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ABSTRACT

To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME’s
trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME’s Altered Trajectory), of
CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the
effects of drag on the CME’s deflection. Given the background solar wind conditions, the launch site of the CME,
and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT
predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based
on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background
where the CME is launched from an active region located between a coronal hole and streamer region, the strong
magnetic gradients cause a deflection of 8.◦1 in latitude and 26.◦4 in longitude for a 1015 g CME propagating out
to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height,
leads to a deflection of 1.◦6 in latitude and 4.◦1 in longitude for the control case. Varying the CME’s input parameters
within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these
specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position.
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1. INTRODUCTION

The Sun explosively releases magnetized plasma known as
coronal mass ejections (CMEs). Gopalswamy et al. (2009b)
cataloged CMEs observed with the Solar and Heliospheric
Observatory (SOHO) mission’s Large Angle and Spectrometric
Coronagraph (LASCO). This catalog includes CMEs with a
wide range of speeds (200–2500 km s−1), masses (1013–1016 g),
and kinetic energies (1027–1033 erg). Earth-directed CMEs can
drive space weather phenomena, producing aurorae but also
potentially damaging power grids. Shocks driven by CMEs
can accelerate particles. At Earth, these energetic particles can
damage satellites and harm astronauts. The better we understand
the trajectory of a CME through the heliosphere, the better we
can predict the effects on Earth and throughout the rest of the
heliosphere.

Since the beginning of CME observations in the 1970s, CME
deflections have been observed (MacQueen et al. 1986). Cre-
mades & Bothmer (2004) and Kilpua et al. (2009) discuss the
trend of high latitude CMEs deflecting toward the equator during
solar minimum conditions. Both authors attribute the deflection
to polar coronal holes (CHs). Cremades & Bothmer (2004) em-
phasize the role of the fast wind affecting the CME’s expansion.
Kilpua et al. (2009) suggest that CMEs cannot penetrate the
polar CH magnetic fields that then guide the CME to the equa-
tor. Kilpua et al. (2009) also note the correlation between the
direction of CME deflections and the decreased tilt of the helio-
spheric current sheet (HCS) at solar minimum. At other times
of the solar cycle, the increased complexity of the HCS config-
uration may lead to more variation in the direction of deflection.
Xie et al. (2009) find that slow CMEs (�400 km s−1) follow
a pattern of deflection toward the streamer belt (SB) but some
fast CMEs move away from the SB. Xie et al. (2009) observe a
correlation between the deflection of the CME and the distance
between the CME source and the SB for the slow CMEs, but

find no such correlation for the fast CMEs. They also find that
fast CMEs statistically tend to deflect less than slow ones.

Recent observational studies show that CMEs can undergo
strong deflections close to the Sun; however, a deflection below
5 R� cannot be distinguished from a non-uniform expansion.
Longitudinal deflections are observable using multiple coron-
agraphic viewpoints after the launch of the Solar TErrestrial
RElations Observatory (STEREO) with the Sun Earth Connec-
tion Coronal and Heliospheric Investigation (SECCHI). These
observations confirmed that deflections can occur in both lon-
gitude and latitude (Isavnin et al. 2013; Liu et al. 2010a, 2010b;
Lugaz et al. 2010; Rodriguez et al. 2011). Byrne et al. (2010)
made a three-dimensional (3D) reconstruction of the 2008
December 12 CME using an elliptical tie-pointing method. By
matching the positions of edges in STEREO Ahead and Behind
images, they fit a 3D ellipsoid to the CME. They estimate a lat-
itudinal change of 30◦ in the midpoint of the CME front during
propagation up to 7 R�, but beyond this distance the latitude
remained relatively constant. Liu et al. (2010b) reconstruct the
3D behavior of several events using geometric triangulation:
forward modeling of a flux-rope-like structure with self-similar
expansion (Thernisien et al. 2006, 2009). Liu et al. (2010b)
find a 13◦ westward deflection within 15 R� for the 2007
November 14 CME and about 10◦ westward within 20 R� for
the 2008 December 12 CME, but do not address the latitudinal
deflection calculated by Byrne et al. (2010). Liu et al. (2010b)
suggest that this systematic westward deflection may be a uni-
versal feature due to the magnetic field connecting the Sun and
the CME. If the solar magnetic field is frozen into the plasma of
the CME, then corotation with the Sun would explain this mo-
tion. The east–west asymmetry driven by a systematic westward
deflection of CMEs was first observed in Wang et al. (2004).
Wang et al. (2004) attribute the deflection to the Parker spiral
and the speed of CMEs: CMEs traveling faster than the solar
wind will deflect to the east and CMEs traveling slower than
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the solar wind will deflect to the west. Isavnin et al. (2013)
use a combination of forward modeling of STEREO-SECCHI
and SOHO-LASCO coronagraphic images and Grad–Shafranov
reconstruction to reconstruct the full 3D trajectory of a CME
out to 1 AU. Isavnin et al. (2013) reconstruct 15 CMEs from
between the minimum of Solar Cycle 23 and the maximum of
Solar Cycle 24. The latitudinal deflections of these CME far
exceed the longitudinal deflections. Latitudinal deflections up
to 35◦ are observed and the maximum longitudinal deflection is
only 5.◦4.

CME deflection is also studied through the use of magneto-
hydrodynamic (MHD) simulations. Lugaz et al. (2011) present
a MHD simulation of the 2005 August 22 CME using the Space
Weather Modeling Framework (SWMF; Tóth et al. 2011). This
CME was launched from an anemone active region (AR) within
a CH. Lugaz et al. (2011) find that magnetic forces drive a deflec-
tion of 10◦–15◦ within 8 R�, which is smaller than the 40◦–50◦
expected from observations. The simulated CME is initiated
with an out-of-equilibrium flux rope so that the CME does not
match the observations within three solar radii of the Sun. The
simulated CME reaches its maximum speed of 1500 km s−1

only 1.5 minutes after initiation, but beyond 3 R� the prop-
agation speed matches the observed value of 1250 km s−1.
Lugaz et al. (2011) note that the difference in propagation at
low heights, where the magnetic forces should be the strongest,
could explain some of the discrepancy between the observed
and simulated deflections. Zuccarello et al. (2012) compare a
MHD simulation to the 2009 September 21 CME that was ob-
served to deflect 15◦ toward the HCS. In their MHD simulation,
reconnection creates an imbalance in the magnetic pressure and
tension forces, causing the CME to deflect toward the SB.

A CH’s influence on a CME has been quantified by defining
force vectors based on the CH parameters. To study correlations
between a CME’s deflection and the distance, r, from its source
location to a CH with area, A, Cremades et al. (2006) introduce
a force, F = A/r r̂ . This force points toward r̂ , defined as
the direction pointing away from the CH toward the CME.
These authors find a correlation between the direction of F
and the direction of the CME deflection, suggesting that CHs do
influence the CME motion. Gopalswamy et al. (2009a) define an
“coronal hole influence parameter” (CHIP) similar to the force
of Cremades et al. (2006), but also incorporate the magnetic
field strength (B) of the CH, F = B2A/r r̂ . Gopalswamy
et al. (2009a) find good agreement between the direction a CME
propagates after it deflects and the direction given by vector sum
of all the individual F-vectors from nearby CHs. Gopalswamy
et al. (2010) update the r-dependence to r−2, giving a final form
F = B2A/r2 r̂ . Mohamed et al. (2012) compare Solar Cycle
23 CMEs originating from disk center with their CHIP as a
function of the solar cycle and CME type. Driverless shocks
tend to have the largest CHIP value, magnetic clouds (MC) the
smallest, with non-MCs falling in between. The CHIP values
are smallest during the rising phase. Mohamed et al. (2012)
suggest CHs deflect CMEs away from the Sun–Earth line, which
provides support for the idea that all CMEs may be flux ropes;
the distinction between MCs, non-MCs, and driverless shocks
being a matter of viewing perspective.

Shen et al. (2011) and Gui et al. (2011) consider gradients
in the magnetic energy density of the background solar corona
as an explanation for the observed deflection. At the distances
of their observations (�1.5 R�), these gradients point toward
the streamer region. During solar minimum conditions, the
streamer region is generally centered near the equator so mainly

latitudinal deflections will occur. At other times, the coronal
magnetic field becomes more complex so a wider variety of
gradient directions exists. Shen et al. (2011) present a theoretical
approach that compares favorably with observations. Gui et al.
(2011) extend the work with additional observations and find
that the direction of deflection tends to agree with the direction
of the background gradients.

Similar to the deflection of CMEs, Panasenco et al. (2011)
investigate the rolling motion of prominences/filaments. These
authors find that the prominences tend to roll away from CHs
before they form flux ropes. Panasenco et al. (2011) suggest that
the filament motion could be explained by local magnetic force
imbalances within the filament arcade, whereas the non-radial
motion of CMEs would result from similar imbalances on global
scales.

This paper presents a model for CME deflection near the
Sun by considering the effects of magnetic pressure gradients
as well as magnetic tension. Magnetic energy dominates the
free energy budget of the ambient plasma in the lower corona,
so magnetic forces play an important role in the deflection
of CMEs near the Sun. The closer to the Sun a CME is, the
stronger the surrounding coronal magnetic fields and therefore
the stronger the forces that act upon a CME. The magnetic
field strength falls off quickly with distance so the magnetic
forces should as well. Other effects not included in ForeCAT
(Forecasting a CME’s Altered Trajectory) can cause deflection,
such as interactions with other CMEs propagating through the
interplanetary medium (Lugaz et al. 2012; Temmer et al. 2012)
or variations in the speed of the background solar wind. Spatial
velocity variations can distort the shape of a CME, as seen in
observations (Savani et al. 2010) and in MHD models (Wang
et al. 2003). If unbalanced, these effects on opposite sides of
the CME could cause deflection. We focus only on the magnetic
forces close to the Sun, ignoring magnetic reconnection.

The model, called ForeCAT, calculates the deflection of
a CME within a plane defined by global magnetic pressure
gradients. The deflection motion of the CME not only depends
on the magnetic forces but requires models for the CME
expansion and propagation as well. ForeCAT uses the expansion
model from the melon-seed-overpressure-expansion (MSOE)
model of Siscoe et al. (2006). A three-part propagation model,
similar to that of Zhang & Dere (2006), determines the CME’s
radial motion. The CME starts with a slow rise phase that
transitions to an acceleration phase, then finally enters a constant
speed propagation phase. ForeCAT also includes the effects of
drag hindering the CME’s non-radial motion, so that the CME
cannot propagate freely in a direction quasi-perpendicular to
the solar wind flow. ForeCAT’s radial propagation model results
from fitting observations of CMEs affected by drag so ForeCAT
does not explicitly include drag in the radial direction.

This paper is organized as follows. Section 2 contains an-
alytic descriptions of the magnetic forces driving the deflec-
tion. Section 3 describes the expansion, propagation, and drag
models; Section 4 presents two models for the background so-
lar magnetic field: a scaled model and a potential field source
surface (PFSS) model. Section 5 shows the results of a test case
using the scaled magnetic background; Section 6 investigates
ForeCAT’s sensitivity to input parameters, both CME param-
eters and values assumed in the analytic propagation model.
Section 7 includes results from using the PFSS magnetic field
model. Section 8 looks at deflection from local gradients related
to the AR. A discussion appears in Section 9 and we present our
conclusions in Section 10.
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Figure 1. All panels show latitude vs. longitude at different heights for a section around an active region. The panels corresponds to distances (a) 1.05 R�, (b) 1.5 R�,
(c) 2.0 R�, and (d) 3.0 R�. The color contours show the magnetic pressure gradient and the arrows are unit vectors showing the direction of the magnetic pressure
gradient in the plane. The white dot indicates the launch position of the CME used in this study. At low heights (R < 2 R�), the AR dominates both the contours and
gradients but as the distance increases, effects from the CH and SB become important. In panels (c) and (d), the position of the SB can be seen as a minimum in the
magnetic pressure. Panel (b) shows an intermediate distance where both global and local effects influence the gradients.

(An animation and a colored version of this figure are available in the online journal.)

2. AN ANALYTIC MODEL OF CME DEFLECTION

2.1. Deflection Plane

In order to simplify the treatment of the CME deflection in
the lower corona, we restrict the calculations within ForeCAT
to a plane called the “deflection plane.” In ForeCAT, magnetic
forces drive the deflection so the background coronal magnetic
field gradients at the location from which the CME launches
determine the direction of the deflection plane. The normal to
this plane is defined as the cross product of the direction of
initial radial CME motion and the direction of the dominant
background magnetic pressure gradients.

The calculation of the deflection plane normal vector uses the
direction of the gradients in the magnetic pressure at a single
location, which requires picking a specific height. It is expected
that the direction of the magnetic pressure gradient will change
with distance from the Sun. At smaller distances, the local

effects of the AR from which the CME is launched dominate
the gradient, and at further distances effects from global features
such as CHs and SBs dominate. For the magnetic background
used in this study, the effects from global features dominate at
distances of 2 R� or larger. ForeCAT uses the direction of the
gradient at this 2 R� threshold to define the deflection plane to
capture the effects of the CHs and SBs.

Figure 1 shows four panels illustrating how different features
determine the gradients at different heights. The figures show
a constant height from a MHD simulation using the SWMF
(Tóth et al. 2011; van der Holst et al. 2010; Evans et al.
2012; see Section 4 for details) centered around the AR from
which the CME is launched. The figure shows color contours
corresponding to the logarithm of the magnetic pressure and the
arrows show the direction of the non-radial magnetic pressure
gradient unit vectors. The white dot indicates the latitude and
longitude from which the CME launches. All panels use the
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(a) (b)

Figure 2. Selection of the deflection plane. Panel (a) shows the magnetic field strength at distances of 1.05 and 2 R�, similar to Figures 1(a) and (c). At 1.05 R�, red
lines show the location of the nearby CHs. The black dot indicates the initial latitude and longitude of the CME and the line shows the deflection plane orientation,
the same as the magnetic pressure gradient direction at 2 R� at the initial latitude and longitude. The radial vector, R0 connects the center of the Sun to the black dot.
The normal of the deflection plane, n, is defined in Equation (1). Panel (b) shows the resulting deflection plane.

(A color version of this figure is available in the online journal.)

same color contour scale. The strongest magnetic pressure
occurs close to the AR, visible in Figure 1(a) (a distance of
1.05 R�). Figure 1(b) shows a distance of 1.5 R� where both
the local effects of the AR and the global effects of the CHs and
SBs influence the gradients. In Figures 1(c) and (d) (distances of
2 R� and 3 R�), the streamer region that becomes the HCS can
be seen as a minimum in the magnetic pressure. In these panels,
the magnetic pressure is weaker than the magnetic pressure in
Figure 1(a) by 2–3 orders of magnitude. At larger distances,
the gradients transition from being dominated by local features,
such as ARs, to a more uniform configuration, determined by
the global structure of CHs and SBs. For this background, 2 R�
is the smallest radius at which the gradients are dominated by
the global effects. These global gradients are present closer to
the Sun, but can only be easily separated from the local gradients
at larger distances. Between 2 R� and 3 R�, the direction of the
gradient at the CME launch position changes by less than 6◦.
ForeCAT uses the value at the smaller radius where the magnetic
field is stronger since more deflection will occur near that height.

While the AR’s magnetic field does affect the CME’s propa-
gation and is included in the calculations, the current focus of
ForeCAT is deflection due to global gradients resulting from
the orientation of CHs and SBs and the differences in these
magnetic fields. The effects of the AR are explored in Section 8.

The normal to the deflection plane is given by

n = R0 × −∇
(

B2

8π

)
, (1)

where R0 is the initial radial vector for the CME and ∇B2/8π
is the gradient in the magnetic field pressure at a distance
of 2 R�.

Figure 2 illustrates how the deflection plane is selected.
Figure 2(a) shows color contours of the magnetic field strength at
distances of 1.05 and 2 R�, analogous to Figures 1(a) and (c), in
3D using a color scale appropriate for the range at each distance.
At 1.05 R�, the red lines indicate the approximate position of
the CHs. The black circle marks the latitude and longitude
of the CME’s initial position. The radial vector R0 extends from
the center of the Sun through this point. The black line shows
the orientation of the deflection plane, defined by the direction
of −∇B2/8π at the black circle at 2 R�. The radial direction
and the gradient vector from Figure 2(a) define the deflection
plane in Figure 2(b). The schematic in Figure 2(b) includes
an example deflection plane and the Sun’s surface. As shown in
Figure 2(b), the deflection plane can be tilted; it need not be an
equatorial or meridional plane.

Figure 3 contains a schematic showing the Sun–CME config-
uration: (a) shows the CME and (b) shows within the deflection
plane. Panel (a) shows the Sun in white and the flux-rope-like
CME in yellow, as well as the intersection of the CME and
deflection plane. Panel (b) shows features within the deflection
plane. The background solar magnetic field is defined in polar
coordinates, R and φ, with the origin at the center of the Sun.
A second set of polar coordinates, r and θ , with an origin at the
point on the Sun (=1 R�) from which the CME is launched, is
used to calculate deflection forces on the CME. The set of Carte-
sian coordinates, with an origin also at the center of the Sun,
allow conversion between the two sets of polar coordinates:

R =
√

x2 + y2 r =
√

(x − 1)2 + y2

φ = tan−1
(y

x

)
θ = tan−1

(
y

x − 1

)
,
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(a)

(b)

Figure 3. Schematic showing details within the deflection plane. Panel (a)
shows the Sun, the flux-rope-like CME, and its intersection with the deflection
plane. Panel (b) shows a white circle representing the Sun and a yellow circle
showing the cross section of the CME flux rope within the deflection plane. Two
polar coordinate systems are shown as well, in addition to one Cartesian. The
x- and y-directions correspond to the R0 and −∇B2/8π directions from Figure 2,
respectively. One set of polar coordinates (r and θ ), used for the deflection force,
is centered at the location from which the CME launches. The Sun-centered
polar coordinates (R and φ) are used to define a background magnetic field. The
circular CME cross section starts with a radius L0 and a position (r, θ ) = (r0, 0).
The black ×’s mark the position of the CME edges where the deflection forces
are calculated. The red lines represent the diameter of the CME parallel to the
y-axis, which show the size and position of the CME in later figures.

(A color version of this figure is available in the online journal.)

where x, y, R, and r all have units of R� and x and y correspond
to the R0 and ∇B2/8π directions in Figure 2, respectively.
In this geometry, the CME launches along the x-axis, which
corresponds to θ = φ = 0.

A circle, initially of radius L0, represents the cross section
of the CME in the deflection plane. For the cross section to
be a perfect circle, the CME must be perpendicular to the
deflection plane. Deviations from this orientation will introduce
small errors into the calculation of the CME density as the cross
section will take an elliptical shape within the deflection plane.
ForeCAT uses the deflection forces on two “edges,” marked
with ×’s in Figure 3, to calculate the total deflection. These
edges correspond to the points on the circle that lie on a line
running through the center of the circle and perpendicular to
the r̂-direction at that point. Averaging the φ values of the two
edges gives the central position angle (CPA) of the CME, which
equals the φ position of the center of the circle:

CPA = φ1 + φ2

2
, (2)

where 1 and 2 refer to the two edges. The CPA is calculated using
the change in the Sun-centered angle, comparable to latitudinal
or longitudinal changes of CMEs in coronagraphic observations.

The net deflection force on the two edges determines the
change in the θ position of the CME (θ → θ ′). Before a
CME detaches from the solar surface, the deflection motion
will occur with respect to the position where the footpoints are

anchored. Accordingly, ForeCAT calculates deflection forces in
the θ̂ -direction. Different analytic models describe the change
in distance (R → R′), change in CME radius (L → L′),
and effects of non-radial drag separate from the deflection
(see Section 3). No change occurs in the CPA for a CME
propagating without deflection and with uniform expansion.
Deviations from the original CPA correspond to deflection or
non-uniform expansion, however ForeCAT only includes CMEs
with uniform expansion (Section 3.2).

2.2. Deflection Forces

ForeCAT calculates CME deflection due to the magnetic
tension and the magnetic pressure gradient. Imbalance of
these forces between the two edges causes a net force in the
θ̂ -direction, driving deflection. All forces within this model are
volumetric so that the acceleration equals the force divided by
the density.

2.2.1. Magnetic Tension

In general, the force due to magnetic tension can be expressed
as

Fκ = κ
B2

4π
, (3)

where κ = 1/RC is the curvature and RC is the radius
of curvature. The tension force points toward the center of
curvature. As the CME expands into the surrounding medium,
the external magnetic field will drape around it. The curvature
of the draped magnetic field can be approximated then as equal
to the CME curvature with RC as the radius of the CME cross
section within the deflection plane.

The draping of the coronal magnetic field is not restricted
to the deflection plane, so ForeCAT includes a cos α factor
to account for this effect, assuming that the radius of curvature
does not change. The angle α is the angle between the deflection
plane and the direction of the draping of the background solar
magnetic field lines around the CME. In principle, α will vary
in time. The final tension force on each edge is

Fκ = ∓ 1

L

B2

4π
cos α θ̂, (4)

where the top edge (defined as the edge with the largest y
value in the Cartesian coordinate system in Figure 3(b)) has
a negative sign and the bottom edge has a positive sign. Only
for a background magnetic field that is symmetric about the
CME will the two forces balance.

2.2.2. Magnetic Pressure Gradient

The component of the magnetic pressure gradient perpendic-
ular to the radial direction also leads to deflection:

F∇P = −∇⊥
B2

8π
, (5)

where the ⊥ corresponds to gradients perpendicular to the
direction of the magnetic field according to the definition of the
Lorentz force. The magnetic pressure gradient expression used
in ForeCAT includes the cos α factor to account for draping
out of the deflection plane. Since the background magnetic
field lines drape around the CME, at the edges the direction
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of the perpendicular gradient within the deflection plane is the
θ̂ -direction. Equation (5) can be recast as

F∇P = − B

4πR

∂B

∂φ
cos(θ − φ) cos α θ̂, (6)

with the force directed in the θ̂ -direction being due to the
cos(θ − φ) term that results from taking the θ̂ component of
the gradient in φ. As the CME propagates away from the Sun,
the orientation of the background magnetic pressure gradients
may change. When this process occurs, deflection happens out
of the original deflection plane. The net out-of-plane deflection
is minimal as the magnetic forces decrease with distance.

2.2.3. Total Deflection Force

The net volumetric deflection force is given by the sum of
Equations (4) and (6):

F =
(

∓ 1

L

B2

4π
cos α − B

4πR

∂B

∂θ
cos(θ − φ) cos α

)
θ̂ , (7)

where θ̂ = − sin θx̂ + cos θŷ, which changes with time as θ
changes. Dividing the deflection force by the CME density gives
the acceleration of each CME edge. The density is defined as

ρ = M

π2rL2
, (8)

where MCME is the CME mass and the volume is approximated
using a uniform curved cylinder of length πr and cross section
πL2. The mass of the CME is assumed to be constant. CMEs
tend to accrete mass as they travel. Vourlidas et al. (2010)
analyzed the mass evolution of CMEs in the low corona
using the coronagraph brightness and found that CMEs tend
to increase in mass in the corona below 10 R�. ForeCAT’s
assumption of a constant mass will cause underestimations of
the density, leading to an overestimate of the acceleration cause
by deflection. The density evolves in time due to the expansion
of the CME (see Section 3.1).

The acceleration of edges in the θ -direction is a linear
acceleration with x and y components. The equations of motion
for an edge are:

x(t + Δt) = x(t) + vdef,x(t)Δt − 0.5
F (t)

ρ(t)
sin θ (t)Δt2

y(t + Δt) = y(t) + vdef,y(t)Δt + 0.5
F (t)

ρ(t)
cos θ (t)Δt2,

(9)

where vdef,x and vdef,y are the velocities of the edge in the
x̂- and ŷ-direction resulting from deflection

vdef,x(t) = −
∫ t

0

F (t)

ρ(t)
sin θ (t)dt,

vdef,y(t) =
∫ t

0

F (t)

ρ(t)
cos θ (t)dt. (10)

The deflection equals the change in the CME’s CPA:

CPA(t) = 1

2

[
tan−1

(
y1(t)

x1(t)

)
+ tan−1

(
y2(t)

x2(t)

)]
, (11)

where 1 and 2 refer to the two CME edges. Since initially the
CPA equals zero, the total deflection at any time equals the
CME’s current CPA. The total deflection within the deflection
plane can be converted into a change in latitude and longitude
using the orientation of the plane.

3. DESCRIPTION OF CME MOTION

To calculate the total deflection, the radial propagation,
expansion, and non-radial drag of the CME must be incorporated
as they affect the position of the CME edges over time.

3.1. CME Expansion

Several analytic models describing CME evolution exist.
These models focus on the radial propagation of CMEs and
do not account for deflections. Pneuman (1984) introduces the
melon-seed model, which Siscoe et al. (2006) later develop into
the MSOE model. More complex models exist, such as those
of Chen (1996), which treat the CME as a flux rope containing
two different plasmas, representing the cavity and embedded
prominence, and triggers the eruption by increasing the poloidal
magnetic field. ForeCAT uses the MSOE model’s description of
CME expansion.

The MSOE model modifies a classical hydrodynamic solution
for an overpressure of a spherical cavity. The hydrodynamic
solution (see Milne-Thomson 1968) is driven by an adiabatic
gas overpressure that can be treated as a fluid “source.” Siscoe
et al. (2006) change the adiabatic overpressure to a magnetic
overpressure. This change results in the following expression
for the change in the radius of the CME cross section L (see
the Appendix for more details).

∂2L

∂t2
= 1

L

[
−3

2

(
dL

dt

)2

+

(
L0

L

)4 (A2
h0 − A2

SW0)

2

ρSW0

ρSW

]
.

(12)

The subscript 0 indicates initial values evaluated at t = 0. Ah0
and ASW0 refer to Alfvén speeds calculated using the initial
background solar wind density and either the magnetic field of
the CME (Ah0) or the background solar magnetic field strength
(ASW0). The expansion equation depends on the background
solar wind density ρSW, which requires assuming some solar
wind density profile.

ForeCAT uses the expression for density from Chen (1996),
also used by Siscoe et al. (2006):

ρSW(R) = 6.68 × 10−16

[
3

(
R�
R

)12

+

(
R�
R

)4
]

+ 3.84 × 10−19

(
R�
R

)2

g cm−3. (13)

Using the profile from Chen (1996), the CH regions are scaled
down by a constant value as ρCH(R) = 0.25ρSW(R), which
produces a CH density profile closer to that of observations
(Guhathakurta & Fisher 1998; Doyle et al. 1999). The value
0.25 results from assuming a constant mass flux and a solar
wind speed roughly double the slow wind for the fast wind
(McComas et al. 2000).

Figure 4 shows the analytic density model and several radial
profiles from a MHD simulation, the same simulation shown in
Figures 1 and 2. The details of the simulation are discussed in
Section 4.1. The MHD profiles come from different locations:
above an AR (red), a CH (blue), and the SB (green). The
standard analytic model (solid black) is shown in addition to
the scaled CH analytic model (dashed black). Close to the Sun,
the analytic model overestimates the MHD solution by nearly
an order of magnitude. Near 20 R�, the outer boundary of the
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Figure 4. Radial density profiles for the analytic model and the results of the
MHD simulation. The analytic model overestimates the MHD profiles from
above an active region (red), coronal hole (blue), and the streamer belt (green).
Near the edge of the MHD domain, better agreement is found between the
models.

(A color version of this figure is available in the online journal.)

MHD simulation domain, the analytic and MHD profiles for the
SB and CH are in better agreement. However, some discrepancy
still exists for the AR. The effects of the chosen analytic density
profile will be explored in a future work.

3.2. CME Propagation

ForeCAT adopts an analytic expression for the radial prop-
agation speed based on empirical fits. The Lorentz force that
drives the CME deflection also causes radial motion of the CME.
However, ForeCAT makes use of an empirical model. Zhang
et al. (2001, 2004) and Zhang & Dere (2006) present a three
phase description of CME propagation (initiation or gradual
rise, impulsive acceleration, and propagation) and the connec-
tion to X-ray flare observations. The initiation phase occurs first
as the CME slowly rises, then the CME lifts off due to an in-
stability or reconnection and begins rapidly accelerating away
from the Sun. The transition to the acceleration phase often cor-
relates with the onset of flare activity. Both the initiation and
propagation phases occur within a few solar radii of the Sun
(Zhang & Dere 2006). The final phase is the propagation phase
where comparatively little CME acceleration occurs. In a sta-
tistical study of 50 CMEs, Zhang & Dere (2006) found average
main accelerations of 330.9 m s−2, whereas the average residual
acceleration during the propagation phase was only 0.9 m s−2.

Vrs̆nak et al. (2007) and Bein et al. (2011) identify the
Lorentz force as the driving mechanism behind the impulsive
acceleration in the radial direction, explaining why this phase
occurs so close to the Sun’s surface. The observational studies
of both Bein et al. (2011) and Joshi & Srivastava (2011)
show that the acceleration phase tends to end by a height of
about 2 R�.

Although the acceleration phase contains the most rapid
acceleration, a CME continues to accelerate during the prop-
agation phase; Cheng et al. (2010) refer to this effect as post-
impulsive-phase acceleration. The Cheng et al. (2010) study of
several hundred CMEs results in a mean post-impulsive-phase

acceleration value equal to −11.9 m s−1 with individual values
ranging between −150 and 180 m s−1. The data from Zhang
& Dere (2006) cover a similar range of post-impulsive-phase
accelerations as the data from Cheng et al. (2010) but the two
means differ as a result of using different subsets of CMEs from
the LASCO catalog. The positive and negative post-impulsive-
phase acceleration values imply that CMEs can either accelerate
or decelerate in the third phase due to the drag force from the
CME’s interaction with the solar wind.

ForeCAT adopts the three-part propagation model for the
radial dynamics. ForeCAT uses a constant velocity for the
initiation and propagation phase and a constant acceleration in
the acceleration phase. We define the radial distance Rga where
the CME transitions from the gradual to acceleration phase;
Rap is likewise defined where the CME transitions from the
acceleration to propagation phase. We assume that the initiation
phase lasts until the center of the CME cross section reaches a
distance Rga = 1.5 R� and then the acceleration occurs until
Rap = 3.0 R�. ForeCAT uses a single representative value
for each transition, as well as a constant value for the gradual
velocity of the CME in the initiation phase, vg = 80 km s−1.
Zhang & Dere (2006) observe vg between tens of km s−1 up
to 100 km s−1. Section 6 contains an analysis of ForeCAT’s
sensitivity to the parameters Rga, Rap, and vg .

Given the above assumptions, the CME’s radial propagation is
described by its final velocity, vf , at the propagation phase. From
the kinematic evolution of the CME during the acceleration
phase:

v2
f = v2

g + 2a(1.5 R�), (14)

which corresponds to an acceleration, a, equal to

a = v2
f − v2

g

3 R�
. (15)

This equation allows us to describe the CME’s radial velocity
over time as

vr = vg 1.0 R� � R � Rga

vr = vg + 0.5a(t − tga) Rga � R � Rap

vr = vf R � Rap, (16)

where tga is the time at which the CME reaches Rga.
Equation (16) produces CME velocity profiles similar to those
in Figure 1 of Zhang & Dere (2006), with the exception of the
flat initial and propagation phases.

3.3. Non-radial Drag

We include non-radial drag as the component of the drag force
in the φ̂-direction that results from the interaction of the CME
with the solar wind. ForeCAT does not explicitly calculate drag
in the radial direction since the propagation model describes a
CME’s radial motion. To calculate the non-radial drag, ForeCAT
uses the expression for the acceleration due to drag from Cargill
(2004):

aD = −CdAρSW

MCME
(vCME − vSW)|vCME − vSW|, (17)

where Cd is the drag coefficient, A is the cross-sectional area in
the direction of the drag, and vSW is the solar wind speed. Cargill
(2004) use this equation to describe the radial drag on a CME,
but the same physical process governs drag in all directions. The
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(a) (b)

Figure 5. (a) Scaled model background magnetic field at different heights in the deflection plane. Dashed black lines represent the scaled model for the angular
dependence of the magnetic field strength between 1.15 R� and 2.5 R� and solid red lines indicate the results from the MHD simulations. Solar features such as a
coronal hole (CH), an active region, and the streamer belt (SB) are labeled, which correspond to their location at 1.15 R�. The asymmetry between the magnitude of B
at the minima corresponding to the SB and CH causes a global gradient that drives the CME deflection. The MHD model magnetic strength falls quicker with distance
than the scaled model. Panel (b) shows the PFSS model in blue and the MHD model in red. Both models show the angular magnetic profile changing with distance;
the minima at 1.15 R� are not defined to be the minima at further distances.

(A color version of this figure is available in the online journal.)

solar wind is approximated as entirely radial so that the solar
wind velocity term equals zero in the expression for the drag
in the φ̂-direction. Close to the Sun, this approximation is the
least accurate but it allows ForeCAT to include non-radial drag
without invoking a complete solar wind velocity model.

The cross-sectional area in the direction of the drag can be
expressed as

A = π

2
((r + L)2 − (r − L)2) = 2πrL, (18)

based on the definition of the CME structure in Section 2. Setting
Cd = 1 and taking the component of the CME velocity in the
radial direction, Equation (17) becomes

ad = − 2πrLρSW

MCME
(−vx sin(φ) + vy cos(φ))

× | − vx sin(φ) + vy cos(φ)|φ̂, (19)

where vx and vy are the x and y components of the CME’s
velocity, respectively. In Section 6, we explore ForeCAT’s
sensitivity to the drag coefficient and discuss models for Cd.

4. BACKGROUND SOLAR MAGNETIC FIELD

To calculate a CME’s deflection, ForeCAT includes the
magnetic structure of various features such as CHs, ARs, and
SBs. The background solar magnetic field therefore is crucial.
Two different background magnetic field models were explored
with ForeCAT: a “scaled” background and a PFSS background.

4.1. Scaled Background

The scaled background uses the background magnetic field
from the output of an MHD steady state solar wind from the
SWMF (Tóth et al. 2012; van der Holst et al. 2010) using
a magnetogram as input. Alfvén waves drive the background
solar wind and surface Alfvén wave damping adds heating
(Evans et al. 2012). The magnetic field values from a ring
at R = 1.15 R� within the deflection plane (defined using
the magnetic pressure gradients at a distance of 2 R�) within
±90◦ of the CME launch location yield discrete points for the

magnetic field strength as a function of angle. By extracting
values at low heights, B(φ) includes the signatures of the
solar features (CHs, SBs, and ARs). ForeCAT uses the MHD
background only at R = 1.15 R� and uses extrapolations for
larger radii based on observational studies of the solar magnetic
field. ForeCAT uses these extrapolations because, as described
below, the MHD solution falls unrealistically quickly. The
extrapolations differ between ARs and non-AR locations, also
described below.

The extrapolations for ForeCAT’s magnetic field model result
from observations of the solar magnetic field versus distance.
Observational studies of the magnetic field of ARs fit the profile
of the magnetic field versus distance with the form B = B0R

−α .
Dulk & McLean (1978) present a compilation of observational
data (including data from Helios, Mariner 10, and various
ground-based solar telescopes) of the magnetic field above an
AR. The study finds that B = 0.5[(R/R�)−1]−1.5 agrees within
a factor of three for all the observations. Pätzold et al. (1987)
use Helios measurements of Faraday rotation and find a best fit
between 3 and 10 R� using a combination of α = 2 and α = 3.
More recent Faraday rotation measurements have been acquired
for R between 6.2 and 7.1 R� using the Very Large Array, which
agree with a coefficient of α = 1.3 (Spangler 2005). In order
to study shock development in the corona, Mann et al. (2003)
use a background magnetic field combining a R−2 term for
the quiet Sun (QS) and a dipole term (∝ R−3) to represent
the ARs. Gopalswamy & Yashiro (2011) use the standoff
distance of CME-driven shocks to determine the magnetic field
profile between 6 and 23 R� and find good agreement with the
results of Dulk & McLean (1978) and Spangler (2005).

Fitting polynomials to these points allows generalization of
the discrete magnetic field points to a function that can be used
for all φ angles. In addition, these fits allow for the calculation of
analytic derivatives. Separate polynomials describe the AR and
the QS (defined as the region outside of the AR). The ranges of
the polynomials are determined by the location of local maxima
and minima in B(φ); having the polynomials break at inflection
points provides the best fit. First, polynomials are fit to the
QS, yielding a function BQS(R, φ). The QS magnetic field is
subtracted from the MHD result and then the AR polynomials,
BAR(R, φ), are fit to the residual magnetic field. Figure 5(a)
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shows the simulation data (solid red line), as well as the sum
of the QS and AR best-fit polynomials (dashed black line) for
B(R = 1.15 R�, φ), for −90◦ � φ � 90◦.

Within the deflection plane, the AR corresponds to two local
maxima in B(φ) whereas both the SB and CH represent local
minima. The center of the AR is a local minimum corresponding
to the polarity inversion line (PIL) located in between the two
maxima corresponding to the opposite polarity flux systems. A
weaker magnetic field exists at the SB minimum than at the
CH minimum and this asymmetry produces the gradients that
drive deflection. This example contains strong gradients due to
the proximity of the CH and the SB. Any coronal configuration
will have gradients leading to deflection; the magnitude of the
deflection depends on the magnitude of the gradients.

Scaling the values from R = 1.15 R� determines the back-
ground magnetic field strength at other radii. ForeCAT’s model
treats the AR like a dipole so that the magnetic field falls as R−3.
Outside the AR, the model uses the R−2 dependence commonly
used for open field lines for the QS. This combination of scaling
is the same as that of Mann et al. (2003). Equation (20) gives
the ForeCAT scaled magnetic field:

B(R, φ) = BQS(1.15 R�, φ)

(
1.15 R�

R

)2

+ BAR(1.15 R�, φ)

(
1.15 R�

R

)3

. (20)

Mann et al. (2003) use type II radio bursts to infer the behavior
of the background solar magnetic field. Type II radio bursts are
believed to result from shock waves propagating outward in the
corona (Nelson & Melrose 1985). The speed of the disturbance
driving the shock can be used to infer the background, Alfvén
speed and because the type II emissions occur at the local
background plasma frequency, the Alfvén speed can be used
to determine the background magnetic field strength. Mann
et al. (2003) compare the Alfvén profile from their magnetic
field model with the general behavior of type II radio bursts.
The combination of a scaling of R−2 and R−3 yields favorable
comparisons to the type II radio observations. In particular,
the model produces an Alfvén profile with a local minimum
and maximum in the low corona that allows for the formation,
decay, and reformation of shocks within 6 R�, reproducing a
two-shock wave behavior seen in some type II radio observations
(Gopalswamy & Kaiser 2002).

Figure 5(a) shows the scaled model magnetic field strength
for several different radii (R = 1.5, 2.0, and 2.5 R�). As radius
increases, the signatures of the individual solar features weaken
but are still present at 2.5 R�. The MHD results for R = 1.5 are
also included.

ForeCAT uses analytic fits to observations rather than the
results of MHD simulations because for R < 2 R�, as seen
in Figure 5(a), the MHD magnetic field strength decreases
more quickly with distance than do the observations, closer to
r−6 or r−8 depending on the region (CH or SB versus AR).
Recent advancements in the MHD model have included a
two-temperature (electron and proton) formalism, including
the effects of field-aligned heat conduction, radiative cooling,
collisional coupling, and wave heating (Downs et al. 2010;
van der Holst et al. 2010; Sokolov et al. 2013). In addition,
a Finite Difference Iterative Potential Solver (FDIPS; Tóth
et al. 2011) can be used to initialize the magnetic field in
place of the spherical harmonic expansion approach. However,
the wave-driven model output (with either FDIPS or harmonic

coefficients) does not show a difference in the rapid decrease of
the magnetic field magnitude with radial distance.

Beyond 2 R�, the MHD magnetic field falls as the expected
r−2, but, as discussed in Section 5, the deflection of the CME
depends crucially on the magnetic strength at these distances.
The rapid decrease of the magnetic field in MHD simulations
will lead to an underestimate of the magnetic deflection,
which could explain the discrepancy between the observed and
simulated CMEs in Lugaz et al. (2011). Evans et al. (2008) show
that the steepness of the MHD profiles would allow slow CMEs
to drive shocks low in the corona and that the Alfvén speed
profiles do not have the characteristic “valley” and “hump”
shape seen in analytic models. Using a scaled model, we capture
a slower decrease of B with distance, consistent with some type
II radio observations. However, this model does not allow a
change in the angular position with distance of coronal structures
such as the SB.

4.2. PFSS Background

PFSS models were first used to describe the solar magnetic
field in the late 1960s (Altschuler & Newkirk 1969; Schatten
et al. 1969). If the magnetic field is assumed to be potential,
it can be described using a sum of Legendre polynomials. The
harmonic coefficients can be determined from a magnetogram
and assuming the magnetic field becomes entirely radial at the
source surface height. The magnetic field at any location can
be calculated using the harmonic coefficients. The literature
contains extensive discussion of the details of PFSS calculations
and the models’ abilities to reproduce the observed conditions
(Hoeksema et al. 1982; Luhmann et al. 2002; Neugebauer et al.
1998; Riley et al. 2006; Wang & Sheeley 1992; Wang 1993).

ForeCAT uses a PFSS magnetic field strength calculated using
radial harmonic coefficients (Wang & Sheeley 1992) from the
Michelson Doppler Imager on SOHO (Scherrer et al. 1995),
calculated with a source surface height of 2.5 R�. The PFSS
magnetic field is calculated using coefficients for Legendre
polynomials up to order 90. Higher order polynomials represent
spatially smaller features and decay faster with distance. Since
the magnetic field strength that drives ForeCAT deflection is
strongest close to the Sun, not including the higher orders could
make a difference in the CME deflection. Figure 5(b) shows the
PFSS magnetic field (blue) as well as the MHD results (red)
for R = 1.05, 1.15, 2.0, and 2.5 R� within ±50◦ of the location
from which the CME launches.

In Figure 5(b), the PFSS model and the MHD model agree.
Riley et al. (2006) find similar agreement between the MHD
and PFSS solutions when strong currents are not present. Both
models also show a clear change in the angular magnetic field
profile with distance, an effect that the scaled model cannot
capture. The “rigid” magnetic minima of the scaled model exists
at 1.15 R� but at 2.5 R� the formation of the HCS near −5◦
causes a different magnetic minima. This change of the magnetic
minima will affect the CME’s magnetic deflection. The PFSS
model and the MHD model fall similarly with distance. The
PFSS background will underestimate magnetic forces compared
to the scaled background.

5. NUMERICAL IMPLEMENTATION AND TEST CASE

Equations (9), (12), and (16) form a set that describes the
evolution of the CME as it propagates away from the Sun for
the ForeCAT model. Initializing the equations requires a radius
of the cross section of the CME within the deflection plane,
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(a)
(b)

Figure 6. ForeCAT results for the deflection of the control case (MCME = 1 × 1015 g, final propagation speed vf = 475 km s−1, CME magnetic field strength B0 =
10 G, initial radius L0 = 0.15 R�, and initial distance r0 = 0.25 R�). The model yields a total deflection of −27.◦0, which corresponds to a change of −8.◦1 in latitude
and −26.◦4 in longitude. Panel (a) shows a subsection of the trajectory close to the Sun, highlighting the deflection within R < 10 R� by showing the diameter of the
CME cross section parallel to the y-axis (the red line in Figure 3). Panel (b) shows the evolution of the CPA of the CME out to 1 AU.

L0, height, r0, the CME mass, MCME, the final propagation
velocity, vg , and the magnetic field strength of the CME that
causes the initial overpressure, B0. We assume that the angle
α equals zero throughout the simulation (no draping outside of
the deflection plane) and therefore find a maximum deflection
angle. The model also needs the background magnetic field
configuration.

ForeCAT integrates these equations numerically using a
second-order Taylor expansion for the position so that the error
is of order Δt3. ForeCAT yields a deflection of the CPA over
time, as well as the trajectory of the CME as it deflects.

In the control case, the following values are chosen for the
free parameters of ForeCAT: MCME = 1015 g, vg = 475 km s−1,
L0 = 0.15 R�, and B0 = 15 G. These input parameters represent
an average CME mass and the velocity corresponds to the
mean value from the Gopalswamy et al. (2009b) analysis of the
SOHO/LASCO survey of CMEs before the end of 2006. Siscoe
et al. (2006) use a similar value of CME magnetic strength.
The CME begins at a height of 0.25 R� so the model captures
some of the gradual phase of radial propagation. The CME
launches from AR 0758 of Carrington Rotation (CR) 2029. This
situation corresponds to the magnetic field background shown
in Figure 5, in this case using a scaled magnetic background.
The deflection plane was defined using the magnetic pressure
gradient at R = 2 R�, a latitude of −8◦, and a Carrington
longitude of 130.◦6. Strong gradients that exist between the
SB and CH should cause a large deflection. Figure 6(a) shows
the CME’s propagation out to a distance of about 10 R� in a
Cartesian coordinate system with the Sun at the origin. The
figure shows the diameter of the CME parallel to the y-axis
(shown with a red line in Figure 3) in one minute time steps.
Figure 6(b) shows the CPA (Equation (11)) of the CME versus
distance out to 1 AU.

The CME deflects −27.◦0 in the deflection plane during
propagation out to 1 AU. This deflection is equivalent to a

change of −8.◦1 in latitude and −26.◦4 in longitude. The majority
of the deflection occurs while the CME is in the gradual rise and
acceleration phases (R � 3 R�). By 5 R�, the CME comes
close to a constant angular position; the CPA changes less than
1◦ between 5 R� and 1 AU. Figure 6(b) shows that beyond about
10 R�, the CME’s angular motion reverses and it slowly moves
in the opposite direction. This motion causes a change in the
CPA of less than a degree and can be explained by a change in
the direction of the forces acting upon the CME.

The net deflection force comes from summing over the two
CME edges. Figure 7 shows the magnetic tension and magnetic
pressure gradient force in red and blue, respectively, versus
distance from the center of the Sun. The figure also shows the
total force (tension plus pressure gradient) in black. Figure 7
highlights the strongest forces, which occur close to the Sun.
Beyond 1.7 R�, the forces have decreased by several orders of
magnitude from the values during the first few time-steps and
are not included in the figure. The force continues to decrease
as the magnetic field decreases with distance.

Initially, both the magnetic tension and magnetic pressure
gradients force the CME toward the SB, the tension force being
about twice as strong as the magnetic pressure gradient force.

The CME motion can be explained by considering the angular
magnetic profiles in Figure 5 as a series of potential barriers and
wells since the deflection forces all depend on the magnetic
field strength. Initially, the magnetic pressure gradient force at
the edge near the CH (hereafter, the CH edge) points toward the
CH because of the strong magnetic field of the AR. The magnetic
pressure gradient force on the edge near the SB (hereafter, the
SB edge) points toward the SB initially. Because of the strong
gradients near the SB, the magnetic pressure gradient force on
the SB edge has a larger magnitude than the force on the CH
edge so the net magnetic pressure gradient force points toward
the SB. The tension force always points toward the CME center
for each edge so the direction of the total tension force will
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Figure 7. Net forces acting on the CME. The net magnetic tension is shown in red, the net magnetic pressure gradients are shown in blue, and the sum is shown in
black.

(A color version of this figure is available in the online journal.)

always be toward the edge in the weakest background magnetic
field. Initially, the net magnetic tension points toward the SB.
Both of these forces cause the CME to start moving toward
the SB.

As the CME moves toward the SB, the CH edge will interact
with the potential barrier of the AR. The CH edge in the control
case starts close to the AR maximum so it quickly reaches the
peak in B(φ) when the CME is at a distance of 1.26 R�. After
crossing the peak, the magnetic pressure gradient force on the
CH edge changes sign as the edge moves toward the PIL. This
force again changes direction as the CH edge crosses the PIL,
then makes one final change at 1.36 R� as it crosses the second
maxima of the AR and continues the motion toward the SB. Until
1.34 R�, the magnetic pressure gradient force on the SB edge
continues to point toward the SB. The SB edge then crosses the
minimum in B(φ) at the SB so the magnetic pressure gradient
force switches direction. The CME continues to move toward
the SB until the SB edge pushes far enough into the SB potential
well for the forces on the SB edge to overcome the forces on
the CH edge. After decelerating the SB-directed motion, the
magnetic pressure gradient forces cause the CME to begin move
away from the SB. By the time this process occurs, the CME
is several radii from the Sun so the force is minimal compared
to the forces that initiated the deflection process. However, this
process does cause the CPA to change by a little less than a
degree between 5 R� and 1 AU.

The edge positions also affect the contribution of the magnetic
tension force. The tension force does not vary substantially as a
result of the CH edge’s motion through the PIL. Until the CPA
reaches the SB, the CH edge remains in a higher background
magnetic field strength than the SB edge so the tension force
always pushes the CME toward the SB. The tension force
decreases quickly with both time and distance as the CME
expands and moves away from the Sun toward regions of lower
magnetic field strength.

CMEs deflected only as a result of magnetic forces will always
head toward the minima in the magnetic field. Observations
have shown that CMEs do tend to head toward the HCSs
(Kilpua et al. 2009; Gui et al. 2011; Shen et al. 2011). For the

control case, the magnetic background possesses strong global
magnetic gradients. These gradients cause the CME to reach
the SB. For other CRs with weaker global magnetic gradients,
this process might not be the case. The model is also limited by
the inclusion of only magnetic deflection forces. Other factors
not included in ForeCAT, such as interactions with other CMEs,
effects of spatial variations in solar wind speed, or reconnection,
may still affect observed CMEs. ForeCAT does not include
different plasma properties (density and temperature) for the SB
compared to the rest of the solar wind background, which may
also affect the SB’s interaction with a CME. Streamer blowouts
should occur with a different background with weaker magnetic
gradients.

6. PARAMETER SENSITIVITY: POTENTIAL
DEFLECTION ANGLES

We explore ForeCAT’s sensitivity to the free parameters of
the model, such as MCME. The mass is increased to 1 × 1016 g
while all other free parameters are unchanged. Figure 8 shows
the CME trajectory, analogous to Figure 6.

The more massive CME deflects −25.◦3, 1.◦7 less than
the original case, which deflected −27.◦0. At each distance,
the deflection forces have comparable magnitudes to those
in the control case. Again, these forces initially deflect the more
massive CME toward the SB. Figure 9 (analogous to Figure 7
for the control case) shows that as with the control case, the
forces change direction as the CME interacts with the AR and
potential well of the SB. The more massive CME crosses the SB
minimum in B(φ) closer to the Sun so when the forces change
sign they have a larger magnitude than when this process occurs
for the control case. This effect causes the non-radial motion of
the more massive CME to slow down faster than for the control
case. The more massive CME also penetrates further into the SB
potential well. Around 1.45 R�, the magnetic tension changes
directions when the background magnetic field strength near the
SB edge becomes stronger than that near the CH edge. Beyond
1.6 R�, the magnetic pressure gradient force is stronger than the
control cases values. The strength and direction of these forces
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(a) (b)

Figure 8. Same as Figure 6 but for MCME = 1 × 1016 g. The amount of deflection decreases from −27.◦0 in the control case to −25.◦3 for the more massive CME.
The more massive CME deflects −7.◦6 in latitude and −24.◦6 in longitude. Panel (b) shows the more massive CME with a solid line and includes the control case as a
dashed line. The more massive CME pushes further into the SB close to the Sun, causing a stronger force pushing it away from the SB and leading to a smaller final
deflection.

Figure 9. Same as Figure 7 but for MCME = 1 × 1016 g. As with the control case, the forces initially push the CME toward the SB. As the edges begin interacting with
the AR and SB, the magnetic pressure gradient force changes sign. The more massive CME crosses the potential minimum closer to the Sun than the control case.
This result leads to stronger forces in the opposite direction, causing a greater change in the CPA. The CME pushes far enough into the SB to produce a net magnetic
tension force pointing toward the CH, as well as a more noticeable positive magnetic pressure gradient force beyond 1.6 R�.

(A color version of this figure is available in the online journal.)

cause the CME to move further away from the SB, ultimately
yielding a decrease in total deflection.

Next, deflection angles were calculated by varying both MCME
and vf , as shown in Figure 10(a), and B0 and L0, as shown in
Figure 10(b). The color indicates the change in the CPA between
1 R� and 1 AU.

Figure 10(a) shows the total deflection for varying the CME
mass between 1014 and 1016 g and varying the final propagation
speed between 300 and 1000 km s−1 while keeping all other
parameters fixed. The contour plots come from a sample of 625
CMEs (25 × 25). As seen in the individual test cases, more

massive CMEs tend to deflect less. The variation for masses
ranging over two orders of magnitude is only 2◦, showing that the
strong gradients in this magnetic background force everything
to the SB. Faster CMEs tend to deflect less, but for any single
mass the variance with velocity is half a degree. A slower radial
velocity causes a decrease in deflection similar to the behavior
observed in the test cases. The slower CME spends more time
in a region with high forces, causing it to reach the SB closer to
the Sun. As with the high mass CME, the strong forces move the
CME further back toward the direction it came from, decreasing
the total deflection.
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(a) (b)

Figure 10. Panel (a) shows contours of the CME mass vs. deflection, MCME, and final CME propagation speed, vf . Panel (b) shows deflection contours for the initial
CME magnetic field strength, B0, which drives the expansion, as well as for the initial CME radius, L0. The range of the calculated deflection angles in panel (a) is
2◦. For panel (b), the majority of the cases fall within a range of 10◦. A subset of CMEs with large initial sizes and large expansions fall outside this range and have
deflections between −13◦ and −16◦.

(A color version of this figure is available in the online journal.)

Figure 10(b) shows contours of the deflection versus the
initial CME magnetic field, B0, and the initial CME cross
section radius, L0. These parameters determine the evolution
of the CME’s volume. B0 is varied from 10 to 25 G and L0
is varied between 0.05 and 0.30 R�. Magnetic field strengths
less than 10 G did not provide sufficient expansion to stop
the CME from collapsing in on itself due to the large magnetic
tension forces from the strong magnetic field background. These
parameters lead to three distinct populations with different
deflection behaviors. The majority of the CMEs follow a pattern
similar to that of the test cases. Stronger expansion and a larger
initial size tend to lead to less deflection. The second population
is located in the lower left side of Figure 10(b) below the band
between (0.05 R�, 21 G) and (0.13 R�, 10G) corresponding to a
deflection of −28◦. The smallest CMEs with weakest expansion
had the strongest deflection and show slightly different behavior.
During propagation to 2 R�, these CMEs quickly deflect around
10◦–15◦. The CH edge of the CME does not cross the angular
position of the AR in this time. Between 2 R� and about 60 R�,
the CH edge of the CME moves toward the SB and crosses the
first magnetic maximum (corresponding to the angular position
of one polarity flux system of the AR), causing an additional
5◦ of deflection. Near 60 R�, the CH edge passes over the final
magnetic maximum (corresponding to the angular position of
the other polarity flux system of the AR), leading to an additional
10◦–15◦ of deflection by 1 AU. Of the 625 CMEs, 41 display
this sort of behavior. The third population falls in the solid red
region in the upper right corner of Figure 10(b). The CMEs
with the strongest expansions and largest initial sizes tend to
deflect substantially less than the other two sets. Ninety of the
CMEs deflect between −13◦ and −16◦. These CMEs deflect
less because the CME reaches an equilibrium position with
the SB edge near the SB minimum and the CH edge near the
CH minimum. Due to initial size, strong expansion, or some

combination thereof, the CH edge of the CME never crosses
over the magnetic maximum at the angular position of the AR.

The same method used to explore the influence of the CME
properties can be used to analyze some of the parameters
in the propagation model. The assumed CME radial velocity
profile may affect the net deflection. For the control case, the
propagation parameters Rga, Rap, and vg were varied while
all other parameters were unchanged. The ranges for each
parameter are 1.25 R� � Rga � 2.25 R�, 2.5 R� � Rap �
4 R�, and 25 km s−1 � vg � 100 km s−1. Within these ranges,
the final deflection angle varied by less than 0.◦2. Therefore, we
conclude that the parameters chosen for the propagation model
do not greatly influence the deflection of the CME.

We explore the sensitivity of the deflection to different values
of Cd. Using MHD simulations, Cargill et al. (1996) show that
values of Cd between 1 and 3 are appropriate for the acceleration
phase of a CME. Forbes et al. (2006) use Cd = tanh(β), where
β equals the ratio of the thermal and magnetic pressure. Close
to the Sun, β � 1 so Cd will be small. We use larger values
than tanh(β) and instead adopt constant values of Cd between
0.25 and 10, similar to the range of Cd in Cargill (2004). We
find that these values yield deflections varying by 2◦ for the
control case. Stronger drag causes less deflection but ultimately
the CME still deflects to the SB because of the strong magnetic
gradients specific to this background. The drag changes the
distance at which the CME begins interacting with the SB. With
a weaker background, the chosen drag coefficient may have a
more significant effect. We explore as well other expressions of
Cd contained in the literature. Siscoe et al. (2006) present two
models of the drag coefficient versus distance. First, a linear
model:

Cd = 1 +
5R

1 AU
. (21)
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Figure 11. Central position angle vs. distance for the control case run with two
different magnetic backgrounds. The black line shows the results of a PFSS
background and the blue line shows the results of the scaled background. In the
PFSS background, the minimum in the magnetic field moves to approximately
−5◦ and accordingly the PFSS CME only shows a deflection of −4.◦4 (−1.◦6
in latitude and −4.◦1 in longitude) compared to the −27.◦0 deflection of the
scaled background CME. The dashed lines show each background run without
including the effects of non-radial drag.

(A color version of this figure is available in the online journal.)

Second, a quadratic model:

Cd =
(

1 +
1.45R

1 AU

)2

. (22)

These models produce deflections less than 0.◦01 smaller than
the control case with Cd = 1.

7. DEFLECTION WITH A PFSS BACKGROUND

We run the control case using a PFSS background to see the
effects of the position of the SB varying with height. The PFSS
model uses the same set of coefficients as used to initialize the
MHD solution. As seen in Figure 5(b) at 2.5 R�, the HCS forms
around −5◦, over 20◦ away from the minimum in the scaled
background. Figure 11 shows the CPA versus distance for the
control case with the PFSS background (in black) and the scaled
background (in blue).

The PFSS control case deflects −4.◦4, a deflection of −1.◦6
in latitude and −4.◦1 in longitude. As seen in the scaled case,
the CME deflects to the minimum in the magnetic field strength
but that position has changed because of the nature of the PFSS
model. The forces of the PFSS model decrease much quicker
with distance than the scaled model, however, and in this case
the magnetic minimum moves closer to the initial CME position.
For cases where the magnetic minimum is further from the initial
CME position, the rapid decrease in forces could cause the CME
to only deflect in the direction of the minimum, not fully to it.
In future work, we will continue to explore the sensitivity of
the deflection to the magnetic background. To better understand
the difference between the models requires comparisons within
a background with weaker gradients or where the magnetic
minimum moves away from the initial CME location.

Future work will also take into account the effects of including
the non-radial drag force. As discussed in Section 6, the
deflection is sensitive to the chosen drag coefficient but complete
exclusion of non-radial drag produces even more variation.
Figure 11 includes both PFSS and scaled runs without drag
as dashed lines. The effect for the PFSS case is smaller since
the total deflection is smaller but for the scaled model we see a
difference of nearly 30◦ in the cases with and without non-radial
drag.

8. EFFECTS OF ACTIVE REGIONS

We explore here the effects that an AR can have on a CME’s
deflection. We define a new deflection plane based on the
orientation of the AR. Close to the Sun, the magnetic pressure
gradients exhibit complex behavior (Figure 1(a)) and cannot
be used to define the deflection plane. Deflection from an AR
will result from imbalances between the different polarity flux
systems of the AR. We define the overall gradient of the AR
using the positions of the point within each polarity containing
the strongest magnetic field. This gradient replaces the gradient
vector in the deflection plane calculation. Figure 12 shows the
scaled magnetic profile within the deflection plane calculated
using this AR vector, analogous to Figure 5.

The MHD model does not capture the full complexity of the
magnetic field in an AR but it does include some variation
between the opposite polarity flux systems, which is more
pronounced in this plane than in the original deflection plane.
The system near the CH has a stronger magnetic field than the
system near the SB, and the magnetic field decreases near the
PIL between the two systems.

The results presented here use the control case parameters
(see Section 5), but launched from φ = 0◦ within the new
deflection plane, close to the local minimum corresponding to
the PIL. This CME is deflected −24.◦6 during propagation out
to 1 AU. The global magnetic gradients still contribute within
this plane and the heightened asymmetry between the opposite
polarity flux systems drives additional deflection. As a result, we
determine that, close to the Sun, it may be necessary to redefine
the deflection plane along the CME’s trajectory if we wish to
accurately predict an actual CME’s deflection.

9. DISCUSSION

ForeCAT shows that magnetic forces alone can be responsible
for significant CME deflection. The model excludes several
other factors known to deflect CMEs, such as interaction with
other CMEs, a spatially varying background solar wind, or
reconnection, yet still results in deflections of comparable
magnitude to observed deflections. Calculating the magnetic
forces along the CME trajectory relies on many fundamental
assumptions about the CME’s behavior. These assumptions may
prevent the current version of ForeCAT from predicting the
precise behavior of actual CMEs, but these assumptions allow
us to demonstrate the importance of magnetic forces for CME
deflection. Future work will continue to improve the model and
refine some of the underlying assumptions.

The description of the CME flux rope used here assumes that
the toroidal axis of the CME lies within the deflection plane.
Any deviation from the CME being perfectly perpendicular to
the deflection plane will result in an elliptical CME cross section.
The CME cross section contributes to the tension calculation. To
first order, a tilt between the toroidal CME axis and the normal
to the deflection plane could be accounted for by calculating
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Figure 12. Same as Figure 5, but for the magnetic field within the AR deflection plane. The magnetic field has a local minimum at the PIL in between the two
contributing flux systems of the AR. The system closest to the CH has a stronger magnetic field than the system near the SB within this plane.

(A color version of this figure is available in the online journal.)

the radius of curvature as κ = 1/(L sin(β)), where β is the
angle between the deflection plane and the toroidal CME axis.
The present version of ForeCAT assumes that β = 90◦, which
will lead to an underestimate of the curvature and the magnetic
tension force for an elliptical CME cross section.

CME-driven shocks would also distort the draping of the
background magnetic field around the CME. Shocks are known
to change the orientation of the magnetic field: fast-mode shocks
rotate the magnetic field away from the shock normal and slow-
mode shocks rotate the magnetic field toward the shock normal.
A shock would cause the background magnetic field to rotate,
which would affect how the field then drapes around the CME.
The draping out of the deflection plane would affect not only
the direction of the magnetic tension force, but the magnitude
may change as well if the magnetic field drapes around a region
of the CME with different curvature.

The calculation of the forces is restricted to the two points
where the deflection forces should be the strongest. In reality,
the force should be integrated over the full surface of the CME.
By assuming a solid CME body, we assume as well that the
motion of the CME cross section in the deflection plane applies
to the entire CME. Different cross sections will feel different
forces, which should be accounted for when trying to compare
to specific observations. This effect will be addressed in a future
work.

The assumption of a solid CME body also affects the ForeCAT
results. Close to the Sun, deflection, rotation, and non-uniform
expansion cannot be distinguished. Nieves-Chinchilla et al.
(2012) reconstruct the 3D trajectory of the 2010 June 16 CME,
a CME with significant rotation. These authors find that not
accounting for the CME rotation can cause substantial errors in
the calculation of the CME size, leading to an overestimate of
the latitudinal CME expansion. Using a global MHD model,
including deflection, rotation, and expansion, Evans et al.
(2011) present three simulations of flux ropes with different
orientations embedded in the same background solar wind.
These authors show that the resulting shape and dynamical

evolution of the CME are highly dependent on the initial
CME orientation. In general, external forces likely will cause
a combination of deflection, rotation, and deformation. What
is interpreted in coronagraphic observations as rotation or non-
uniform expansion could be differential deflection along the
CME. We assume that the external forces cause the CME to
deflect rather than to deform. The rotation and non-uniform
expansion will be addressed in a future study.

The magnetic background is assumed to remain in a static
configuration. However, reconnection can occur during the
eruption and evolution of the CME. The reconnection will
alter the background magnetic field, transforming magnetic
energy into kinetic and thermal energy, potentially affecting
the background magnetic pressure gradients. In addition, when
magnetic field lines draping around the CME reconnect, the
tension force will become unbalanced, leading to deflection
similar to that found by Lugaz et al. (2011) and Zuccarello et al.
(2012).

A CME’s radial motion is predetermined using the analytic
model. A CME’s motion results, at least in part, from the
same Lorentz force that drives the magnetic deflection. As
the CME deflects to regions of weaker magnetic background,
the radial acceleration of the CME will be affected as well.
Feedback between the radial and non-radial motion could lead
to deflections different from those determined with an analytic
radial propagation model.

10. CONCLUSIONS

This manuscript presents ForeCAT, a model of CME deflec-
tion using deflection forces from both magnetic pressure gradi-
ents and magnetic tension. ForeCAT relies on many simplifying
assumptions, but several test cases show that magnetic forces
alone can cause deflections of similar magnitude as the observed
deflections. Future work will refine these assumptions and allow
for comparisons between ForeCAT results and specific observed
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CMEs. The current ForeCAT model has already yielded several
insights into CME deflection.

The magnetic forces cause CMEs to deflect toward the SB, the
minimum in the magnetic field strength. For most CMEs, the
magnetic forces are sufficiently strong such that the majority
of the deflection occurs within the first several solar radii.
The chosen magnetic background contains strong magnetic
gradients so that the deflected CME reaches the SB. In a weaker
background, deflection will move CMEs toward the SB, but the
deflection may not be capable of fully deflecting the CME to the
SB. Deflection will also change due to interactions with other
CMEs, spatially varying background solar wind velocities, or
reconnection, the effects of which are not included in ForeCAT.
The inclusion of variations in temperature and density in the
background plasma could also affect how the CME reaches its
equilibrium angular position.

An exploration in parameter space shows variation in the
final deflection for a wide range of input parameters, for this
specific background. The majority of CMEs deflect fully to
the SB within a couple solar radii. Two different subsets of
CMEs exhibit different behavior. Initially small CMEs with
little expansion deflect the most. These CMEs do not reach the
SB close to the Sun but instead partially deflect and continue
along a nearly constant angular position until a secondary
period of strong deflection occurs around 60 R�. This secondary
deflection deflects the CMEs further since they interact with the
SB much further from the Sun where the gradients are weaker.
Initially large CMEs with strong expansion deflect the least.
These CMEs remain above the AR; an equilibrium angular
position is found with each edge in a potential minimum on
either side of the AR. The relative strength of the magnetic
minima at the SB and the CH cause a slight deflection toward
the SB.

The PFSS background yields different deflections than the
scaled background. The scaled background contains a more
realistic radial dependence and assumes that the angular depen-
dence is fixed. The PFSS background decreases too quickly with
radial distance, but the angular location of the SB is not fixed.
These two differences between the models lead to differences
in deflection, 4.◦4 compared to 27◦ in the PFSS and scaled back-
grounds, respectively. CME deflections depend strongly on the
magnetic background, which will be a focus of future work.

ForeCAT can be extended to uses other than just solar CMEs.
Using the AR deflection plane and a more complex model of
the AR magnetic field, ForeCAT should be able to capture the
rolling motion of prominences. Given some approximation of
the background magnetic field, ForeCAT can probe the space
weather conditions of planetary systems around other stars. The
magnetic fields of low mass stars can reach several kG (Reiners
& Basri 2007), far exceeding solar values, so significant CME
deflections could occur depending on the properties of the ejecta.
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for his/her comments. C.K. is supported by NSF CAREER
ATM-0747654. R.M.E. is supported through an appointment to
the NASA Postdoctoral Program at GSFC, administered by Oak
Ridge Associated Universities through a contract with NASA.

APPENDIX

OVERPRESSURE EXPANSION

The equation for expansion results from a series of
modifications to a classic hydrodynamics problem of a

spherical overpressured region expanding in a fluid (Milne-
Thomson 1968). This Appendix presents the derivation of the
final equation, starting from the hydrodynamics. The momen-
tum equation can be written as

dv

dt
= F − 1

ρ
∇P, (A1)

where v is the velocity, F represents external forces, ρ is the
density, and P is pressure. The total velocity derivative has
two contributions: the local and convective components. For
incompressible fluids, the convective term becomes (1/2)∇v2.
Rearranging gives

∂v

∂t
= −∇

(∫
∂P

ρ
+

1

2
v2

)
, (A2)

where no external forces are assumed. For an irrotational fluid,
the velocity can be written as the negative gradient of a scalar
field (v = −∇φ) so that Equation (A2) becomes

∇
(∫

∂P

ρ
+

1

2
v2 − ∂φ

∂t

)
= 0 (A3)

or, integrating,

P

ρ
+

1

2
v2 − ∂φ

∂t
= C(t). (A4)

The formalism of a fluid source can be used to simplify
Equation (A4). A source emits 4πm of volume per time, where
m is the strength of the source. Applying conservation of mass in
3D and assuming only radial velocities (v = vr ) gives m = r2v.
Plugging this quantity into v = −∇φ and integrating both sides
with respect to r yields m = φr or v = φ/r:

P

ρ
+

1

2

(
φ

r

)2

− ∂φ

∂t
= C(t). (A5)

The spherical overexpanding cavity is considered using the fluid
source description. Assuming at some time the cavity has radius
R, at the edge of the cavity (r = R) the change in radius is
defined to be R′ (the same as v since the velocity is only radial),
which corresponds to φ = RR′ and gives a source strength
m = R2R′. The scalar field then has the following r-dependence

φ = R2R′

r
, (A6)

where r is not just limited to the radius of the cavity. Taking
the partial time derivative of Equation (A6) and rewriting
Equation (A5) gives

P

ρ
+

1

2

(
R2R′

r2

)2

− R2R′′ + 2RR′2

r
= 0, (A7)

where C is set equal to zero because as r goes to infinity the
pressure should be negligible. Looking at r = R

P

ρ
+

1

2
(R′)2 − RR′′ + 2R′2 = 0 (A8)

or

R′′ = 1

R

(
P

ρ
− 3

2
(R′)2

)
, (A9)
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for a cavity dominated by the magnetic pressure P ∝ B2.
Assuming a mainly poloidal magnetic field, then B must fall
as R−2 to conserve magnetic flux. The pressure then changes as

P

P0
=

(
R0

R

)4

(A10)

and assuming a magnetic overpressure

P = B2
CME

8π
− B2

SW

8π
. (A11)

Dividing by the initial solar wind density ρSW0 gives

P0 = ρSW0
A2

h0 − A2
SW0

2
, (A12)

where Ah0 is a hybrid Alfvén speed using the CME initial
overpressure strength and the initial background solar wind
density whereas ASW0 uses the initial solar wind magnetic
field. Using Equations (A9), (A10), and (A12) leads to a final
expression

R′′ = 1

R

(
−3

2
(R′)2 +

ρSW0

ρ

(
R0

R

)4 (
A2

h0 − A2
SW0

2

))
,

(A13)

which is the same as Equation (12) with L replacing R.
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Riley, P., Linker, J. A., Mikić, Z., et al. 2006, ApJ, 653, 1510
Rodriguez, L., Mierla, M., Zhukov, A. N., West, M., & Kilpua, E. 2011, SoPh,

270, 561
Savani, N. P., Owens, M. J., Rouillard, A. P., Forsyth, R. J., & Davies, J. A.

2010, ApJL, 714, L128
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, SoPh, 162, 129
Shatten, K. H., Wilcox, J. M., & Ness, N. F. 1969, SoPh, 6, 442
Shen, C., Wang, Y., Gui, B., Ye, P., & Wang, S. 2011, SoPh, 269, 389
Siscoe, G. L., Crooker, N. U., & Elliot, H. A. 2006, SoPh, 239, 293
Sokolov, I. V., van der Holst, B., Oran, R., et al. 2013, ApJ, 764, 23
Spangler, S. R. 2005, SSRv, 121, 189
Temmer, M., Vrs̆nak, B., Rollet, T., et al. 2012, ApJ, 747, 57
Thernisien, A., Vourlidas, A., & Howard, R. A. 2009, SoPh, 256, 111
Thernisien, A. F. R., Howard, R. A., & Vourlidas, A. 2006, ApJ, 652, 763
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Vrs̆nak, B., Maric̆ić, D., Stanger, A., et al. 2007, SoPh, 241, 85
Wang, A. H., Wu, S. T., & Tan, A. 2003, in AIP Conf. Proc. 679, Solar Wind

Ten (Melville, NY: AIP), 457
Wang, Y., Shen, C., Wang, S., & Pinzhong, Y. 2004, SoPh, 222, 329
Wang, Y.-M. 1993, JGR, 98, 3529
Wang, Y.-M., & Sheeley, N. R. 1992, ApJ, 392, 310
Xie, H., St. Cyr, O. C., Gopalswamy, N., et al. 2009, SoPh, 259, 143
Zhang, J., & Dere, K. P. 2006, ApJ, 649, 1100
Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R., & White, S. M. 2001, ApJ,

559, 452
Zhang, J., Dere, K. P., Howard, R. A., & Vourlidas, A. 2004, ApJ, 604, 420
Zuccarello, F. P., Bemporad, A., Jacobs, C., et al. 2012, ApJ, 744, 66

17

http://adsabs.harvard.edu/abs/1969SoPh....9..131A
http://adsabs.harvard.edu/abs/1969SoPh....9..131A
http://dx.doi.org/10.1088/0004-637X/738/2/191
http://adsabs.harvard.edu/abs/2011ApJ...738..191B
http://adsabs.harvard.edu/abs/2011ApJ...738..191B
http://adsabs.harvard.edu/abs/2010NatCo...1E..74B
http://adsabs.harvard.edu/abs/2010NatCo...1E..74B
http://adsabs.harvard.edu/abs/2004SoPh..221..135C
http://adsabs.harvard.edu/abs/2004SoPh..221..135C
http://dx.doi.org/10.1029/95JA03769
http://adsabs.harvard.edu/abs/1996JGR...101.4855C
http://adsabs.harvard.edu/abs/1996JGR...101.4855C
http://dx.doi.org/10.1029/96JA02644
http://adsabs.harvard.edu/abs/1996JGR...10127499C
http://adsabs.harvard.edu/abs/1996JGR...10127499C
http://dx.doi.org/10.1088/0004-637X/712/1/752
http://adsabs.harvard.edu/abs/2010ApJ...712..752C
http://adsabs.harvard.edu/abs/2010ApJ...712..752C
http://dx.doi.org/10.1051/0004-6361:20035776
http://adsabs.harvard.edu/abs/2004A&A...422..307C
http://adsabs.harvard.edu/abs/2004A&A...422..307C
http://adsabs.harvard.edu/abs/2006AdSpR..38..461C
http://adsabs.harvard.edu/abs/2006AdSpR..38..461C
http://dx.doi.org/10.1088/0004-637X/712/2/1219
http://adsabs.harvard.edu/abs/2010ApJ...712.1219D
http://adsabs.harvard.edu/abs/2010ApJ...712.1219D
http://adsabs.harvard.edu/abs/1999A&A...349..956D
http://adsabs.harvard.edu/abs/1999A&A...349..956D
http://adsabs.harvard.edu/abs/1978SoPh...57..279D
http://adsabs.harvard.edu/abs/1978SoPh...57..279D
http://dx.doi.org/10.1088/0004-637X/728/1/41
http://adsabs.harvard.edu/abs/2011ApJ...728...41E
http://adsabs.harvard.edu/abs/2011ApJ...728...41E
http://dx.doi.org/10.1086/592016
http://adsabs.harvard.edu/abs/2008ApJ...687.1355E
http://adsabs.harvard.edu/abs/2008ApJ...687.1355E
http://dx.doi.org/10.1088/0004-637X/756/2/155
http://adsabs.harvard.edu/abs/2012ApJ...756..155E
http://adsabs.harvard.edu/abs/2012ApJ...756..155E
http://adsabs.harvard.edu/abs/2006SSRv..123..251F
http://adsabs.harvard.edu/abs/2006SSRv..123..251F
http://adsabs.harvard.edu/abs/2002AdSpR..29..307G
http://adsabs.harvard.edu/abs/2002AdSpR..29..307G
http://adsabs.harvard.edu/abs/2010AIPC.1216..452G
http://adsabs.harvard.edu/abs/2010AIPC.1216..452G
http://dx.doi.org/10.1088/2041-8205/736/1/L17
http://adsabs.harvard.edu/abs/2011ApJ...736L..17G
http://adsabs.harvard.edu/abs/2011ApJ...736L..17G
http://adsabs.harvard.edu/abs/2009EM&P..104..295G
http://adsabs.harvard.edu/abs/2009EM&P..104..295G
http://dx.doi.org/10.1086/311371
http://adsabs.harvard.edu/abs/1998ApJ...499L.215G
http://adsabs.harvard.edu/abs/1998ApJ...499L.215G
http://dx.doi.org/10.1029/JA087iA12p10331
http://adsabs.harvard.edu/abs/2013SoPh..284..203I
http://adsabs.harvard.edu/abs/2013SoPh..284..203I
http://dx.doi.org/10.1088/0004-637X/739/1/8
http://adsabs.harvard.edu/abs/2011ApJ...739....8J
http://adsabs.harvard.edu/abs/2011ApJ...739....8J
http://adsabs.harvard.edu/abs/2009AnGeo..27.4491K
http://adsabs.harvard.edu/abs/2009AnGeo..27.4491K
http://dx.doi.org/10.1088/2041-8205/710/1/L82
http://adsabs.harvard.edu/abs/2010ApJ...710L..82L
http://adsabs.harvard.edu/abs/2010ApJ...710L..82L
http://dx.doi.org/10.1088/0004-637X/722/2/1762
http://adsabs.harvard.edu/abs/2010ApJ...722.1762L
http://adsabs.harvard.edu/abs/2010ApJ...722.1762L
http://dx.doi.org/10.1088/0004-637X/738/2/127
http://adsabs.harvard.edu/abs/2011ApJ...738..127L
http://adsabs.harvard.edu/abs/2011ApJ...738..127L
http://dx.doi.org/10.1088/0004-637X/759/1/68
http://adsabs.harvard.edu/abs/2012ApJ...759...68L
http://adsabs.harvard.edu/abs/2012ApJ...759...68L
http://dx.doi.org/10.1088/0004-637X/715/1/493
http://adsabs.harvard.edu/abs/2010ApJ...715..493L
http://adsabs.harvard.edu/abs/2010ApJ...715..493L
http://dx.doi.org/10.1029/2001JA007550
http://dx.doi.org/10.1029/JA091iA01p00031
http://adsabs.harvard.edu/abs/1986JGR....91...31M
http://adsabs.harvard.edu/abs/1986JGR....91...31M
http://dx.doi.org/10.1051/0004-6361:20021593
http://adsabs.harvard.edu/abs/2003A&A...400..329M
http://adsabs.harvard.edu/abs/2003A&A...400..329M
http://dx.doi.org/10.1029/1999JA000383
http://adsabs.harvard.edu/abs/2000JGR...10510419M
http://adsabs.harvard.edu/abs/2000JGR...10510419M
http://dx.doi.org/10.1029/2011JA016589
http://adsabs.harvard.edu/abs/2012JGRA..117.1103M
http://adsabs.harvard.edu/abs/2012JGRA..117.1103M
http://adsabs.harvard.edu/abs/1985srph.book..333N
http://dx.doi.org/10.1029/98JA00798
http://adsabs.harvard.edu/abs/1998JGR...10314587N
http://adsabs.harvard.edu/abs/1998JGR...10314587N
http://dx.doi.org/10.1029/2011JA017243
http://adsabs.harvard.edu/abs/2012JGRA..117.6106N
http://adsabs.harvard.edu/abs/2012JGRA..117.6106N
http://adsabs.harvard.edu/abs/2011JASTP..73.1129P
http://adsabs.harvard.edu/abs/2011JASTP..73.1129P
http://adsabs.harvard.edu/abs/1987SoPh..109...91P
http://adsabs.harvard.edu/abs/1987SoPh..109...91P
http://adsabs.harvard.edu/abs/1984SoPh...94..387P
http://adsabs.harvard.edu/abs/1984SoPh...94..387P
http://dx.doi.org/10.1086/510304
http://adsabs.harvard.edu/abs/2007ApJ...656.1121R
http://adsabs.harvard.edu/abs/2007ApJ...656.1121R
http://dx.doi.org/10.1086/508565
http://adsabs.harvard.edu/abs/2006ApJ...653.1510R
http://adsabs.harvard.edu/abs/2006ApJ...653.1510R
http://adsabs.harvard.edu/abs/2011SoPh..270..561R
http://adsabs.harvard.edu/abs/2011SoPh..270..561R
http://dx.doi.org/10.1088/2041-8205/714/1/L128
http://adsabs.harvard.edu/abs/2010ApJ...714L.128S
http://adsabs.harvard.edu/abs/2010ApJ...714L.128S
http://adsabs.harvard.edu/abs/1995SoPh..162..129S
http://adsabs.harvard.edu/abs/1995SoPh..162..129S
http://adsabs.harvard.edu/abs/1969SoPh....6..442S
http://adsabs.harvard.edu/abs/1969SoPh....6..442S
http://adsabs.harvard.edu/abs/2011SoPh..269..389S
http://adsabs.harvard.edu/abs/2011SoPh..269..389S
http://adsabs.harvard.edu/abs/2006SoPh..239..293S
http://adsabs.harvard.edu/abs/2006SoPh..239..293S
http://dx.doi.org/10.1088/0004-637X/764/1/23
http://adsabs.harvard.edu/abs/2013ApJ...764...23S
http://adsabs.harvard.edu/abs/2013ApJ...764...23S
http://adsabs.harvard.edu/abs/2005SSRv..121..189S
http://adsabs.harvard.edu/abs/2005SSRv..121..189S
http://dx.doi.org/10.1088/0004-637X/749/1/57
http://adsabs.harvard.edu/abs/2012ApJ...749...57T
http://adsabs.harvard.edu/abs/2012ApJ...749...57T
http://dx.doi.org/10.1007/s11207-009-9346-5
http://adsabs.harvard.edu/abs/2009SoPh..256..111T
http://adsabs.harvard.edu/abs/2009SoPh..256..111T
http://dx.doi.org/10.1086/508254
http://adsabs.harvard.edu/abs/2006ApJ...652..763T
http://adsabs.harvard.edu/abs/2006ApJ...652..763T
http://dx.doi.org/10.1088/0004-637X/732/2/102
http://adsabs.harvard.edu/abs/2011ApJ...732..102T
http://adsabs.harvard.edu/abs/2011ApJ...732..102T
http://adsabs.harvard.edu/abs/2012JCoPh.231..870T
http://adsabs.harvard.edu/abs/2012JCoPh.231..870T
http://dx.doi.org/10.1088/0004-637X/725/1/1373
http://adsabs.harvard.edu/abs/2010ApJ...725.1373V
http://adsabs.harvard.edu/abs/2010ApJ...725.1373V
http://dx.doi.org/10.1088/0004-637X/722/2/1522
http://adsabs.harvard.edu/abs/2010ApJ...722.1522V
http://adsabs.harvard.edu/abs/2010ApJ...722.1522V
http://adsabs.harvard.edu/abs/2007SoPh..241...85V
http://adsabs.harvard.edu/abs/2007SoPh..241...85V
http://adsabs.harvard.edu/abs/2003AIPC..679..457W
http://adsabs.harvard.edu/abs/2004SoPh..222..329W
http://adsabs.harvard.edu/abs/2004SoPh..222..329W
http://dx.doi.org/10.1029/92JA02396
http://adsabs.harvard.edu/abs/1993JGR....98.3529W
http://adsabs.harvard.edu/abs/1993JGR....98.3529W
http://dx.doi.org/10.1086/171430
http://adsabs.harvard.edu/abs/1992ApJ...392..310W
http://adsabs.harvard.edu/abs/1992ApJ...392..310W
http://adsabs.harvard.edu/abs/2009SoPh..259..143X
http://adsabs.harvard.edu/abs/2009SoPh..259..143X
http://dx.doi.org/10.1086/506903
http://adsabs.harvard.edu/abs/2006ApJ...649.1100Z
http://adsabs.harvard.edu/abs/2006ApJ...649.1100Z
http://dx.doi.org/10.1086/322405
http://adsabs.harvard.edu/abs/2001ApJ...559..452Z
http://adsabs.harvard.edu/abs/2001ApJ...559..452Z
http://dx.doi.org/10.1086/381725
http://adsabs.harvard.edu/abs/2004ApJ...604..420Z
http://adsabs.harvard.edu/abs/2004ApJ...604..420Z
http://dx.doi.org/10.1088/0004-637X/744/1/66
http://adsabs.harvard.edu/abs/2012ApJ...744...66Z
http://adsabs.harvard.edu/abs/2012ApJ...744...66Z

	1. INTRODUCTION
	2. AN ANALYTIC MODEL OF CME DEFLECTION
	2.1. Deflection Plane
	2.2. Deflection Forces

	3. DESCRIPTION OF CME MOTION
	3.1. CME Expansion
	3.2. CME Propagation
	3.3. Non-radial Drag

	4. BACKGROUND SOLAR MAGNETIC FIELD
	4.1. Scaled Background
	4.2. PFSS Background

	5. NUMERICAL IMPLEMENTATION AND TEST CASE
	6. PARAMETER SENSITIVITY: POTENTIAL DEFLECTION ANGLES
	7. DEFLECTION WITH A PFSS BACKGROUND
	8. EFFECTS OF ACTIVE REGIONS
	9. DISCUSSION
	10. CONCLUSIONS
	APPENDIX. OVERPRESSURE EXPANSION
	REFERENCES

