This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 775

Number 1, 2013 September 20

Previous issue Next issue

1

, , and

We apply a self-consistent and robust Bayesian statistical approach to determine the ages, distances, and zero-age main sequence (ZAMS) masses of 28 field DA white dwarfs (WDs) with ages of approximately 4–8 Gyr. Our technique requires only quality optical and near-infrared photometry to derive ages with <15% uncertainties, generally with little sensitivity to our choice of modern initial–final mass relation. We find that age, distance, and ZAMS mass are correlated in a manner that is too complex to be captured by traditional error propagation techniques. We further find that the posterior distributions of age are often asymmetric, indicating that the standard approach to deriving WD ages can yield misleading results.

2

, , and

We present results from timing observations of 27 pulsars made at the Pushchino Observatory over 33.5 yr between 1978 July and 2012 February. We also analyze archival Jet Propulsion Laboratory data of 10 pulsars to extend our individual data span to 43.5 yr. We detected a new phenomenon in the timing behavior of two pulsars, B0823+26 and B1929+10, that demonstrates a rapid change of pulsar rotation parameters such that the sign of the second derivative $\ddot{\nu }$ is reversed. An analysis of the $\ddot{\nu }$ changes showed that this process can be considered as a modulation process in $\ddot{\nu }$. We showed that the process of rapidly changing pulsar rotation parameters represents a new type of rotational irregularity that, together with three other types of rotational irregularities (discrete glitches, slow glitches, and quasi-periodic oscillations), forms a large-scale structure of timing noise. These effects are all the cause of the deviation of the timing behavior of most ordinary pulsars from a simple $\nu,\,\dot{\nu }$ spin-down model. We found that all four types of observed rotational irregularities have an evolving nature. Irregularities in pulsar rotation rate pass through three evolutional stages that show that a certain type of rotational irregularity can occur only at a certain stage of pulsar rotation evolution. The age boundaries between different evolutionary stages are indistinct and diffusive. This fact is because different pulsars having similar properties evolve along different paths. The evolutionary scenario of the occurrence of rotational irregularities explains well many of the observed properties of pulsar rotation.

3

, , , , , , , , , et al

We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007–2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (σ) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan γ-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of ≲ 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) γ-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.

4

, , , , , , , , , et al

We present results from a large mosaic of Suzaku observations of the Coma Cluster, the nearest and X-ray brightest hot (∼8 keV), dynamically active, non-cool core system, focusing on the thermodynamic properties of the intracluster medium on large scales. For azimuths not aligned with an infalling subcluster toward the southwest, our measured temperature and X-ray brightness profiles exhibit broadly consistent radial trends, with the temperature decreasing from about 8.5 keV at the cluster center to about 2 keV at a radius of 2 Mpc, which is the edge of our detection limit. The southwest merger significantly boosts the surface brightness, allowing us to detect X-ray emission out to ∼2.2 Mpc along this direction. Apart from the southwestern infalling subcluster, the surface brightness profiles show multiple edges around radii of 30–40 arcmin. The azimuthally averaged temperature profile, as well as the deprojected density and pressure profiles, all show a sharp drop consistent with an outwardly-propagating shock front located at 40 arcmin, corresponding to the outermost edge of the giant radio halo observed at 352 MHz with the Westerbork Synthesis Radio Telescope. The shock front may be powering this radio emission. A clear entropy excess inside of r500 reflects the violent merging events linked with these morphological features. Beyond r500, the entropy profiles of the Coma Cluster along the relatively relaxed directions are consistent with the power-law behavior expected from simple models of gravitational large-scale structure formation. The pressure is also in agreement at these radii with the expected values measured from Sunyaev–Zel'dovich data from the Planck satellite. However, due to the large uncertainties associated with the Coma Cluster measurements, we cannot yet exclude an entropy flattening in this system consistent with that seen in more relaxed cool core clusters.

5

, , and

To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a coronal hole and streamer region, the strong magnetic gradients cause a deflection of 8fdg1 in latitude and 26fdg4 in longitude for a 1015 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height, leads to a deflection of 1fdg6 in latitude and 4fdg1 in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position.

6

, , , , , , , , , et al

We present new optical (BVI) time-series data for the evolved variable stars in the Carina dwarf spheroidal galaxy. The quality of the data and the observing strategy allowed us to identify 14 new variable stars. Eight out of the 14 are RR Lyrae (RRL) stars, 4 are Anomalous Cepheids (ACs), and 2 are geometrical variables. Comparison of the period distribution for the entire sample of RRLs with similar distributions in nearby dwarf spheroidal galaxies and in the Large Magellanic Cloud indicates that the old stellar populations in these systems share similar properties. This finding is also supported by the RRL distribution in the Bailey diagram. On the other hand, the period distribution and the Bailey diagram of ACs display significant differences among the above stellar systems. This evidence suggests that the properties of intermediate-age stellar populations might be affected both by environmental effects and structural parameters. We use the BV Period–Wesenheit (PW) relation of RRLs together with evolutionary prescriptions and find a true distance modulus of 20.09 ± 0.07 (intrinsic) ± 0.1 (statistical) mag that agrees quite well with similar estimates available in the literature. We identified four peculiar variables. Taking into account their position in the Bailey diagram and in the BV PW relation, two of them (V14 and V149) appear to be candidate ACs, while two (V158 and V182) might be peculiar RRLs. In particular, the variable V158 has a period and a V-band amplitude very similar to the low-mass RRL—RRLR-02792—recently identified by Pietrzyński et al. in the Galactic bulge.

7

The consistency of time–distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k–ω filtering procedures—ridge filtering and phase-speed filtering—commonly used in time–distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top ∼5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules.

8

, , , and

We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal fronts/IFs and equilibration times.

9

, , , , , , , and

We present new Chandra X-ray observations of the transient black hole X-ray binary MAXI J1659–152 in quiescence. These observations were made more than one year after the end of the source's 2010–2011 outburst. We detect the source at a 0.5–10 keV flux of 2.8(8) × 10−15 erg s−1 cm−2, which corresponds to a luminosity of ∼1.2 × 1031 (d/6 kpc)2 erg s−1. This level, while being the lowest at which the source has been detected, is within factors of ∼2 of the levels seen at the end of the initial decay of the outburst and soon after a major reflare of the source. The quiescent luminosity of MAXI J1659–152, which is the shortest-orbital-period black hole X-ray binary (∼2.4 hr), is lower than that of neutron-star X-ray binaries with similar periods. However, it is higher than the quiescent luminosities found for black hole X-ray binaries with orbital periods ∼2–4 times longer. This could imply that a minimum quiescent luminosity may exist for black hole X-ray binaries, around orbital periods of ∼5–10 hr, as predicted by binary-evolution models for the mass transfer rate. Compared to the hard state, we see a clear softening of the power-law spectrum in quiescence, from an index of 1.55(4) to an index of 2.5(4). We constrain the luminosity range in which this softening starts to (0.18–6.2) × 10−5 (d/6 kpc)2 (M/8 M) LEdd, which is consistent with the ranges inferred for other sources.

10

, , , and

GJ 1214b stands out among the detected low-mass exoplanets, because it is, so far, the only one amenable to transmission spectroscopy. Up to date there is no consensus about the composition of its envelope although most studies suggest a high molecular weight atmosphere. In particular, it is unclear if hydrogen and helium are present or if the atmosphere is water dominated. Here, we present results on the composition of the envelope obtained by using an internal structure and evolutionary model to fit the mass and radius data. By examining all possible mixtures of water and H/He, with the corresponding opacities, we find that the bulk amount of H/He of GJ 1214b is at most 7% by mass. In general, we find the radius of warm sub-Neptunes to be most sensitive to the amount of H/He. We note that all (Kepler-11b,c,d,f, Kepler-18b, Kepler-20b, 55Cnc-e, Kepler-36c, and Kepler-68b) but two (Kepler-11e and Kepler-30b) of the discovered low-mass planets so far have less than 10% H/He. In fact, Kepler-11e and Kepler-30b have 10%–18% and 5%–15% bulk H/He. Conversely, little can be determined about the H2O or rocky content of sub-Neptune planets. We find that although a 100% water composition fits the data for GJ 1214b, based on formation constraints the presence of heavier refractory material on this planet is expected, and hence, so is a component lighter than water required. The same is true for Kepler-11f. A robust determination by transmission spectroscopy of the composition of the upper atmosphere of GJ 1214b will help determine the extent of compositional segregation between the atmosphere and the envelope.

11

, , , , , , and

In the absence of spectra, the technique of fitting model galaxy template spectra to observed photometric fluxes has become the workhorse method for determining the redshifts and other properties for high-z galaxy candidates. In this paper, we present an analysis of the most recent and possibly most distant galaxies (z ∼ 8–12) discovered in the Hubble Ultra Deep Field (HUDF) using a more robust method of redshift estimation based on Markov Chain Monte Carlo (MCMC) fitting, in contrast to the "best fit" models obtained using simpler χ2 minimization techniques. The advantage of MCMC fitting is the ability to accurately estimate the probability density function of the redshift for each object as well as any input model parameters. This makes it possible to derive accurate, credible intervals by properly marginalizing over all other input model parameters. We apply our method to 13 recently identified sources in the HUDF and show that, despite claims based on χ2 minimization, none of these sources can be securely ruled out as low redshift interlopers (z < 4) due to the low signal-to-noise of currently available observations. There is an average probability of 21% that these sources are low redshift interlopers.

12

, , and

Many works have found unusual characteristics of elemental abundances in nearby dwarf galaxies. This implies that there is a key factor of galactic evolution that is different from that of the Milky Way (MW). The chemical abundances of the stars in the Fornax dwarf spheroidal galaxy (Fornax dSph) provide excellent information for setting constraints on the models of galactic chemical evolution. In this work, adopting the five-component approach, we fit the abundances of the Fornax dSph stars, including α elements, iron group elements, and neutron-capture elements. For most sample stars, the relative contributions from the various processes to the elemental abundances are not usually in the MW proportions. We find that the contributions from massive stars to the primary α elements and iron group elements increase monotonically with increasing [Fe/H]. This means that the effect of the galactic wind is not strong enough to halt star formation and the contributions from the massive stars to α elements did not halt for [Fe/H] ≲ −0.5. The average contribution ratios of various processes between the dSph stars and the MW stars monotonically decrease with increasing progenitor mass. This is important evidence of a bottom-heavy initial mass function (IMF) for the Fornax dSph, compared to the MW. Considering a bottom-heavy IMF for the dSph, the observed relations of [α/Fe] versus [Fe/H], [iron group/Fe] versus [Fe/H], and [neutron-capture/Fe] versus [Fe/H] for the dSph stars can be explained.

13

, , , , and

We report a new geometric maser distance estimate to the active galaxy NGC 4258. The data for the new model are maser line-of-sight (LOS) velocities and sky positions from 18 epochs of very long baseline interferometry observations, and LOS accelerations measured from a 10 yr monitoring program of the 22 GHz maser emission of NGC 4258. The new model includes both disk warping and confocal elliptical maser orbits with differential precession. The distance to NGC 4258 is 7.60 ± 0.17 ± 0.15 Mpc, a 3% uncertainty including formal fitting and systematic terms. The resulting Hubble constant, based on the use of the Cepheid variables in NGC 4258 to recalibrate the Cepheid distance scale, is H0 = 72.0 ± 3.0 km s−1 Mpc−1.

14

, , , , , and

We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations ∼2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C iv "mini-broad" absorption line (FWHM = 1220 km s−1) with a maximum blueshift velocity of ∼9520 km s−1, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of ∼12, 240 km s−1 that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Lyα and N v transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (Cf ∼ 0.65), indicating a transverse absorber size of, at least, ∼6 × 1016 cm. In contrast, a cluster of narrower C iv lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce "mini-broad" and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the "mini-broad" absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

15

, , , , , , , and

We present new UV observations for NGC 288, taken with the WFC3 detector on board the Hubble Space Telescope, and combine them with existing optical data from the archive to explore the multiple-population phenomenon in this globular cluster (GC). The WFC3's UV filters have demonstrated an uncanny ability to distinguish multiple populations along all photometric sequences in GCs thanks to their exquisite sensitivity to the atmospheric changes that are telltale signs of second-generation enrichment. Optical filters, on the other hand, are more sensitive to stellar-structure changes related to helium enhancement. By combining both UV and optical data, we can measure the helium variation. We quantify this enhancement for NGC 288 and find that the variation is typical of what we have come to expect in other clusters.

16

and

Recently, many correlations between the prompt γ-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004–2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short–hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

17

and

The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in this paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties.

18

and

The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses ∼10−3–10−1M and velocities ∼0.1–0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T ∼ 2500 K). We further consider the case in which a second mass outflow, composed of 56Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to 56Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

19

, , , and

We present a study of the connection between the galactic spin parameter (λd) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λd values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λd values for the case of long bars, while the maximum for short bars is at high λd. This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λd, within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

20

, , , , , , , , , and

We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z = 0.18), one of the most powerful gravitational lenses known. With 28 Hubble Space Telescope/Advanced Camera for Surveys orbits in the F814W bandpass, we reach a magnitude I814 = 29 with ≳90% completeness and sample the brightest ∼5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of $N^{\rm total}_{\rm GC} = 162{,}850^{+75,450}_{-51,310}$ GCs within a projected radius of 400 kpc. As many as half of the GCs may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this system is by far the largest GC population studied to date. The specific frequency SN is high, but not uncommon for central galaxies in massive clusters, rising from SN ≈ 5 near the center to ∼12 at large radii. Passive galaxy fading would increase SN by ∼20% at z = 0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, $\mathcal {M}_{\rm GC}^{\rm total}$ = 3.9 × 1010M, is comparable to ∼80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.

21

, , , , , , , , , et al

We report new detections of the two transient ultraluminous X-ray sources (ULXs) in NGC 5128 from an ongoing series of Chandra observations. Both sources have previously been observed Lx(2–3) × ∼1039 erg s−1, at the lower end of the ULX luminosity range. The new observations allow us to study these sources in the luminosity regime frequented by the Galactic black hole X-ray binaries (BH XBs). We present the recent lightcurves of both ULXs. 1RXH J132519.8-430312 (ULX1) was observed at Lx ≈ 1 × 1038 erg s−1, while CXOU J132518.2-430304 (ULX2) declined to Lx ≈ 2 × 1037 erg s−1 and then lingered at this luminosity for hundreds of days. We show that a reasonable upper limit for both duty cycles is 0.2, with a lower limit of 0.12 for ULX2. This duty cycle is larger than anticipated for transient ULXs in old stellar populations. By fitting simple spectral models in an observation with ∼50 counts we recover properties consistent with Galactic BH XBs, but inconclusive as to the spectral state. We utilize quantile analyses to demonstrate that the spectra are generally soft, and that in one observation the spectrum of ULX2 is inconsistent with a canonical hard state at >95% confidence. This is contrary to what would be expected of an accreting intermediate mass black hole primary, which we would expect to be in the hard state at these luminosities. We discuss the paucity of transient ULXs discovered in early-type galaxies and excogitate explanations. We suggest that the number of transient ULXs scales with the giant and sub-giant populations, rather than the total number of XBs.

22

, , , and

In order to study the relationship between characteristics of polar coronal active events and the magnetic environment in which such events take place, we analyze 526 X-ray jets and 1256 transient brightenings in the polar regions and in regions around the equatorial limbs. We calculate the occurrence rates of these polar coronal active events as a function of distance from the boundary of coronal holes, and find that most events in the polar quiet regions occur adjacent to and equatorward of the coronal hole boundaries, while events in the polar coronal holes occur uniformly within them. Based primarily on the background intensity, we define three categories of regions that produce activity: polar coronal holes, coronal hole boundary regions, and polar quiet regions. We then investigate the properties of the events produced in these regions. We find no significant differences in their characteristics, for example, length and lifetime, but there are differences in the occurrence rates. The mean occurrence rate of X-ray jets around the boundaries of coronal holes is higher than that in the polar quiet regions, equatorial quiet regions, and polar coronal holes. Furthermore, the mean occurrence rate of transient brightenings is also higher in these regions. We make comparison with the occurrence rates of emerging and canceling magnetic fields in the photosphere reported in previous studies, and find that they do not agree with the occurrence rates of transient brightenings found in this study.

23

, , and

We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D2), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities vmax) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L−3, N(A)∝A−2, N(V)∝V−5/3, N(T)∝T−2, and D2 = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L0.94 ± 0.01 and the three-parameter scaling law L∝κ T0.1, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs).

24

, , , , , , , , and

We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4–5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton–Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.

25

, , , and

In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.

26

, , and

We performed one-dimensional hydrodynamic simulations with detailed cooling, heating, and chemical processes to examine the thermal stability of shocked gas in cold neutral medium (CNM) and molecular clouds. We find that both CNM and molecular clouds can be thermally unstable in the cooling layer behind the shock wave. The characteristic wavelength of the thermal instability ranges from 10−5 pc to 0.1 pc in the CNM, and from 10−7 pc to 0.1 pc in the molecular clouds. This coincides with the size of observed tiny scale structures in the CNM and molecular clouds, indicating that the thermal instability in the shocked gas could be a formation mechanism of these tiny structures in the interstellar medium. We have also calculated the e-folding number of the thermal instability to estimate the amplification of the density fluctuation in the shocked gas. Density perturbations in the CNM grow by a factor of exp (5) ≃ 150, whereas the perturbations in the molecular clouds grow only by a factor of a few behind a high Mach number shock. The amplification factor is larger at lower densities and higher velocities. Formation of very small scale structures by thermal instability in shocked gas is more effective in lower densities.

27

, , , and

Eclipsing binary millisecond pulsars (MSPs; the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars, and the evolutionary link between accreting X-ray pulsars and isolated MSPs. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between 0.1 and 1.0 days, their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via the evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary MSPs using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks absorb a larger fraction of the emitted spin-down energy of the radio pulsar (resulting in more efficient mass loss via evaporation) compared to that of the black widow systems. We argue that geometric effects (beaming) are responsible for the strong bimodality of these two populations. Finally, we conclude that redback systems do not evolve into black widow systems with time.

28

, , and

The fast transitions of type-B and type-A quasi-periodic oscillations (QPOs) are rarely found, and they are observed at the peak of the outburst in black hole transient (BHT) sources. The associated spectral variations during such events are crucial to understand the origin and location of such QPOs in the accretion disk. During the 1999 outburst of XTE J1859+226, on four occasions a rapid transition of type-B/A QPOs was noted. We performed broadband spectral analysis on these four observations to unveil the responsible spectral parameter causing the rapid transitions. After invoking simple spectral models, it was observed that disk parameters were consistently varying along with disk and power-law fluxes, and almost no change was noted in the power-law index parameter. Though using a complex physical model showed consistent results, the spectral parameter variations across the transitions were not significant. It was observed that the type-B QPO was always associated with an inner disk front which is closer to the BH. In one observation, a type-A QPO appeared as the source count rate suddenly dropped, and the power-law index as well as disk normalization parameter considerably changed during this transition. The spectral changes in this particular observation were similar to the changes observed in XTE J1817-330, indicating a common underlying mechanism. We have also examined a similar observation of BHT source GX 339-4, where a sudden transition of a type-A/B QPO was noted. Similar spectral study again revealed that the disk parameters were changing. We discuss the results in the framework of a truncated disk model and conclude that the movement of the coupled inner disk-corona region is responsible for such rapid transitions of type-B QPOs.

29

, , , , , , and

We obtained four pointings of over 100 ks each of the well-studied Wolf–Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.

30

, , , , , and

Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.

31

and

The high-energy GeV emission of gamma-ray bursts (GRBs) detected by Fermi/LAT has a significantly different morphology compared to the lower energy MeV emission detected by Fermi/GBM. Though the late-time GeV emission is believed to be synchrotron radiation produced via an external shock, this emission as early as the prompt phase is puzzling. A meaningful connection between these two emissions can be drawn only by an accurate description of the prompt MeV spectrum. We perform a time-resolved spectroscopy of the Gamma-ray Burst Monitor (GBM) data of long GRBs with significant GeV emission, using a model consisting of two blackbodies and a power law. We examine in detail the evolution of the spectral components and find that GRBs with high GeV emission (GRB 090902B and GRB 090926A) have a delayed onset of the power-law component in the GBM spectrum, which lingers at the later part of the prompt emission. This behavior mimics the flux evolution in the Large Area Telescope (LAT). In contrast, bright GBM GRBs with an order of magnitude lower GeV emission (GRB 100724B and GRB 091003) show a coupled variability of the total and the power-law flux. Further, by analyzing the data for a set of 17 GRBs, we find a strong correlation between the power-law fluence in the MeV and the LAT fluence (Pearson correlation: r = 0.88 and Spearman correlation: ρ = 0.81). We demonstrate that this correlation is not influenced by the correlation between the total and the power-law fluences at a confidence level of 2.3σ. We speculate the possible radiation mechanisms responsible for the correlation.

32

, , , and

We analyze Keck Echellette Spectrograph and Imager spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km s−1 in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured Teff and log g with stellar evolution tracks implies that HVS17 is a 3.91 ± 0.09 M, 153 ± 9 Myr old star at a Galactocentric distance of r = 48.5 ± 4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo.

33

, , , , , and

Recent observations of the super-Earth GJ 1214b show that it has a relatively featureless transmission spectrum. One suggestion is that these observations indicate that the planet's atmosphere is vertically compact, perhaps due to a water-rich composition that yields a large mean molecular weight. Another suggestion is that the atmosphere is hydrogen/helium-rich with clouds that obscure predicted absorption features. Previous models that incorporate clouds have included their effect without a strong physical motivation for their existence. Here, we present model atmospheres of GJ 1214b that include physically motivated clouds of two types. We model the clouds that are present in chemical equilibrium, as has been suggested to occur on brown dwarfs, which include KCl and ZnS for this planet. We also include clouds that form as a result of photochemistry, forming a hydrocarbon haze layer. We use a photochemical kinetics model to understand the vertical distribution and available mass of haze-forming molecules. We model both solar and enhanced-metallicity cloudy models and determine the cloud properties necessary to match observations. In enhanced-metallicity atmospheres, we find that the equilibrium clouds can match the observations of GJ 1214b if they are lofted high into the atmosphere and have a low sedimentation efficiency (fsed = 0.1). We find that models with a variety of hydrocarbon haze properties can match the observations. Particle sizes from 0.01 to 0.25 μm can match the transmission spectrum with haze-forming efficiencies as low as 1%–5%.

34

and

We investigate the condition for capture into first-order mean motion resonances using numerical simulations with a wide range of various parameters. In particular, we focus on deriving the critical migration timescale for capture into the 2:1 resonance; additional numerical experiments for closely spaced resonances (e.g., 3:2) are also performed. We find that the critical migration timescale is determined by the planet-to-stellar mass ratio, and its dependence exhibits power-law behavior with index −4/3. This dependence is also supported by simple analytic arguments. We also find that the critical migration timescale for systems with equal-mass bodies is shorter than that in the restricted problem; for instance, for the 2:1 resonance between two equal-mass bodies, the critical timescale decreases by a factor of 10. In addition, using the obtained formula, the origin of observed systems that include first-order commensurabilities is constrained. Assuming that pairs of planets originally form well separated from each other and then undergo convergent migration and are captured in resonances, it is possible that a number of exoplanets experienced rapid orbital migration. For systems in closely spaced resonances, the differential migration timescale between the resonant pair can be constrained well; it is further suggested that several exoplanets underwent migration that can equal or even exceed the type I migration rate predicted by the linear theory. This implies that some of them may have formed in situ. Future observations and the use of our model will allow us to statistically determine the typical migration speed in a protoplanetary disk.

35

We present one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (Lcrit) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that Lcrit at fixed mass accretion rate is somewhat higher in three dimensions than in two dimensions. We find, however, that in two dimensions Lcritincreases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the average entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in two dimensions. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in two dimensions and three dimensions. We discuss the balance between neutrino-driven buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plume's surface area while the buoyant force is proportional to a plume's volume and, therefore, plumes with greater volume-to-surface-area ratios will rise more quickly. We show that buoyant plumes in two dimensions are inherently larger, with greater volume-to-surface-area ratios, than plumes in three dimensions. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why Lcrit increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.

36

, , and

Our analysis of a Very Long Baseline Array 12 hr synthesis observation of the OH masers in the well-known star-forming region W49N has yielded valuable data that enable us to probe distributions of magnetic fields in both the maser columns and the intervening interstellar medium (ISM). The data, consisting of detailed high angular resolution images (with beam width ∼20 mas) of several dozen OH maser sources, or spots, at 1612, 1665, and 1667 MHz, reveal anisotropic scatter broadening with typical sizes of a few tens of milliarcseconds and axial ratios between 1.5 and 3. Such anisotropies have been reported previously by Desai et al. and have been interpreted as being induced by the local magnetic field parallel to the Galactic plane. However, we find (1) apparent angular sizes of, on average, a factor of about 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred previously, and (2) a significant deviation in the average orientation of the scatter-broadened images (by ∼10°) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, significant differences (up to 6σ) are apparent in the scatter-broadened images for the two hands of circular polarization, even when the apparent velocity separation is less than 0.1 km s−1. This may possibly be the first example of a Faraday rotation contribution to the diffractive effects in the ISM. Using the Zeeman pairs, we also study the distribution of the magnetic field in the W49N complex, finding no significant trend in the spatial structure function. In this paper, we present the details of our observations and analysis leading to these findings, discuss implications of our results for the intervening anisotropic magneto-ionic medium, and suggest possible implications for the structure of magnetic fields within this star-forming region.

37

, , , , and

We present 19.7, 31.5, and 37.1 μm images of the inner 6 pc of the Galactic center of the Milky Way with a spatial resolution of 3farcs2–4farcs6 taken by the Faint Object Infrared Camera on the Stratospheric Observatory for Infrared Astronomy. The images reveal in detail the "clumpy" structure of the circumnuclear ring (CNR)—the inner edge of the molecular torus orbiting the supermassive black hole at the Galactic center—and the prominent streamers of hot, ionized gas and dust within the CNR that compose the H ii region Sgr A West. The CNR exhibits features of a classic H ii region: the dust emission at 19.7 μm closely traces the ionized gas emission observed in the radio while the 31.5 and 37.1 μm emission traces the photo-dissociation region beyond the ionized gas. The 19.7/37.1 color temperature map reveals a radial temperature gradient across the CNR with temperatures ranging from 65 to 85 K, consistent with the prevailing paradigm in which the dust is centrally heated by the inner cluster of hot, young stars. We model the 37.1 μm intensity of the CNR as an inclined (θi = 67°) ring with a thickness and radius of 0.34 pc and 1.4 pc, respectively, and find that it is consistent with the observed 37.1 μm map of the CNR. The 37.1 μm optical depth map also reveals the clumpy dust distribution of the CNR and implies a total gas mass of ∼610 M. Dense (5–9 × 104 cm−3) clumps with an FWHM of ∼0.15 pc exist along the inner edge of the CNR and shadow the material deeper into the ring. We find that the clumps are unlikely to be long-lived structures since they are not dense enough to be stable against tidal shear from the supermassive black hole and will be sheared out on a timescale of an orbital period (∼105 yr).

38

and

We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R) in the active region corona.

39

, , , , and

We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430–910 km s−1. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s−1, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

40

, , and

We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10−8 to 4 × 10−9 yr−1. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in $L_{{\rm H}_{\alpha }}/L_{{\rm FUV}}$. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10−6M yr−1, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical evolution of spiral galaxies.

41

, , , , , , , , and

We present an observationally motivated model to connect the active galactic nucleus (AGN) and galaxy populations at 0.2 < z < 1.0 and predict the AGN X-ray luminosity function (XLF). We start with measurements of the stellar mass function of galaxies (from the Prism Multi-object Survey) and populate galaxies with AGNs using models for the probability of a galaxy hosting an AGN as a function of specific accretion rate. Our model is based on measurements indicating that the specific accretion rate distribution is a universal function across a wide range of host stellar masses with slope γ1 ≈ −0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope $\gamma _2=-2.1^{+0.3}_{-0.5}$, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies ($\mathcal {M_*}\sim 10^{10}\hbox{--}10^{11}\mathcal {M}_\odot$) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion.

42

, , and

The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass–eccentricity and semimajor axis–eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (≳ 30 AU) gas giants with nearly circular orbits.

43

, , , and

We present results of the cross-correlation analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1–1. We obtain data of ∼10, 000 Sloan Digital Sky Survey AGNs in which their virial masses with a supermassive black hole (SMBH) were estimated. The UKIDSS galaxy samples around the AGNs were obtained using the virtual observatory. The scale length of AGN–galaxy cross-correlation for all of the samples is measured to be $r_0= 5.8^{+0.8}_{-0.6}\,h^{-1}\,{\rm Mpc}$ (for the fixed slope parameter γ = 1.8). We also derived a dependence of r0 on the BH mass, MBH, and found an indication of an increasing trend of r0 at MBH > 108M. It is suggested that the growth of SMBHs is mainly driven by interactions with the surrounding environment for MBH > 108M. On the other hand, at MBH ≲ 108M, we did not find the BH mass dependence. This would imply that for less massive BHs, the mass growth process can be different from that for massive BHs.

44

, , , , and

An outstanding question of astrobiology is the link between the chemical composition of planets, comets, and other solar system bodies and the molecules formed in the interstellar medium. Understanding the chemical and physical evolution of the matter leading to the formation of protoplanetary disks is an important step for this. We provide some new clues to this long-standing problem using three-dimensional chemical simulations of the early phases of disk formation: we interfaced the full gas-grain chemical model Nautilus with the radiation-magnetohydrodynamic model RAMSES, for different configurations and intensities of the magnetic field. Our results show that the chemical content (gas and ices) is globally conserved during the collapsing process, from the parent molecular cloud to the young disk surrounding the first Larson core. A qualitative comparison with cometary composition suggests that comets are constituted of different phases, some molecules being direct tracers of interstellar chemistry, while others, including complex molecules, seem to have been formed in disks, where higher densities and temperatures allow for an active grain surface chemistry. The latter phase, and its connection with the formation of the first Larson core, remains to be modeled.

45

, , , , and

We report new interferometric angular diameter observations of 41 carbon stars observed with the Palomar Testbed Interferometer. Two of these stars are CH carbon stars and represent the first such measurements of this subtype. Of these, 39 have Yamashita spectral classes and are of sufficiently high quality that we can determine the dependence of effective temperature on spectral type. We find that there is a tendency for the effective temperature to increase with increasing temperature index by ∼120 K per step, starting at TEFF ≃ 2500 K for C3, y, although there is a large amount of scatter in this relationship. Overall, the median effective temperature of the carbon star sample is 2800 ± 270 K and the median linear radius is 360 ± 100 R. We also find agreement, on average within 15 K, with the TEFF determinations of Bergeat et al. and a refinement of the carbon star angular size prediction based on V & K magnitudes is presented that is good to an rms of 12%. A subsample of our stars have sufficient {u, v} coverage to permit non-spherical modeling of their photospheres, and a general tendency for detection of statistically significant departures from sphericity with increasing interferometric signal-to-noise is seen. The implications of most—and potentially all—carbon stars being non-spherical is considered in the context of surface inhomogeneities and a rotation–mass-loss connection.

46

, , , , , , and

Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s−1, and a number density of (3 ± 2) × 1010 cm−3. The validity of C iv 1548 and 1550 and Si iv 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10−9M yr−1 is calculated as an approximate upper limit, and a model system is presented.

47

Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.

48

, , , , , , , , , et al

The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480–2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≃2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

49

, , , and

We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few RBLR, where RBLR ∼ 0.01–0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s−1), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.

50

In this paper, we investigate the evolution of plasmoid chains in a Poynting-dominated plasma. We model the relativistic current sheet with a cold background plasma using the relativistic resistive magnetohydrodynamic approximation and solve for its temporal evolution numerically. We perform various calculations using different magnetization parameters of the background plasma and different Lundquist numbers. Numerical results show that the initially induced plasmoid triggers a secondary tearing instability, which gradually fills the current sheet with plasmoids, as has also been observed in the non-relativistic case. We find that plasmoid chains greatly enhance the reconnection rate, which becomes independent of the Lundquist number when the Lundquist number exceeds a critical value. In addition, we show that the distribution of plasmoid size becomes a power law. Since magnetic reconnection is expected to play an important role in various high-energy astrophysical phenomena, our results can be used for explaining the physical mechanisms of those phenomena.

51

, , , , , , , and

We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of −1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°–38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.

52

and

We revise the assumptions of the parameters involved in predicting the number of supernova remnants detectable in the nuclear lines of the decay chain of 44Ti. Specifically, we consider the distribution of the supernova progenitors, the supernova rate in the Galaxy, the ratios of supernova types, the Galactic production of 44Ti, and the 44Ti yield from supernovae of different types to derive credible bounds on the expected number of detectable remnants. We find that, within 1σ uncertainty, the Galaxy should contain an average of $5.1^{+2.4}_{-2.0}$ remnants detectable to a survey with a 44Ti decay line flux limit of 10−5 photons cm−2 s−1, with a probability of detecting a single remnant of $2.7^{+10.0}_{-2.4}\%$, and an expected number of detections between two and nine remnants, making the single detection of Cas A unlikely but consistent with our models. Our results show that the probability of detecting the brightest 44Ti flux source at the high absolute Galactic longitude of Cas A or above is ∼10%. Using the detected flux of Cas A, we attempt to constrain the Galactic supernova rate and Galactic production of 44Ti, but find the detection to be only weakly informative. We conclude that even future surveys having 200 times more sensitivity than state-of-the-art surveys can be guaranteed to detect only a few new remnants, with an expected number of detections between 8 and 21 at a limiting 44Ti decay flux of 10−7 photons cm−2 s−1.

53

and

We present a Monte Carlo model for the structure of low-mass (total mass <25 M) planetary systems that form by the in situ gravitational assembly of planetary embryos into final planets. Our model includes distributions of mass, eccentricity, inclination, and period spacing that are based on the simulation of a disk of 20 M, forming planets around a solar-mass star, and assuming a power-law surface density distribution that drops with distance a as ∝ a−1.5. The output of the Monte Carlo model is then subjected to the selection effects that mimic the observations of a transiting planet search such as that performed by the Kepler satellite. The resulting comparison of the output to the properties of the observed sample yields an encouraging agreement in terms of the relative frequencies of multiple-planet systems and the distribution of the mutual inclinations when moderate tidal circularization is taken into account. The broad features of the period distribution and radius distribution can also be matched within this framework, although the model underpredicts the distribution of small period ratios. This likely indicates that some dissipation is still required in the formation process. The most striking deviation between the model and observations is in the ratio of single to multiple systems in that there are roughly 50% more single-planet candidates observed than are produced in any model population. This suggests that some systems must suffer additional attrition to reduce the number of planets or increase the range of inclinations.

54

, , , , , , , , , et al

We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, mKp = 11.6, Teff = 5576 K, M = 0.98 M). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter–McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

55

, , , and

Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.

56

, , , and

We present new optical coronagraphic data of Fomalhaut obtained with HST/STIS in 2010 and 2012. Fomalhaut b is recovered at both epochs to high significance. The observations include the discoveries of tenuous nebulosity beyond the main dust belt detected to at least 209 AU projected radius, and a ∼50 AU wide azimuthal gap in the belt northward of Fomalhaut b. The two epochs of Space Telescope Imaging Spectrograph (STIS) photometry exclude optical variability greater than 35%. A Markov chain Monte Carlo analysis demonstrates that the orbit of Fomalhaut b is highly eccentric, with e = 0.8 ± 0.1, a = 177 ± 68 AU, and q = 32 ± 24 AU. Fomalhaut b is apsidally aligned with the belt and 90% of allowed orbits have mutual inclination ⩽36°. Fomalhaut b's orbit is belt crossing in the sky plane projection, but only 12% of possible orbits have ascending or descending nodes within a 25 AU wide belt annulus. The high eccentricity invokes a dynamical history where Fomalhaut b may have experienced a significant dynamical interaction with a hypothetical planet Fomalhaut c, and the current orbital configuration may be relatively short-lived. The Tisserand parameter with respect to a hypothetical Fomalhaut planet at 30 AU or 120 AU lies in the range 2–3, similar to highly eccentric dwarf planets in our solar system. We argue that Fomalhaut b's minimum mass is that of a dwarf planet in order for a circumplanetary satellite system to remain bound to a sufficient radius from the planet to be consistent with the dust scattered light hypothesis. In the coplanar case, Fomalhaut b will collide with the main belt around 2032, and the subsequent emergent phenomena may help determine its physical nature.

57

, , , , , , , , , et al

We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey. We find that MV, RRc = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = −1.59. This is to be compared with previous estimates for RRab stars (MV, RRab = 0.76 ± 0.12) and the only direct measurement of an RRc absolute magnitude (RZ Cephei, MV, RRc = 0.27 ± 0.17). We find the bulk velocity of the halo relative to the Sun to be (Wπ, Wθ, Wz) = (12.0, −209.9, 3.0) km s−1 in the radial, rotational, and vertical directions with dispersions $(\sigma _{W_\pi }, \sigma _{W_\theta }, \sigma _{W_z}) = (150.4, 106.1, 96.0) \, {\rm km\, s}^{-1}$. For the disk, we find (Wπ, Wθ, Wz) = (13.0, −42.0, −27.3) km s−1 relative to the Sun with dispersions $(\sigma _{W_\pi }, \sigma _{W_\theta }, \sigma _{W_z}) = (67.7,59.2,54.9) \, {\rm km\, s}^{-1}$. Finally, as a byproduct of our statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated as verified by UCAC4.

58

, , and

Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise (S/N), high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe i and Fe ii lines and find [Fe/H] = +0.12 ±0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron capture element [Y/Fe] is found to be solar, but [Ba/Fe] is enhanced relative to solar and to the field stars. Three Praesepe giants were studied by Carrera and Pancino; they are apparently enhanced in Na, Mg, and Ba relative to the Praesepe dwarfs. The Na enhancement may indicate proton-capture nucleosynthesis in the Ne → Na cycling with dredge-up into the atmospheres of the red giants.

59

, , and

The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF.

60

, , , , , and

Comparison of six high-redshift quasar spectra obtained with the Large Binocular Telescope with previous observations from the Sloan Digital Sky Survey shows that failure to correctly identify absorption and other problems with accurate characterization of the C iv λ1549 emission line profile in low signal-to-noise (S/N) data can severely limit the reliability of single-epoch mass estimates based on the C iv emission line. We combine the analysis of these new high-quality data with a reanalysis of three other samples based on high-S/N spectra of the C iv emission line region. We find that a large scatter between the Hβ- and C iv-based masses remains even for this high-S/N sample when using the FWHM to characterize the broad-line region velocity dispersion and the standard virial assumption to calculate the mass. However, we demonstrate that using high-quality data and the line dispersion to characterize the C iv line width leads to a high level of consistency between C iv- and Hβ-based masses, with <0.3 dex of observed scatter and an estimated ∼0.2 dex intrinsic scatter, in the mass residuals.

61

, , , , , , , , , et al

Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ∼ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg2 of the Cosmic Evolution Survey. The 3077 DOGs have 〈z〉 = 1.9 ± 0.3 and are selected from 24 μm and r+ observations using a color cut of r+ − [24] ⩾ 7.5 (AB mag) and S24 ⩾ 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (⩾3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 1012L and (0.77 ± 0.08) × 1012L, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S24 ⩾ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%–30% to the total star formation rate (SFR) density of the universe at z = 1.5–2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5–2.5 galaxies with S24 ⩾ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ∼ 2.

62

, , and

Galaxy counts and recent measurements of the luminosity density in the near-infrared have indicated the possibility that the local universe may be under-dense on scales of several hundred megaparsecs. The presence of a large-scale under-density in the local universe could introduce significant biases into the interpretation of cosmological observables, and, in particular, into the inferred effects of dark energy on the expansion rate. Here we measure the K-band luminosity density as a function of redshift to test for such a local under-density. For our primary sample in this study, we select galaxies from the UKIDSS Large Area Survey and use spectroscopy from the Sloan Digital Sky Survey (SDSS), the Two-degree Field Galaxy Redshift Survey, the Galaxy And Mass Assembly Survey (GAMA), and other redshift surveys to generate a K-selected catalog of ∼35, 000 galaxies that is ∼95% spectroscopically complete at KAB < 16.3 (KAB < 17 in the GAMA fields). To complement this sample at low redshifts, we also analyze a K-selected sample from the 2M++ catalog, which combines Two Micron All Sky Survey (2MASS) photometry with redshifts from the 2MASS redshift survey, the Six-degree Field Galaxy Redshift Survey, and the SDSS. The combination of these samples allows for a detailed measurement of the K-band luminosity density as a function of distance over the redshift range 0.01 < z < 0.2 (radial distances D ∼ 50–800 $h_{70}^{-1}$ Mpc). We find that the overall shape of the z = 0 rest-frame K-band luminosity function (M*–5log (h70) = −22.15 ± 0.04 and α = −1.02 ± 0.03) appears to be relatively constant as a function of environment and distance from us. We find a local (z < 0.07, D < 300 $h_{70}^{-1}$ Mpc) luminosity density that is in good agreement with previous studies. Beyond z ∼ 0.07, we detect a rising luminosity density that reaches a value of roughly ∼1.5 times higher than that measured locally at z > 0.1. This suggests that the stellar mass density as a function of distance follows a similar trend. Assuming that luminous matter traces the underlying dark matter distribution, this implies that the local mass density of the universe may be lower than the global mass density on a scale and amplitude sufficient to introduce significant biases into the determination of basic cosmological observables. An under-density of roughly this scale and amplitude could resolve the apparent tension between direct measurements of the Hubble constant and those inferred by Planck.

63

, , , , , , , , , et al

We present large-scale (∼2000 arcmin2), deep (∼20 μJy), high-resolution (∼1'') radio observations of the Ophiuchus star-forming complex obtained with the Karl G. Jansky Very Large Array at λ = 4 and 6 cm. In total, 189 sources were detected, 56 of them associated with known young stellar sources, and 4 with known extragalactic objects; the other 129 remain unclassified, but most of them are most probably background quasars. The vast majority of the young stars detected at radio wavelengths have spectral types K or M, although we also detect four objects of A/F/B types and two brown dwarf candidates. At least half of these young stars are non-thermal (gyrosynchrotron) sources, with active coronas characterized by high levels of variability, negative spectral indices, and (in some cases) significant circular polarization. As expected, there is a clear tendency for the fraction of non-thermal sources to increase from the younger (Class 0/I or flat spectrum) to the more evolved (Class III or weak line T Tauri) stars. The young stars detected both in X-rays and at radio wavelengths broadly follow a Güdel–Benz relation, but with a different normalization than the most radioactive types of stars. Finally, we detect a ∼70 mJy compact extragalactic source near the center of the Ophiuchus core, which should be used as gain calibrator for any future radio observations of this region.

64

, , , , , , , , and

KIC 9406652 is a remarkable variable star in the Kepler field of view that shows both very rapid oscillations and long term outbursts in its light curve. We present an analysis of the light curve over quarters 1–15 and new spectroscopy that indicates that the object is a cataclysmic variable with an orbital period of 6.108 hr. However, an even stronger signal appears in the light curve periodogram for a shorter period of 5.753 hr, and we argue that this corresponds to the modulation of flux from the hot spot region in a tilted, precessing disk surrounding the white dwarf star. We present a preliminary orbital solution from radial velocity measurements of features from the accretion disk and the photosphere of the companion. We use a Doppler tomography algorithm to reconstruct the disk and companion spectra, and we also consider how these components contribute to the object's spectral energy distribution from ultraviolet to infrared wavelengths. This target offers us a remarkable opportunity to investigate disk processes during the high mass transfer stage of evolution in cataclysmic variables.

65

, , , , , , , , , et al

The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834−430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3–79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29 s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.

66

, , , , , , , , , et al

Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible in the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250–263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300–360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.

67

, , , , , , , , , et al

One of the most elusive features of gamma-ray bursts (GRBs) is the sporadic emission prior to the main prompt event observed in at least ∼15% of cases. These precursors have spectral and temporal properties similar to the main prompt emission, and smaller, but comparable, energetics. They are separated from the main event by a quiescent time that may be extremely long, and, in some cases, more than one precursor has been observed in the same burst. Precursors are still a puzzle: despite many attempts, none of the proposed models can account for all the observed features. Based on the complete sample of bright long GRBs observed by Swift (BAT6), we propose a new scenario for which precursors are explained by assuming that the central GRB engine is a newly born magnetar. In this model the precursor and the prompt emission arise from accretion of matter onto the surface of the magnetar. The accretion process can be halted by the centrifugal drag exerted by the rotating magnetosphere onto the infalling matter, allowing for multiple precursors and very long quiescent times.

68

, , and

We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, $\dot{M}_{\rm acc}$, as a function of the stellar parameters finding that $\log \dot{M}_{\rm acc} \simeq -0.6\,\log t + \log m + c$, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

69

and

We present a series of kinematic axisymmetric mean-field αΩ dynamo models applicable to solar-type stars, for 20 distinct combinations of rotation rates and luminosities. The internal differential rotation and kinetic helicity profiles required to calculate source terms in these dynamo models are extracted from a corresponding series of global three-dimensional hydrodynamical simulations of solar/stellar convection, so that the resulting dynamo models end up involving only one free parameter, namely, the turbulent magnetic diffusivity in the convecting layers. Even though the αΩ dynamo solutions exhibit a broad range of morphologies, and sometimes even double cycles, these models manage to reproduce relatively well the observationally inferred relationship between cycle period and rotation rate. On the other hand, they fail in capturing the observed increase of magnetic activity levels with rotation rate. This failure is due to our use of a simple algebraic α-quenching formula as the sole amplitude-limiting nonlinearity. This suggests that α-quenching is not the primary mechanism setting the amplitude of stellar magnetic cycles, with magnetic reaction on large-scale flows emerging as the more likely candidate. This inference is coherent with analyses of various recent global magnetohydrodynamical simulations of solar/stellar convection.

70

, , , , , , , , and

We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as Wc, at each frequency ν, and found a relation between Wc and ν: Wc(ν)∝ν−0.71  ±  0.05. Then, by combining Wc(ν) and the frequency dependence of the core position rc(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet Wc(r) down to ∼10 Schwarzschild radii (Rs) from the central black hole. We found that Wc(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of Rs. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.

71

, , , , , , , and

The 782 nm band of CO2, in a transparent window of Earth's atmosphere, was the first CO2 band observed 80 yr ago in the spectra of Venus. The band is very weak and therefore not saturated by the thick atmosphere of Venus, but its spectral parameters are still very limited due to the difficulty of detecting it in the laboratory. It is the highest overtone (ν1 + 5ν3) of CO2 given in widely used spectroscopy databases such as HITRAN and GEISA. In the present work, the band is studied using a cavity ring-down spectrometer with ultra-high sensitivity as well as high precision. The positions of 55 lines in the band were determined with an absolute accuracy of 3 × 10−5 cm−1, two orders of magnitude better than previous studies. The line intensities, self-induced pressure broadening coefficients, and the shift coefficients were also derived from the recorded spectra. The obtained spectral parameters can be applied to model the spectra of the CO2-rich atmospheres of planets like Venus and Mars.

72

and

Using axisymmetrical numerical simulations, we revisit the gravitational drag felt by a gravitational Plummer sphere with mass M and core radius Rs moving at constant velocity V0 through a background homogeneous medium of adiabatic gas. Since the potential is non-diverging, there is no gas removal due to accretion. When Rs is larger than the Bondi radius RB, the perturbation is linear at every point and the drag force is well fitted by the time-dependent Ostriker's formula with rmin = 2.25Rs, where rmin is the minimum impact parameter in the Coulomb logarithm. In the deep nonlinear supersonic regime (RsRB), the minimum radius is no longer related to Rs but to RB. We find $r_{\rm min}=3.3\mathcal {M}^{-2.5}R_{B}$ for Mach numbers of the perturber between 1.5 and 4, although $r_{\rm min} = 2\mathcal {M}^{-2}R_{B}=2GM/V^{2}_{0}$ also provides a good fit at $\mathcal {M}>2$. As a consequence, the drag force does not depend sensitively on the nonlinearity parameter $\mathcal {A}$, defined as RB/Rs, for $\mathcal {A}$ values larger than a certain critical value $\mathcal {A}_{\rm cr}$. We show that our generalized Ostriker's formula for the drag force is more accurate than the formula suggested by Kim and Kim.

73

, , , , and

We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30 AU and 100 AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-ultraviolet-ionized surface layer and low-ionization disk interior. These simulations serve as a follow-up to Simon et al., in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For a net vertical field strength (quantified by β0, the ratio of gas to magnetic pressure at the disk mid-plane) of β0 = 104 and β0 = 105, we find accretion rates $\dot{M} \sim 10^{-8}$–10−7M yr−1. These accretion rates agree with observational constraints, suggesting a vertical magnetic field strength of ∼60–200 μG and 10–30 μG at 30 AU and 100 AU, respectively, in a MMSN disk. Furthermore, the stress has a non-negligible component due to a magnetic wind. For sufficiently strong vertical field strengths, MRI turbulence is quenched, and the flow becomes largely laminar, with accretion proceeding through large-scale correlations in the radial and toroidal field components as well as through the magnetic wind. In all simulations, the presence of a low-ionization region near the disk mid-plane, which we call the ambipolar damping zone, results in reduced stresses there.

74

, , and

We use numerical simulations to study the absorption and phase shift of surface-gravity waves caused by groups of magnetic flux tubes. The dependence of the scattering coefficients on the distance between the tubes and their positions is analyzed for several cases with two or three flux tubes embedded in a quiet Sun atmosphere. The results are compared with those obtained neglecting completely or partially multiple scattering effects. We show that multiple scattering has a significant impact on the absorption measurements and tends to reduce the phase shift. We also consider more general cases of ensembles of randomly distributed flux tubes, and we have evaluated the effects on the scattering measurements of changing the number of tubes included in the bundle and the average distance between flux tubes. We find that for the longest wavelength incoming waves, multiple scattering enhances the absorption, and its efficiency increases with the number of flux tubes and the reduction of the distance between them.

75

, , , , , , , and

We present observations of the SS 433 jets using the Chandra High Energy Transmission Grating Spectrometer with contemporaneous optical and Very Long Baseline Array observations. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The line Doppler shifts from the optical and X-ray lines match well, indicating that they are less than 3 × 1014 cm apart. The jet Doppler shifts show aperiodic variations that could result from shocks in interactions with the local environment. These perturbations are consistent with a change in jet direction but not jet speed. The proper motions of the radio knots match the kinematic model only if the distance to SS 433 is 4.5 ± 0.2 kpc. Observations during eclipse show that the occulted emission is very hard, seen only above 2 keV and rising to comprise >50% of the flux at 8 keV. The soft X-ray emission lines from the jet are not blocked, constraining the jet length to ≳ 2 × 1012 cm. The base jet density is in the range 1010–13 cm−3, in contrast to our previous estimate based on the Si xiii triplet, which is likely to have been affected by UV de-excitation. There is a clear overabundance of Ni by a factor of about 15 relative to the solar value, which may have resulted from an unusual supernova that formed the compact object.

76

The standard technique for measurement of random uncertainties of star formation histories (SFHs) is the bootstrap Monte Carlo, in which the color–magnitude diagram (CMD) is repeatedly resampled. The variation in SFHs measured from the resampled CMDs is assumed to represent the random uncertainty in the SFH measured from the original data. However, this technique systematically and significantly underestimates the uncertainties for times in which the measured star formation rate is low or zero, leading to overly (and incorrectly) high confidence in that measurement. This study proposes an alternative technique, the Markov Chain Monte Carlo (MCMC), which samples the probability distribution of the parameters used in the original solution to directly estimate confidence intervals. While the most commonly used MCMC algorithms are incapable of adequately sampling a probability distribution that can involve thousands of highly correlated dimensions, the Hybrid Monte Carlo algorithm is shown to be extremely effective and efficient for this particular task. Several implementation details, such as the handling of implicit priors created by parameterization of the SFH, are discussed in detail.

77

, , and

Dust polarization observations from the Submillimeter Array (SMA) and the Caltech Submillimeter Observatory (CSO) are analyzed with the goal of providing a general tool to interpret the role of the magnetic field in molecular clouds. Magnetic field and dust emission gradient orientations are observed to show distinct patterns and features. The angle δ between these two orientations can be interpreted as a magnetic field alignment deviation, assuming the emission gradient orientation to coincide with the density gradient orientation in the magnetohydrodynamics force equation. In SMA high-resolution (collapsing) cores, additional symmetry properties in δ can reveal accretion and outflow zones. All these observational findings suggest the angle δ to be a relevant quantity that can assess the role of the magnetic field. Indeed, when comparing this angle with the (projection-free) magnetic field significance ΣB (introduced by Koch and coworkers in 2012), it is demonstrated that |δ| yields an approximation to the change in ΣB. Thus, changes in the magnetic field alignment deviation δ trace changes in the role of the magnetic field. The angle δ is observationally straightforward to determine, providing a tool to distinguish between zones of minor or significant magnetic field impact. This is exemplified by the CSO M+0.25 + 0.01, Mon R2, CO+0.02 − 0.02, M−0.02 − 0.07 sources and by the SMA high-resolution data from W51 e2, W51 North, Orion BN/KL and g5.89. Additional CSO sources are analyzed, providing further support of this result. Finally, based on the different features found in our sample of 31 sources in total, covering sizes from large-scale complexes to collapsing cores, a schematic evolutionary scenario is proposed. Here, the significance of the magnetic field evolves both with position and scale, and can be assessed with the angle δ.

78

, , , and

We present the results of a blind survey of Lyman limit systems (LLSs) detected in absorption against 105 quasars at z ∼ 3 using the blue sensitive MagE spectrograph at the Magellan Clay telescope. By searching for Lyman limit absorption in the wavelength range λ ∼ 3000–4000 Å, we measure the number of LLSs per unit redshift ℓ(z) = 1.21  ±  0.28 at z ∼ 2.8. Using a stacking analysis, we further estimate the mean free path of ionizing photons in the z ∼ 3 universe $\lambda ^{912}_{\rm mfp} = 100 \pm 29 \ h_{70.4}^{-1}\ {\rm Mpc}$. Combined with our LLS survey, we conclude that systems with log NH i ⩾ 17.5 cm−2 contribute only ∼40% to the observed mean free path at these redshifts. Furthermore, with the aid of photoionization modeling, we infer that a population of ionized and metal poor systems is likely required to reproduce the metal line strengths observed in a composite spectrum of 20 LLSs with log NH i ∼ 17.5–19 cm−2 at z ∼ 2.6–3.0. Finally, with a simple toy model, we deduce that gas in the halos of galaxies can alone account for the totality of LLSs at z ≲ 3, but a progressively higher contribution from the intergalactic medium is required beyond z ∼ 3.5. We also show how the weakly evolving number of LLSs per unit redshift at z ≲ 3 can be modeled either by requiring that the spatial extent of the circumgalactic medium is redshift invariant in the last ∼10 Gyr of cosmic evolution or by postulating that LLSs arise in halos that are rare fluctuations in the density field at each redshift.

79

, , , , , , and

We report trigonometric parallax measurements of 22 GHz H2O masers in two massive star-forming regions from Very Long Baseline Array observations as part of the Bar and Spiral Structure Legacy Survey. The distances of $11.11^{+0.79}_{-0.69}$ kpc to W49N (G043.16+0.01) and $10.75^{+0.61}_{-0.55}$ kpc to G048.60+0.02 locate them in a distant section of the Perseus arm near the solar circle in the first Galactic quadrant. This allows us to locate accurately the inner portion of the Perseus arm for the first time. Combining the present results with sources measured in the outer portion of the arm in the second and third quadrants yields a global pitch angle of 9fdg5 ± 1fdg3 for the Perseus arm. We have found almost no H2O maser sources in the Perseus arm for 50° <ℓ < 80°, suggesting that this ≈6 kpc section of the arm has little massive star formation activity.

80

, , , , , and

We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ∼2–4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Zenv values commonly 0.6–0.9, or ∼100–400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5–12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Zenv. However, values of Zenv close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above Teq of ∼800–1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and "warm Neptune" GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.