in their simulations that the
gravity component overwhelms the gas pressure gradient, their
results strongly favor the field-aligned component of gravity as
the restoring force for filament longitudinal oscillations. They
further performed a parameter survey on how the oscillation
period and decay time depend on the geometry of the magnetic
configuration (Zhang et al. 2013).

Terradas et al. (2013) extended the simulations into two
dimensions (2D) by numerically solving the linearized MHD
equations. However, they found that the oscillation period is
2-3 times longer than that predicted by the pendulum model.
Regarding this discrepancy, Luna et al. (2016) pointed out that
the inconsistency is due to the fact that the filament in Terradas
et al. (2013) is supported by magnetic flux tubes with dips that
are too shallow. If the magnetic dips are too shallow, the field-
aligned component of gravity no longer overwhelms the gas
pressure gradient. When the filament is located in deeper
magnetic dips, further simulations indicate that the oscillation
period becomes consistent with the pendulum model again. So
far, the filament longitudinal oscillations have been simulated
in 1D and 2D only, where the magnetic configuration is
markedly simplified. To have a more realistic magnetic
configuration, we need to resort to 3D MHD simulations.

In this paper, we aim to perform 3D MHD simulations of
both longitudinal and transverse oscillations of solar filaments.
Our paper is organized as follows. The setup of our simulation
and the numerical method are described in Section 2. The
numerical results of the simulations are presented in Section 3,
which is followed by discussions in Section 4.

2. Numerical Method

Prominence oscillations are observed in both active-region
prominences and quiescent prominences, and we know that
active-region prominences usually have a stronger magnetic
field than quiescent prominences. Since a strong magnetic field
implies the need for more computational resources, a model
representing quiescent prominences is selected for our simula-
tion. Statistical analysis reveals that ~96% of the quiescent
prominences are supported by a magnetic flux rope (Ouyang
et al. 2017). Therefore, a flux rope is adopted as the magnetic
structure for our simulations.

Our basic setup is similar to Xia & Keppens (2016). We start
from a static coronal volume in a Cartesian box. The extent of the
box is —180 Mm < x < 180 Mm, —120 Mm < y < 120 Mm,
and 0 < z < 240 Mm. The number density starts from 10° cm >
at the bottom boundary and decreases exponentially to satisfy
hydrostatic equilibrium in a 1 MK isothermal corona. In order
to obtain a force-free magnetic field, we prescribe the following
distribution of the z-component of the magnetic field in a
plane below our bottom boundary at z = —4 Mm, where
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the z-axis is upward:

B.(x,y) = | B.osin(my/8,)exp(x, /63) —6, <y <65 (2)
0 y > Oy

Here x,, = minmod(x + x9, x — Xp) is the median of x + xo,
X — Xxo, and 0. The parameters in Equation (2) are chosen as
follows: B,p =25 G, 6, = 30 Mm, 6, = 80 Mm, and xy =
50 Mm. The bipolar magnetogram described by Equation (2) is
placed below our bottom boundary in order to avoid any sharp
variation of magnetic field resulting from the extrapolation. The
force-free parameter « in our extrapolation is chosen to be a
constant, —0.08. The resulting plasma 3 ranges from 0.015 to
0.5 for z < 100 Mm, and goes up to about 1.4 near the top
boundary.

In order to form a magnetic flux rope from the above-
mentioned force-free field, we first perform simulations by
solving the following isothermal MHD equations:

9% 5. (=0 3)
ot
M+V(pvv +p1011_@):pg’ (4)
or Ho
9B Y. BBy =0, (5)
ot

where pc=p + Bz/ 210 is the total pressure, g =
—go1?/(rs + 2)%¢. is  the gravitational  acceleration,
8o = 274 ms 2 is the gravitational acceleration at the solar
surface, and r, = 691 Mm is the solar radius. All the other
symbols in the equations have their usual meanings. The
evolution is driven by a surface flow that is described as
follows:

ve(x,y) = f(@)C (Bl /Dy)exp(—y?/6,%)

X [sgn(y + 6,/2) — sgn(y — 6,/2)];
vy(x, y) = —wel(x, y);
VZ(X, y) =0,

(6)

where ¢ is the time and f(¢) is a linear ramp function allowing us
to progressively change the driving velocity according to

1/ tramp 0 <1< tramp;
f(t) =41 tramp < t < Tmax — tramp; (7)
(tmax - t)/tramp Imax — tramp <t g Imax-

In our simulation, #.mp and fy, are 14.3 minutes and
100.2 minutes, respectively. The parameter C is used to control
the maximum value of our driving velocity to be 12.8 km s/,
which is larger than observational values but still much smaller
than the Alfvén speed in the corona.

The normal component of the magnetic field at the
boundaries is derived from the inner points in order to keep
the field divergence-free (in a centered difference scheme). For
other variables at the four lateral boundaries, a zero-gradient
extrapolation is applied. At the bottom boundary, density is
fixed to keep the gravitational stratification. At the top
boundary, we extrapolate the velocity and adopt a gravitation-
ally stratified density profile.
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Equations (3)—(5) are solved numerically using the adaptive
mesh refinement (AMR) versatile advection code (MPI-
AMRVAC; Keppens et al. 2012; Porth et al. 2014; Xia et al.
2018). A four-level AMR grid is used, whose base grid level is
144 x 96 x 96, and it will reach an effective resolving power
of 312km x 312km x 312 km at the finest cells. As shown in
Figure 1(a)—(e), after imposing the driving flow, the magnetic
field becomes more and more sheared. After about 50 minutes,
a small flux rope is formed, and then it grows while rising
slightly. Then, after another 50 minutes when the driving flow
is completely stopped, we get a large elongated flux rope. This
flux rope has a length of about 200 Mm in the x-direction with
a cross-sectional diameter of about 40 Mm. The center of the
flux rope is located at a height of about 35 Mm from the bottom
boundary, and the maximum magnetic field strength is about
16 G.

However, we found that the flux rope formed in this way is
not force-free enough. Therefore, at the end of this stage, a
magneto-frictional method is imposed for 60,000 iteration
steps (see Guo et al. 2016, for details of this method used in
MPI-AMRVAQ). Figure 1(f) shows the magnetic field lines we
eventually got. While apparently the configuration does not
change too much compared to Figure 1(e), actually the
maximum current density is reduced by half, which implies
that the magnetic field becomes smoother. For prominence
longitudinal oscillations, the magnetic field we then obtain is
fairly weak, so that also transverse oscillations would be easily
excited. In order to avoid such mode coupling, we multiply
the magnetic field by a factor of 1.5 for the simulation
of longitudinal oscillations. Since each component of the
magnetic field is amplified by the same factor, the resulting
magnetic field is force-free as well.

So far, we have obtained a hydrostatic isothermal atmos-
phere and an almost force-free magnetic field with a 3D flux
rope embedded in an envelope field. As the final step to get our
initial setup for prominence oscillations, we follow Xia &
Keppens (2016) and replace the isothermal atmosphere with an
idealized chromosphere and corona, whose temperature
distribution is expressed as follows:

T + (Teo — Tn)(1 + tanh(z — by — ¢1) /W) /2
z < hy,
(TF(z = he) /2K) + T /%)*7

T(z) =
z > hy,

®)

where h, =4 Mm is the height of our “transition region.” The
transition region is slightly higher than in reality (see also Hillier
& van Ballegooijen 2013; Hansteen et al. 2017). We take
Ty =15%x 10K, T, = 1.6 x 10° K, and T,, = 1.5 x 10° K,
which are typical values for the temperatures of the chromosphere,
the transition region, and the corona, respectively. F, =
2 x 10°ergem *s~ ' is the constant vertical thermal conduction
flux and x = 10767/ ergem s~ 'K is the Spitzer-type heat
conductivity. Then, we use a hyperbolic tangent function with
parameters ¢; = 0.333 Mm and w, = 0.3 Mm to extend the
temperature profile from the corona into the chromosphere. The
resulting temperature ranges from 1.5 x 10* K at the bottom
boundary to about 2.3 x 10° K near the top boundary. By
assuming a hydrostatic atmosphere, we then derive the density
distribution p.g, starting from a given number density of
8.33 x 10" cm ™ at the bottom.
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Figure 1. (a)-(e) Five moments of the magnetic field evolving from a sheared arcade to an elongated flux rope. The field lines are colored by number density. The
grayscale in the bottom plane indicates the evolving z-component of the magnetic field. (f) The magnetic field we get after the magneto-frictional relaxation.

The next step is to construct a model prominence. This can increasing the density by about two orders of magnitude
be done by performing simulations of the evaporation— while keeping the gas pressure unchanged, as done by
condensation (Xia & Keppens 2016) or reconnection— Terradas et al. (2015) and Zhou et al. (2017). Following other
condensation models (Kaneko & Yokoyama 2017), which authors (e.g., Terradas et al. 2016) and guided by our own
are computationally expensive. Since we do not focus on the experience, we choose to build the prominence by modifying
physical process of prominence formation, we choose here to the density distribution from pgg tO Ppew, Which is
build a prominence in a more convenient way simply by expressed as

_ I — .
ool 1+ C,,(l +tanh(M)) 1+tanh(y7|y|] [1 +tanh(M)] | x| < I

Wy wy w,

pHCW = (9)
I, — — —
Pod| 1 + G| 1 + tanh (y7|y|] [1 + tanh (M]] | x| > L,

wy w,
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(b)

Figure 2. (a), (b) Two perspectives of the prominence inserted into a force-free magnetic field. (c), (d) Two perspectives of the prominence and the 3D magnetic field
lines when the inserted prominence reaches its final equilibrium. In this figure, the yellow isosurface traces the prominence layer whose density is 20 times the
background density, and the light blue lines are selected magnetic field lines enveloping the prominence. The grayscale in the bottom plane indicates the z-component
of the magnetic field.

(c)Time =24.3min

(f) Time = 63.7 min

(e)Time=50.1min

G

-80 -40

0 40 80 -80 -40 0 40 80 -80 -40 0
X (Mm) X (Mm) X (Mm)

40 80

Figure 3. Top view of the synthesized EUV 211 A images of the longitudinally oscillating filament at six moments. The parallelogram in panel (a) marks the slice
used for plotting Figure 4, and the yellow dashed line and the cyan dotted line in panel (d) mark the initial and the rightmost positions of the filament.

where [, = 7.5 Mm, [, = 1.5 Mm, [. = 4 Mm, w, = 35 Mm, initial height of the prominence centroid, where z. = 100 Mm.
wy = 0.3 Mm, and w_ = 0.8 Mm. C, = 12.5 is a parameter used Then, we rotate the density distribution by an angle of 10° with
to control the density contrast with the background corona. The respect to the z-axis by multiplying the density array with a

parameter zo(x) = 20 + z. — \/Inax(zf — x2,0) Mm is the rotation matrix, which aligns the prominence with the flux rope.
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With these operations the prominence has a maximum density
444 times the background one, and a temperature of 1.4 X
10* K. Figures 2(a) and (b) show the inserted prominence and the
magnetic field lines viewed in two different perspectives, where
the yellow isosurface traces the prominence layer whose density
is 20 times the background density, and the light blue lines
represent the magnetic structure enveloping the prominence. The
approximate volume of the prominence is about 70 Mm X
5 Mm x 10 Mm with a total mass of 4.7 x 10'° kg, which is a
typical value for a light prominence similar to previous work
(Terradas et al. 2015, 2016). It is noted that the inserted state is
not in equilibrium. Therefore, we allow the whole system to
evolve for about half an hour until the maximum velocity within
the prominence is less than 2 km sfl, which is one order of
magnitude smaller than the perturbation velocity used for
prominence oscillations. The relaxed state of the prominence
and the field lines viewed from two perspectives are displayed in
Figures 2(c) and (d), where the prominence is suspended at a
height of 18.5 Mm for the case of longitudinal oscillations. We
use the relaxed state as the real initial conditions for our
numerical simulations in this paper.

It is also mentioned that, from this stage on, the full ideal
MHD equations are solved numerically, which means we also
solve the internal energy equation

% G (emp) = —pV -, (10)
ot
where e, = p/(y — 1) is the internal energy. The heat
capacity ratio v = 5/3 represents an adiabatic process.

3. Perturbations and Oscillations

In order to study filament oscillations, velocity perturbations
are imposed on the prominence. Different directions of the
velocity lead to longitudinal, horizontal transverse, and vertical
transverse oscillations. Taking the longitudinal oscillations as
an example, the perturbation velocity we impose here is

B(x,y, 2)
x,y, 2 =,y 2) —————=, (11)
|B(x, y, 2)|
where v; is in a form similar to Equation (9), i.e.,
lvx - le
v(x, y, z2) =vl| 1 + tanh| ———
WVX
Ly —
x |1 + tanh J)]
Wy
lvz - |Z - ZvOl
x |1 + tanh| =————1|. (12)
Wyz

The parameters in Equation (12) are chosen as follows so that
the perturbation region is larger than the prominence while
much smaller than our simulation box: /,, = 100 Mm, /,, =
50 Mm, [/,, =4 Mm, w,, =30 Mm, w,, =15 Mm, and
w,, = 10 Mm. The height z,, = 18 Mm is a little lower than z,
in Equation (9) since the height of the prominence decreases a
little after the relaxation step. vq is a constant used to control the
maximum velocity perturbation. For transverse oscillations, we
just change the direction of the velocity perturbation in
Equation (11), making it orthogonal to the magnetic field
instead. We actually considered three methods to excite global
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filament oscillations in the simulations. One is to specify the
velocity perturbation in and around the filament. The second is
to add a high-pressure region next to the filament to mimic
thermal energy released by nearby magnetic reconnection. The
third is to introduce a shock wave, which is possibly induced
by a remote coronal mass ejection, and let the shock impact the
filament. As demonstrated by Zhang et al. (2013), the
oscillation characteristics are nearly the same under impulsive
high-pressure and direct velocity perturbation. Therefore, we
take the first method and include large-scale perturbations only
in the filament, excluding secondary effects by an external
perturbation on the filament environment. This is numerically
convenient and representative for anything that results in bulk
movement of a filament.

3.1. Longitudinal Oscillations

To trigger a longitudinal oscillation, we simply impose a
velocity perturbation described by Equation (11) on the
filament. The velocity is aligned with the magnetic field lines
with a maximum value of 25kms™' and decreases gradually
down to zero in its neighborhood. To compare our results with
observations more clearly, synthesized emission in the extreme
ultraviolet (EUV) waveband at 211 A is calculated from the
simulation data. The emission in each cell of our domain is
calculated via

L(x,y,2) = G\(T)nZ(x, y, 2), (13)

where the wavelength A = 211 A and G A is the temperature-
dependent response function for the 211 A waveband, which is
obtained directly from the CHIANTI atomic database (Dere
et al. 1997; Del Zanna et al. 2015). Figure 3 shows a time
sequence of the 211 A images of our results from a top view.
The emission is integrated along the line of sight, in this case
the z-direction. For simplicity, we suppose that the emissions
from the chromosphere are uniform and invariant. Thus, they
are ignored in the integral. It is seen that, as the longitudinal
velocity perturbation is exerted, the filament starts to move to
the right. At + = 12.2 minutes, it reaches its furthest location
and starts to bounce back (Figure 3(b)). The filament returns to
its original position at about t = 24.3 minutes and continues to
move to the left (Figure 3(c)). It reaches its leftmost position at
t = 37.2 minutes (Figure 3(d)). At ¢t= 50.1 minutes, the
filament finishes its first cycle of oscillation (Figure 3(e)) and
starts to repeat. However, as revealed by Figure 3(f), the
amplitude of the oscillation becomes smaller and smaller, i.e.,
the oscillation gradually decays. To see the motion more
clearly, in Figure 3(d) we overplot the initial boundary of the
filament as the yellow dashed line whereas its rightmost
position is the cyan dotted line. It is noticed that during the
oscillation, the filament material spreads out to form a more
diffuse structure than the initial state.

In order to display the longitudinal oscillation more clearly,
we trace the density distribution along the main axis of the
filament. The axis is taken to be parallel to the x—y plane at
z = 18.5 Mm, and is skewed from the x-axis by 10° in order to
be aligned with the filament. Since the motion is not exactly
along this selected axis, the axis has a width of 5 Mm in the
y-direction, as marked by the yellow parallelogram in
Figure 3(a). The evolution of the integrated density distribution
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Time (min)

Figure 4. Time—distance diagram of the integrated density along the selected
axis with a width of 5 Mm (see Figure 3(a)). The red dashed line indicates the
position of the filament centroid, whereas the black solid line is the fitting result
based on a decayed sine function. (b) Synthesized EUV 211 A image of
panel (a).

along the main axis is plotted in the time—distance diagram in
Figure 4. It reveals that the filament experiences a decayed
oscillation. We further calculate the centroids of the dense
plasma along the main axis at individual times, which are
represented by the red dashed line in Figure 4. The positions of
these centroids are then fit with a decayed sinusoidal function
d = dye /" sin(2nt/P + ¢), where d is the displacement of
the filament, dj is the amplitude, P is the oscillation period, T is
the decay time, and ¢ is the initial phase angle. The fitting
results in an oscillation period of P = 48.8 minutes and a decay
time 7 = 86.5 minutes. The fitted profile is overplotted on
Figure 4 as the black solid line. The corresponding 211 A
image is plotted in Figure 4(b) for comparison.

3.2. Horizontal Transverse Oscillations

By changing the perturbation velocity from Equation (11) to
Ve = vimin(By, 0)/|B| and v, = v;B,/|B|, we can excite the
horizontal transverse oscillation of the filament.

The evolution of the synthesized EUV 171 A images viewed
from the top is displayed in Figure 5. Similarly, the emission
from the chromosphere is not included in the calculation of the
EUV intensity. From the figure, it is seen that at ¢ =
3.2 minutes, the filament reaches its furthest position in the
positive y-direction (Figure 5(b)), and starts to return to the
original location. At ¢ = 8.2 minutes, the filament moves to its
furthest position in the negative y-direction, as indicated by
Figure 5(c). The filament returns to its equilibrium position at
t = 10.7 minutes. After that, it repeats its oscillation, but with a
smaller amplitude, as revealed by Figure 5(d). Similarly to the
longitudinal oscillation, the initial and the uppermost positions
of the prominence boundary are respectively indicated by the
cyan dashed line and the blue dotted line in Figure 5(c).

In order to show the lateral displacement more clearly, we
take a slice across the filament in the y-direction at z = 18.0 Mm,
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as indicated by the cyan dashed line in Figure 5(a). The evolution
of density along the slice is displayed in the time—distance
diagram in Figure 6, where the red dashed line describes the
evolution of the prominence centroid. Its displacement is fit with
a decayed sinusoidal function d = dye /7 sin(2mt/P + @),
which leads to a period of 10.1 minutes and a decay time
7 = 17.5 minutes. The fitting is shown by the black solid line.
The corresponding 171 A image is plotted in Figure 6(b) for
comparison.

3.3. Vertical Transverse Oscillations

Once the perturbation velocity in Equation (11) is modified
10 Vper (X, ¥, 2) = vi(x, y, 2)€;, we can excite vertical transverse
oscillations. Although the direction of velocity is not exactly
perpendicular to the magnetic field lines, the deviation is minor
since the magnetic field is nearly horizontal inside the
prominence. i

Again, synthesized 171 A images are used to show the
dynamics of the filament viewed from the side, i.e., the
y-direction. The results are displayed in Figure 7, where the
chromosphere is colored in white since it does not change too
much, and its features would distract the attention of the reader.
It is seen that at + = 3.6 minutes, as revealed by Figure 7(b), the
prominence goes down to its lowest height (Figure 7(c)) and
then starts to bounce back. At ¢ = 11.1 minutes, the
prominence reaches its highest position. The prominence
reaches its minimum height again at # = 17.9 minutes, as
shown in Figure 7(d). Again, the initial and the lowest positions
of the prominence are respectively indicated by the cyan
dashed line and the navy blue dotted line in Figure 7(c).
Comparing panels (d) and (b), we can see that the amplitude of
the oscillation is decaying.

In order to reveal the vertical oscillation more quantitatively,
we examine the density distribution along the z-axis, which
crosses the center of the prominence. The slice is marked by the
cyan dashed line in Figure 7(a). The evolution of the density
distribution along the z-axis is displayed in the time—distance
diagram in Figure 8, from which the decayed oscillation is
evident. The center of mass of the prominence is represented by
the dashed line, and the evolution of position is fit with a
decayed sine function z = zo+ Age /7 sinQ2wt/P + ),
where zy is the initial height, Ay is the initial amplitude of
the oscillation, P is the period, 7 is the decay time, and ¢ is the
initial phase angle. The resulting period is 14.0 minutes. The
corresponding 171 A image is plotted in Figure 8(b) for
comparison.

4. Discussions

Prominence oscillations are a very interesting phenomenon.
They can not only be applied as a potential precursor for
coronal mass ejections (Chen et al. 2008; Parenti 2014;
Mashnich & Bashkirtsev 2016; Zhou et al. 2016), but can also
be used to diagnose the coronal magnetic field (Arregui
et al. 2012). As a part of coronal seismology (Nakariakov &
Verwichte 2005; Andries et al. 2009), prominence seismology
seems more complicated than its coronal loop counterpart due
to the complex structure of the former. Among all the
parameters obtained from observations, oscillation periods
and damping time are two straightforward quantities that can be
used to constrain the restoring force and the damping
mechanisms. Many linear models have been established for
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Figure 5. Top view of the synthesized EUV 171 A images at four moments in the case where the filament is experiencing horizontal transverse oscillations. The cyan
dashed line and the blue dotted line in panel (c) indicate the initial and the uppermost positions of the prominence, respectively.
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Figure 6. Time—distance diagram of the density along the y-axis (taken along
the blue dashed line in Figure 5(a)). The red dashed line indicates the position
of the filament centroid, whereas the black solid line is the fitting result based
on a decayed sine function. (b) The synthesized EUV 171 A image of panel (a).

different restoring forces (Oliver & Ballester 2002) and
damping mechanisms (Oliver 2009), and the validity of
these linear models should be verified by nonlinear MHD

simulations. In this paper, we performed 3D MHD simulations
of prominence oscillations, and concentrated on the restoring
forces only, leaving the damping mechanism for future work.
Investigating the damping mechanisms requires a much higher
spatial resolution in the numerical simulations for the physical
processes to stand out from the numerical dissipation.

To obtain a model prominence embedded in a magnetic flux
rope, we first created a nearly force-free flux rope via evolving
the bottom boundary conditions in an isothermal MHD
simulation. Then, the density was increased and the temper-
ature was decreased inside an ellipsoidal volume. Such
distributions, which are not in mechanical equilibrium,
gradually evolved to an equilibrium state through relaxation.
We must be aware of some artifacts of this model prominence
due to our ideal MHD assumptions. For example, looking at
Equation (9), we may find that we set a fairly large PCTR in the
spine direction, which may not be true in observations. Then
we imposed an impulsive perturbation over the prominence,
which could be due to a passing EUV wave (Shen et al. 2014).
The direction of the perturbation was controlled in order to
excite longitudinal, horizontal transverse, and vertical trans-
verse oscillations.

4.1. Pendulum Model for the Longitudinal Oscillations

As shown by Figure 4, our numerical results indicate that the
centroid of the prominence oscillates with a period of about
48.8 minutes, which is in the typical range for the observed
longitudinal oscillations (Tripathi et al. 2009). In order to check
the pendulum model, we extract the magnetic field line across
the prominence centroid, and calculate the curvature radius
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Figure 7. Side view of the synthesized EUV 171 A images at four moments in the case where the filament is experiencing vertical transverse oscillations. The cyan
dashed line and the blue dotted line in panel (c) indicate the initial and the extremal positions of the prominence, respectively.
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Figure 8. Time—distance diagram of the density along the z-axis. The red
dashed line indicates the position of the prominence centroid, whereas the
black solid line is the fitting result based on a decayed sine function. (b) The
synthesized EUV 171 A image of panel (a).

near the magnetic dip, which is found to be R = 52.6 Mm.
According to the pendulum model, the theoretical period of the
longitudinal oscillation should be P = 27R/g = 45.9 min-
utes, which is very close to the oscillation period in our 3D

MHD simulations. Such consistency confirms that the field-
aligned component of gravity is responsible for the restoring
force for filament longitudinal oscillations.

On the other hand, as mentioned by Terradas et al. (2013),
different parts of the prominence at different heights may not
oscillate in phase. They oscillate with different periods. In
order to check this, 10 field lines passing through the z-axis at
t = Oare selected, from heights between z = 12 Mm and
z = 21 Mm, with a separation of 1 Mm. Following the analysis
in Luna et al. (2016), the density-weighted average field-
aligned velocity is calculated as

v = [vis Do ndsi ) [pss nds, (14)

where i means the ith field line we select and s; is the 1D arc
length along the field line. Here, the velocity, instead of the
displacement, is considered because the magnetic lines
themselves are also moving. The results are plotted in
Figure 9(a), where the x-axis is the physical time in minutes.
Ten profiles with different colors are stacked one by one in the
sequence of height, and the zero velocity for each profile is
indicated by the dashed line with the same color as the
corresponding velocity profile. Each profile is fit with a
decayed sine function, and the resulting periods, as a function
of height of the magnetic dip, are plotted as solid circles in
Figure 9(b). It is seen that the oscillation period increases from
43 to 59 minutes as the height of the plasma increases.
According to the pendulum model, such a result means that the
curvature radius of the magnetic dips becomes larger and larger
at higher positions. To confirm this, we calculate the curvature
radius (R) for each magnetic field line at the dip site in our
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Figure 9. Left panel: evolution of the density-weighted average field-aligned velocity of 10 selected magnetic field lines in the case of longitudinal oscillation. The
horizontal axis is physical time and the velocity profiles of different field lines are stacked one by one in the sequence of their heights. The scale for the velocity is
plotted at the lower left corner. Different colors indicate different initial densities at the center of the magnetic dips of different field lines, and the color scale for the
density is shown at the top of this panel. Right panel: oscillation periods of the 10 selected magnetic field lines at different heights, where the solid circles are derived
from our simulations, and the black solid line represents the theoretical values calculated from the pendulum model. The color of each circle has the same meaning as

in panel (a), indicating the averaged density along the field line.

numerical results. It is noted that the magnetic dip is not a
perfect circle. Therefore, we take an average value within 10
Mm near the center of the magnetic dip, assuming that the
magnetic field lines do not deform during the oscillations.
Indeed it is found that the curvature radius of the magnetic dips
increases with height. Based on the pendulum model, i.e.,
P =2nR/g, the theoretical periods of the longitudinal
oscillations along these field lines are calculated and plotted
as the solid line in Figure 9(b). We can see that the theoretical
results are roughly in agreement with the numerical results,
further confirming that the field-aligned component of gravity
serves as the restoring force for filament longitudinal oscilla-
tions. However, it is noticed in Figure 9(b) that the theoretical
results are systematically smaller than the 3D numerical results.
The deviation is about 10%.

Two conditions are required for the pendulum model to work
well: (1) the curvature radius of the magnetic dip should not be
too large; and (2) the magnetic field line does not deform
significantly during prominence oscillations. For the first
requirement, Luna & Karpen (2012) introduced a reference
radius of curvature, Ry, in their Equation (33). When the
curvature radius of a magnetic dip, R, is smaller than Ry, the
field-aligned component of gravity overwhelms the gas
pressure gradient, and the gas pressure can be neglected. In
our simulation, Ry, is about 450 Mm, and the curvature radius
of the magnetic dips is ~50 Mm, several times smaller than
this. In our previous 1D simulations (Zhang et al. 2013;
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Zhou et al. 2017), the curvature radius of the magnetic dips was
also smaller than Ry;,,, which is why both the 3D simulations in
this paper and our previous simulations showed consistency
with the pendulum model. Regarding the second requirement,
it is often argued that the plasma [ should be much smaller than
unity. Observations indicate that the magnetic field strength of
a quiescent prominence is generally 10-30 G (Bommier
et al. 1994; Merenda et al. 2006). The corresponding plasma
n

-2
8 =0.05 10”cm’3&(%) would be much smaller than

unity for the typical density and temperature. In our simulation
case, the plasma ( inside the prominence is ~0.01, much
smaller than unity. Therefore, it seems that the two require-
ments are both satisfied.

While the simulation results are quite consistent with the
pendulum model, it is still worthwhile to mention that the
actual period of the longitudinal oscillations in our 3D
simulations is systematically larger than that predicted by the
pendulum model. This feature cannot be explained by the
additional effect of gas pressure, because the inclusion of extra
gas pressure gradient would increase the restoring force and
hence shorten the oscillation period. For example, Luna &
Karpen (2012) considered the combination of gravity and gas
pressure. They found that the resulting oscillation period is
smaller than that determined by gravity only. The possible
reason for the larger period in simulations is the deformation of
the magnetic field line (Li & Zhang 2012), which changes the
local curvature radius dynamically. Whether the magnetic field
can be deformed is not determined by the plasma 3 alone. We
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Figure 10. Similar to Figure 9, but for the y-component of velocity in the case of horizontal transverse oscillation. Two models are compared to the simulations on the

right: a 2D slab model matches best.

think that another parameter should be the ratio of the gravity
pgL n B

to the magnetic pressure
-2
_ L L ( ) . as)
B%/2u, 10" ecm=3 100 Mm \ 10 G

where n is the number density of the prominence, L is the
length of the prominence thread, and B is the magnetic field.
For the typical values of these parameters in our simulation, the
newly defined dimensionless parameter ¢ is around unity,
i.e., the gravity is comparable with the magnetic pressure
force. Therefore, the deformation of the magnetic field lines is
not negligible. The gravity-induced deformation makes the
magnetic dip flatter, which increases the oscillation period.

4.2. Explanation for the Horizontal Transverse Oscillation

Our numerical results show that the horizontal transverse
oscillation has a period of 9.9 £ 0.4 minutes. If we use the
simple 1D string model, the oscillation period defined by
Equation (1) (Joarder & Roberts 1992) is about 17 minutes,
which is over 60% longer than the actual period. The reason for
the discrepancy is that the prominence was assumed to be
infinitely wide in their 1D model. While considering the finite
width of prominences, Diaz et al. (2001) improved the 2D
model of Joarder et al. (1997) and derived the new dispersion
relation. Even for the fundamental mode of this model, the new
equations become transcendental so that no analytic solution
can be given, and the equations have to be solved numerically.
The most important parameter required for this model, other
than those needed for Equation (1), is the thickness of the
prominence in the transverse direction, which can also be
obtained directly from our simulation. Other parameters needed
for this model, such as the density contrast, can also be
obtained through averaging, though this model is not very
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sensitive to them. It is noted that the Alfvén speed used in this
model is not taken inside the prominence, but outside it.
Therefore, we take an average value of the Alfvén speed along
the magnetic line in the corona, excluding the prominence part.
The resulting oscillation period is ~10 minutes, which is very
close to our numerical simulation.

Similarly to the case of longitudinal oscillation, we also pick
10 different magnetic lines that pass through the z-axis at t = 0,
and plot the time evolution of their density-weighted horizontal
transverse velocity in Figure 10(a), where the zero velocity for
each velocity profile is indicated by the dashed line with the
corresponding color. The horizontal transverse oscillation
presents a much shorter period than the longitudinal oscillation,
which is in accordance with observations (Tripathi et al. 2009).
Their oscillation periods can also be obtained by fitting the
velocity profiles with decayed sine functions. However, since
there are more fluctuations in the velocity profiles, we perform
wavelet spectral analysis on the velocity evolutions, and the
resulting period as a function of the height of the magnetic dip
is displayed as solid circles in Figure 10(b). It is seen that, in
contrast to the longitudinal case, the oscillation period
decreases slightly with height.

The above-mentioned two linear models are compared with
our simulation results. For the 1D string model, with all the
parameters required for Equation (1) extracted from the
simulations, the resulting periods for the 10 magnetic field
lines are plotted as the solid line in Figure 10(b). It is seen that
the theoretical periods deviate from the 3D simulation results
significantly. For the 2D slab model (Diaz et al. 2001), with all
the parameters in each magnetic field line included, the
calculated oscillation periods are overplotted in Figure 10(b)
as the dashed line. We can see that the 2D slab model matches
the 3D simulation remarkedly well.
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Figure 11. Similar to Figure 9, but for the displacement of the magnetic field lines in the z-direction in the case of vertical transverse oscillation.

It should be mentioned that the horizontal transverse
oscillation periods of different parts of the prominence are
not much different. It seems that the prominence oscillates
horizontally as a whole.

4.3. Explanation for the Vertical Transverse Oscillation

The numerical results indicate that the vertical transverse
oscillation of the prominence centroid has a period of
14.1 £ 1.5 minutes. If we use the simple 1D string model,
the oscillation period defined by Equation (1) (Joarder &
Roberts 1992) is about 17 minutes, which is ~20% larger than
the actual period, which seems not so bad. It is noted here that
the vertical and horizontal transverse oscillations are not
distinguishable in the 1D string model. If we use the 2D slab
model (Diaz et al. 2001), however, the calculated oscillation
period is 14 minutes, which is almost the same as our 3D
numerical simulations.

In order to check whether different parts of the prominence
oscillate synchronously in the vertical transverse case, we
select the same 10 magnetic lines as before to analyze their
motions in detail. Different from the previous two subsections,
for the vertical transverse oscillation we simply plot the
displacements of these field lines in the z-direction because the
magnetic lines near the prominence are almost horizontal, and
the vertical displacement reflects the motion directly. The time
evolutions of their displacements are plotted in Figure 11(a) as
solid lines with different colors, where the equilibrium location
for each line is indicated by the dashes with the corresponding
color. We can see that the vertical motions in Figure 11(a) are
much smoother than the horizontal transverse ones in
Figure 10(a). Therefore, it is easy to fit these lines with
decayed sine functions. The resulting period as a function of
the height of the magnetic dip is displayed as solid circles in
Figure 11(b). It is seen that the oscillation period decreases
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with height, with the same tendency as the horizontal
transverse oscillation, but more drastically. Actually the
difference in oscillation period among the 10 field lines is
evident even by directly looking at the velocity profiles in
Figure 11(a). It seems that the prominence is not oscillating
collectively.

The two linear models are compared with our simulation
results in this case as well. For the 1D string model, with all the
parameters of each field line required for Equation (1) extracted
from the simulations, the resulting periods for the 10 magnetic
field lines are plotted as the solid line in Figure 11(b). It is seen
that the theoretical periods deviate from the 3D simulation
results significantly for most field lines. For the 2D slab model
(Diaz et al. 2001), with all the parameters in each magnetic
field line included (note that the vertical thickness of the
prominence is the same for all the field lines), the calculated
oscillation periods are overplotted in Figure 11(b) as the dashed
line. We can see that the 2D slab model matches the 3D
simulation better.

It is noted that, as seen from Figure 11(a), all the magnetic
field lines have a tendency to rise slightly in altitude during
oscillation. This is because some of the cold prominence
material (about 20% of the total mass) drains down to the solar
surface while oscillating vertically. The reduced gravity leads
to the slow rise of the prominence. Another prominent feature
of the vertical transverse oscillation, compared to the horizontal
transverse oscillation, is that the two modes have different
oscillation periods. The satisfactory matching between the 2D
slab model and the 3D simulations implies that the difference in
the oscillation period is simply due to the horizontal width
being different from the vertical thickness of the prominence.
In our case, the vertical thickness of the prominence is about
three times larger than the horizontal width. In this sense, it
seems that the effect of the curvature of the 3D magnetic field
lines is negligible. Such a characteristic was also valid for
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Figure 12. Time evolution of the normalized magnetic tension force and
magnetic pressure force averaged along a selected magnetic field line. The
magnetic tension is seen to dominate in the restoring force during most of the
oscillation.

coronal loop oscillations (van Doorsselaere et al. 2009;
Terradas et al. 2016). It is also inferred that when the horizontal
and vertical transverse oscillations are observed to have similar
periods (e.g., Ning et al. 2009), this probably implies that the
aspect ratio of the cross section of the prominence is close to
unity.

4.4. Restoring Force for the Transverse Oscillations

It is conceivable that the restoring force for the transverse
oscillations is the Lorentz force, i.e., J X B, which can be
decomposed into the magnetic pressure force and the magnetic
tension force as follows:

B-VB
J x B =—V(B/2uy) + :
Ho

(16)

where the first term on the right is the magnetic pressure force
and the second term is the magnetic tension force. To
investigate which term is dominant in the case of the horizontal
transverse oscillation, we select a magnetic line that passes
through the z-axis at z = 17 Mm when ¢ = 0, and calculate the
horizontal components of the Lorentz force, the tension force,
and the magnetic pressure force along this field line. Then, we
define the averaged change of the magnetic tension force and
the magnetic pressure force weighted by the deviation of the
Lorentz force from the initial state as follows:

JIf @) = FO)If @) = £ (O)]ds
J1£.@0) = £.(0)]ds

where f stands for the magnetic tension force or the magnetic
pressure force, and f; stands for the Lorentz force. The
time evolution of Afis plotted in Figure 12, where the blue line
corresponds to the magnetic tension force and the red
line represents the magnetic pressure force. It is revealed that

Af () = ; a7

13

Zhou et al.

the magnetic pressure force dominates for the first minute only,
and the magnetic tension force becomes dominant thereafter. It
is interesting to notice the periodic variations of both the
normalized unsigned magnetic tension and the magnetic
pressure force. The dominant tension force shows a period of
~5 minutes (except for the second peak), which is exactly half
the filament oscillation period, as expected. The subordinate
magnetic pressure force shows higher-frequency fluctuations in
addition to the ~5 minute oscillation. The higher-frequency
oscillations might be due to other oscillation modes, such as the
sausage mode. Although the magnetic pressure force is not
important for the consideration of the restoring force in this
paper, its multi-period oscillations definitely deserve further
investigations. We also did the same analysis for the vertical
transverse oscillations, and found that the result is similar: only
during the first minute is the magnetic pressure dominant.
Thereafter, the magnetic tension force is always dominant
during oscillations. Therefore, it is reasonable to assume that
the magnetic tension force is the restoring force for the period
analysis as used widely in the literature (see Arregui et al. 2012,
for a review).

To summarize, we performed 3D MHD numerical simula-
tions of prominence oscillations, including the longitudinal one
and the transverse ones (both horizontal and vertical), with the
purpose of comparing their oscillation periods with various
models and examining their restoring forces. It is confirmed
that the magnetic field-aligned component of gravity is
responsible for longitudinal oscillation, and the magnetic
tension force is the main restoring force for transverse
oscillation. Whereas the oscillation period of the longitudinal
oscillation can be determined by the pendulum model, with an
error up to 20% for the shallowest dips present in our modeled
flux rope, the period of the transverse oscillation can be nicely
determined by the 2D slab model described by Diaz et al.
(2001), where the width (or thickness) of the prominence in the
oscillation direction is also an important parameter.

It should be noted here that the model prominence in our
simulation is a monolithic body. However, prominences are
observed to be composed of many thin threads (Lin 2011), and
these threads might oscillate with the same period (Lin 2004) or
different periods (Mashnich et al. 2009a, 2009b). The thread—
thread interactions have been investigated in 1D (Zhou
et al. 2017) by simulations and in 2D via linear analysis (Diaz
& Roberts 2006), and deserve 3D simulations in future work.

P.F.C. was supported by the Chinese foundation (NSFC
11533005) and Jiangsu 333 Project (No. BRA2017359). Y.Z.
was supported by China Scholarship Council under file No.
201606190134. Y.Z. acknowledges Ileyk El Mellah, Jannis
Teunissen, Dimitrios Millas, Tong Shi, Yi-Kang Wang, Kai
Yang, and Jie Hong for their help. C.X. thanks FWO (Research
Foundation Flanders) for the award of postdoctoral fellowship.
R.K. was supported by FWO and by KU Leuven Project (No.
GOA/2015-014) and by the Interuniversity Attraction Poles
Programme of the Belgian Science Policy Office (IAP P7/08
CHARM). The simulations were conducted on the VSC
(Flemish Supercomputer Center funded by Hercules foundation
and Flemish government) and on the cluster system in the
High Performance Computing Center (HPCC) of Nanjing
University.



THE ASTROPHYSICAL JOURNAL, 856:179 (14pp), 2018 April 1

Software: MPI-AMRVAC (Keppens et al. 2012; Porth
et al. 2014; Xia et al. 2018).
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