Table of contents

Volume 165

2017

Previous issue Next issue

Colloquium of Advanced Mechanics (CAMS2016) 18–19 December 2016, Johor, Malaysia

Accepted papers received: 16 December 2016
Published online: 12 January 2017

Preface

011001
The following article is Open access

CAMS2016 is an internal colloquium on advance mechanics held between 18-19 December 2016 on the campus of Universiti Tun Hussein Onn Malaysia in Johor, Malaysia. The program included many topic related to mechanical and materials engineering as well as those in related field.

The meeting is conducted and managed by five research groups of SIMReG (Structural Integrity and Monitoring Research Group), COLORED (Crashworthiness and Collisions Research Group), ADCARe (Advance Dynamics Control and Automation Research Group), NOVIA (Noise And Vibration Analysis Research Group) and SPEAR (Sports Engineering Advancement Research Group). CAMS2016 is coordinated by the center of research MPROVE (Mechanical Failure Prevention and Reliability).

CAMS2016 has attracted 48 paper submissions and after the peer-review process, 36 papers have been accepted. The participants in the colloquium include researchers, students and lecturers within the campus. The contents of presentations hopefully will enhance the quality of research conducted and therefore will contribute to advancement of knowledge in the research..

This volume was edited by Abdul Latif Mohd Tobi, Al Emran Ismail, Waluyo Adi Siswanto, Saifulnizan Jamian, Nor Azali Azmir, Noormaziah Jafferi, Eliza Yusup, Kamarul Azhar Kamarudin, Ong Pauline, Zaleha Mohamad, Mohd Amran Madlan, and Noradila Abdul Latif.

011002
The following article is Open access

1. Chairman CAMS2016

Dr. Al Emran Ismail

Crashworthiness and Collisions Research Group (COLORED)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: emran@uthm.edu.my

2. Vice Chairman CAMS2016 Publication Chair CAMS2016

Dr. Abdul Latif Mohd Tobi

Structural Integrity and Monitoring Research Group (SIMReG)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: abdlatif@uthm.edu.my

3. Website and Online Systems CAMS2016

Assoc. Prof. Dr. Waluyo Adi Siswanto

Sports Engineering Advancement Research (SPEAR)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: waluyo@uthm.edu.my

4. Payment and Registration CAMS2016

Dr. Saifulnizan Jamian

Crashworthiness and Collisions Research Group (COLORED)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: saifulnz@uthm.edu.my

011003
The following article is Open access

1. Dr. Abdul Latif Mohd Tobi

Structural Integrity and Monitoring Research Group (SIMReG)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: abdlatif@uthm.edu.my

2. Dr. Al Emran Ismail

Crashworthiness and Collisions Research Group (COLORED)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: emran@uthm.edu.my

3. Assoc. Prof. Dr. Waluyo Adi Siswanto

Sports Engineering Advancement Research (SPEAR)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: waluyo@uthm.edu.my

4. Dr. Saifulnizan Jamian

Crashworthiness and Collisions Research Group (COLORED)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: saifulnz@uthm.edu.my

5. Mr. Mohd Amran Hj. Madlan

Noise and Vibration Analysis Research Group (NOVIA)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: amran@uthm.edu.my

6. Dr. Nor Azali Azmir

Noise and Vibration Analysis Research Group (NOVIA)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: azali@uthm.edu.my

7. Dr. Noormaziah Jafferi

Advance Dynamics Control and Automation Research Group (ADCARe)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: normazia@uthm.edu.my

8. Dr. Eliza M Yusup

Sports Engineering Advancement Research (SPEAR)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: elizay@uthm.edu.my

9. Dr. Kamarul Azhar Kamarudin

Crashworthiness and Collisions Research Group (COLORED)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: kamarula@uthm.edu.my

10. Dr. Ong Pauline

Advance Dynamics Control and Automation Research Group (ADCARe)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: ongp@uthm.edu.my

11. Dr. Zaleha Mohamad

Structural Integrity and Monitoring Research Group (SIMReG)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: zaleha@uthm.edu.my

12. Dr. Noradila Abdul Latif

Structural Integrity and Monitoring Research Group (SIMReG)

Department of Engineering Mechanics,

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia (UTHM),

86400 Parit Raja, Batu Pahat,

Johor, MALAYSIA

Email: noradila@uthm.edu.my

011004
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

COLORED

012001
The following article is Open access

This paper solved numerically the stress intensity factors of multiple internal axial cracks in hollow cylinders under internal pressure. Semi-elliptical shaped cracks are modelled using ANSYS finite element program and the stress intensity factors are calculated using interaction domain integral which is based on the J-integral. There are two important parameters are considered such as crack aspect ratio, a/t is 0.2, 0.4 and 0.75 and crack spacing distance, d/c is 0.4, 0.7 and 1.1. For multiple internal axial cracks under internal pressure, stress intensity factors along the crack front decreased when crack aspect ratio, a/t is increased. It is also revealed that the role of crack spacing on the stress intensity factor is insignificant especially for the shallow cracks (a/t < 0.4). However, for the crack having a/t = 0.75, increasing the distance of d/c capable to increase the SIFs due to interaction effect.

012002
The following article is Open access

, , , and

Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

012003
The following article is Open access

, and

This paper reviews the work done by previous researchers in order to gather the information for the current study which about the computational analysis on stent geometry in carotid artery. The implantation of stent in carotid artery has become popular treatment for arterial diseases of hypertension such as stenosis, thrombosis, atherosclerosis and embolization, in reducing the rate of mortality and morbidity. For the stenting of an artery, the previous researchers did many type of mathematical models in which, the physiological variables of artery is analogized to electrical variables. Thus, the computational fluid dynamics (CFD) of artery could be done, which this method is also did by previous researchers. It lead to the current study in finding the hemodynamic characteristics due to artery stenting such as wall shear stress (WSS) and wall shear stress gradient (WSSG). Another objective of this study is to evaluate the nowadays stent configuration for full optimization in reducing the arterial side effect such as restenosis rate after a few weeks of stenting. The evaluation of stent is based on the decrease of strut-strut intersection, decrease of strut width and increase of the strut-strut spacing. The existing configuration of stents are actually good enough in widening the narrowed arterial wall but the disease such as thrombosis still occurs in early and late stage after the stent implantation. Thus, the outcome of this study is the prediction for the reduction of restenosis rate and the WSS distribution is predicted to be able in classifying which stent configuration is the best.

012004
The following article is Open access

and

This paper presents the crushing responses of cylindrical woven kenaf fibre reinforced composites under quasi-static compression. Kenaf fiber in the form of yarn is weaved into woven mat. It is then submerged into polyester bath before it is wrapped into a cylindrical shape. There are two important parameters investigated such as number of layers and fiber orientations. According to the experimental results, as expected increasing the number of layers increased the energy absorption performances. However, increasing the fibre orientations from 0o to 45o capable to decrease the energy absorption capability. It is also observed that during progressive collapses, localized buckling is the dominant failure mechanism where there is no large composite fragmentation occurred.

012005
The following article is Open access

and

This work describes an experimental investigation of the pretensioned thin plates made of Carbon Fibre Reinforced Plastic (CFRP) struck by hemispherical and blunt projectiles at various impact velocities. The experiments were done using a gas gun with combination of pretension equipment positioned at the end of gun barrel near the nozzle. Measurements of the initial and residual velocities were taken, and the ballistic limit velocity were calculated for each procedures. The pretension target results in reduction of ballistic limit compared to non-pretension target for both flat and hemispherical projectiles. Target impacted by hemispherical projectile experience split at earlier impact velocity compared to target by flat projectile. C-Scan images analysis technique was used to show target impact damaged by hemispherical and flat projectiles. The damage area was shown biggest at ballistic limit velocity and target splitting occurred most for pretention plate.

012006
The following article is Open access

, , and

Heavily calcific lesions, total occlusions, tortuous blood vessels, variable lengths of arteries, various dynamic loads and deformations in the femoropopliteal (FP) arterial segment make stenosis treatments are complicated. The dynamic forces in FP artery including bending, torsion and radial compression may lead to stent fracture (SF) and eventually to in-stent restenosis (ISR). Stent design specifically geometrical configurations are a major factor need to be improved to optimize stent expansion and flexibility both bending and torsion during stent deployment into the diseased FP artery. Previous studies discovered the influence of various stent geometrical designs resulted different structural behaviour. Optimizing stent design can improve stent performances: flexibility and radial strength to prevent SF in FP arterial segment

012007
The following article is Open access

, , and

This paper presents a review of stent's failure on patent ductus arteriosus (PDA). Ductus arteriosus (DA) is an opening for newborn babies and some patient that experienced cynotic congenital heart disease (CCHD) should maintain the duct opening for survival. To date, there are no specific research on mechanical stent failure study at DA. The challenging of the stent implantation on PDA is the PDA morphology. The failure of stent in term of stent fracture have been reported and reviewed in this paper. Furthermore, the failure prediction of stent is important for further stent design development. The morphology of PDA, stent type and material used in PDA and method for accessing the failure of stent is reviewed.

012008
The following article is Open access

, and

This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.

012009
The following article is Open access

, , and

This paper presents three-dimensional (3D) finite element solution on multiple surface cracks. The cracks on solid cylinder are similar in sizes, parallel each other, assumed to grow in semi-elliptical shape and subjected to remotely tension loading (mode I). A wide range of parametric study involving crack depth ratios ( 0.1<a/D<0.4), crack aspect ratios (0.2<a/b<1.2), normalized coordinates on crack front (0.0<x/h<0.93) and inter-crack distance ratios (0.005<c/l<0.32) are considered for numerical estimation of stress intensity factors (SIFs) along crack front. For multiple surface cracks under axial loading, the stress intensity factors along crack front decreased when c/l decreased. When multiple cracks approach one another, the stress intensity changes due to interaction of the stress field. The results show that it produces a stress shielding effects.

012010
The following article is Open access

, and

This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is nine different orientations are used during stacking processes by following Taguchi orthogonal arrays method. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for impact tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, weaving pattern and orientation have distinct potential effects on value of energy absorption. The optimization using Taguchi method reveals preferable orientation of each weaving pattern composites. Based on the fracture observation, the fragmentations after optimization indicating lower distance surface fracture perforated obtained.

012011
The following article is Open access

, and

This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is 9 different orientations are used during stacking processes. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for imp act tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, both weaving patterns and orientations have distinct potential effects on the force-displacement diagrams. However, fiber orientations have insignificant effect for plain woven especially in the first stage of deformations. Energy absorption performances for each composite condition are calculated and then plotted against fiber orientations for different weaving patterns. It is found there is no strong relationship between energy absorption and fiber orientations. However for each case of composites, higher energy absorption is found for the composites orientated using [+40°/-15°/+40°/+75°]. Based on the fracture observation, both plain and basket-type woven composites reveal large fragmentations occurred indicating lower energy absorption performances. While for twill condition, no obvious fragmentation is observed where the impact damage around the perforated hole is uniformly distributed leading to higher capability of energy absorptions.

SIMReg

012012
The following article is Open access

, , , and

The present study is aimed at investigating Mechanical properties of the milled recycling Aluminium type AA6061 according to the change of the volume fraction for the continents and the reinforcement material. In the study, high speed millings were used for producing the chip sizes of AA6061 and followed by a cold press forging process. Milling process was used to produce smaller particles of aluminium chips by the planetary ball mill. Three groups of specimens were taken according to the percentage of chip and powder, while, two groups were taken according to the mixture between different particle sizes of powders. Where, four types of particle size were chosen (25, 63, 100, mix of particles) μm. The results were showing that the Microhardness increased with increasing the percentage of chip, then the density was decreased due to a large amount of pores were found. By the experiments, it can be concluded, the mixture of powders is the best choice for all groups. On the other hand, the type D3 (78.5% (25μm) + 21.5% (100μm)) gave the best result for microhardness compare with others according to particle.

012013
The following article is Open access

, and

The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.

012014
The following article is Open access

and

The present study provides a hydrothermal synthesis to obtain Hydroxyapatite (HA) powder from waste eggshells. This waste-derived HA has been characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis. Waste-derived HA will be reinforced the Ultra-High Molecular Weight Polyethylene (UHMWPE) to develop a material composite for biomedical applications because of impressive mechanical properties owned by UHMWPE. Main challenger is UHMWPE has an ultra-high viscosity that renders continuous melt- state processes including one of the additive manufacturing processes which is Fused Deposition Modeling (FDM). To develop this material as feedstock in FDM process, it has been overcome by blending UHMWPE with waste-derived HA as filler. It exhibit the inclusion of 50wt% HA has reduced the degradation temperature in TGA and DSC thus enhances the processability in FDM process.

012015
The following article is Open access

, , and

Metal injection molding (MIM) are well known as a worldwide application of powder injection molding (PIM) where as applied the shaping concept and the beneficial of plastic injection molding but develops the applications to various high performance metals and alloys, plus metal matrix composites and ceramics. This study investigates the strength of green part by using stainless steel 316L/ Natural hydroxyapatite composite as a feedstock. Stainless steel 316L (SS316L) was mixed with Natural hydroxyapatite (NHAP) by adding 40 wt. % Low Density Polyethylene and 60 %wt. Palm Stearin as a binder system at 63 wt. % powder loading consist of 90 % wt. of SS316 L and 10 wt. % NHAP prepared thru critical powder volume percentage (CPVC). Taguchi method was functional as a tool in determining the optimum green strength for Metal Injection Molding (MIM) parameters. The green strength was optimized with 4 significant injection parameter such as Injection temperature (A), Mold temperature (B), Pressure (C) and Speed (D) were selected throughout screening process. An orthogonal array of L9 (3)4 was conducted. The optimum injection parameters for highest green strength were established at A1, B2, C0 and D1 and where as calculated based on Signal to Noise Ratio.

012016
The following article is Open access

and

This study was carried out to investigate solvent debinding by conducting the extraction process at temperature ranging from 40 to 80 °C within 2 to 8 hours, while keeping the heptane solvent and 12:1 of solvent to feed ratio as constant. The palm kernel loss was evaluated as an indicator of the process's performance. It was also supported by the pore evolution that was observed by Field Emission Scanning Electron Micrograph (FESEM). Results show that both parameter give large effect on the solvent debinding performance. The best immerse temperature and time for extracting maximum palm kernel in heptane solution at S/F ratio of 12:1, without sacrificing the ability of producing free defect metal part were given by 80 °C and 6 hours, respectively.

012017
The following article is Open access

, and

The objective of this paper is to give an overview on sintering process of WC-Co cemented carbides in metal injection molding technology. Metal injection molding is an advanced and promising technology in producing cemented nanostructured carbides. Cemented tungsten carbide (WC-Co) hard metal is known for its high hardness and wear resistance in various applications. Moreover, areas include fine grained materials, alternative binders, and alternative sintering techniques has been discussed in this paper.

012018
The following article is Open access

, , , , and

This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

012019
The following article is Open access

, , and

Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

012020
The following article is Open access

, , , , , , and

This study investigate the abrasive wear failure of tungsten carbide hardfacing on continuous digester (CD) blade (carbon steel) in an environment of sulphuric acid and ilmenite ore mixture. Comparison being made on the hardness, thickness and microstructural of the hardfacing between unworn and 3 months old worn blade on few locations around the blade. The cross sections of the blade revealed non-uniform coverage of the hardfacing on the blade for both worn and unworn blade. The edge of the blade has the least amount of hardfacing thickness which with time acts as the point of failure during the wear process. The hardness obtained from both the unworn and worn samples are around 25% lower from the hardfacing electrode manufacturer's hardness specification. Microstructural micrograph analysis of the hardfacing revealed non uniform size carbide with non-uniform distributed of carbide in the hardfacing layer.

012021
The following article is Open access

, and

The use of natural fibres as reinforcement material have become common in human applications. Many of them are used in composite materials especially in the polymer matrix composites. The use of natural fibres as reinforcement also provide alternative solution of usage instead of being a waste materials. In some applications, these natural reinforced polymer composites were used as the outer layer, making them exposed to ultra violet exposure, hence prone to UV radiation. This paper reviews the effect of UV radiation towards the mechanical properties of natural fibre reinforced polymer matrix composite material. The effect of chemical treatment towards the natural fibre is also investigated. One of the important features that was critically explored was the degradation of the composite materials. The influence of UV radiation on the degradation rate involve several parameters such as wavelength, intensity and exposure time. This review highlights the influence of these parameters in order to provide better solution for polymer matrix composite's development.

012022
The following article is Open access

, , , , and

High Velocity Oxy-Fuel, HVOF is a depositing methods of a material layer over a base metal or substrate with characteristics of high flame velocity and moderate temperature. Where, tungsten carbide, WC cermet HVOF coatings is widely used to protect machine components from wear and corrosion. The main purpose of this present paper is to characterize the WC-10Ni coating deposited by HVOF thermal spray onto a carbon steel blade. The morphology and chemical composition of the coating were characterized by Scanning Electron Microstructure (SEM), electron dispersive spectrometer (EDS), and X-ray diffraction (XRD). The hardness test was carried out by using Vickers micro-hardness tester with loads of 490.3 mN (HV0.05). From XRD results, no sharp nickel peak was identified and has been replaced by a hump which indicate the amorphous Ni. The major crystalline phases were compounds WC, W2C and metallic phase of W. The WC-10Ni coating shows high hardness with low porosity distribution.

NOVIA

012023
The following article is Open access

, , , and

Recently the development of aerospace, automotive and building industries demands the use of lightweight materials such as thin plates. However, the plates can possibly add to significant vibration and sound radiation, which eventually lead to increased noise in the community. So, in this study, the fundamental concept of sound pressure radiated from a simply-supported thin plate (SSP) was analyzed using the derivation of mathematical equations and numerical simulation of ANSYS®. The solution to mathematical equations of sound radiated from a SSP was visualized using MATLAB®. The responses of sound pressure level were measured at far field as well as near field in the frequency range of 0–200 Hz. Result shows that there are four resonance frequencies; 12 Hz, 60 Hz, 106 Hz and 158 Hz were identified which represented by the total number of the peaks in the frequency response function graph. The outcome also indicates that the mathematical derivation correlated well with the simulation model of ANSYS® in which the error found is less than 10%. It can be concluded that the obtained model is reliable and can be applied for further analysis such as to reduce noise emitted from a vibrating thin plate.

012024
The following article is Open access

and

This paper presents a numerical membrane model of traditional musical instrument kompang that will be used to find the parameter of membrane tension of x-ray membrane representing the classical goat-skin membrane of kompang. In this study, the experiment towards the kompang is first conducted in an acoustical anechoic enclosure and in parallel a mathematical model of the kompang membrane is developed to simulate the vibration of the kompang membrane in polar coordinate by implementing Fourier-Bessel wave function. The wave equation in polar direction in mode 0,1 is applied to provide the corresponding natural frequencies of the circular membrane. The value of initial and boundary conditions in the function is determined from experiment to allow the correct development of numerical equation. The numerical mathematical model is coded in SMath for the accurate numerical analysis as well as the plotting tool. Two kompang membrane cases with different membrane materials, i.e. goat skin and x-ray film membranes with fixed radius of 0.1 m are used in the experiment. An alternative of kompang's membrane made of x-ray film with the appropriate tension setting can be used to represent the sound of traditional goat-skin kompang. The tension setting of the membrane to resemble the goat-skin is 24N. An effective numerical tool has been used to help kompang maker to set the tension of x-ray membrane. In the future application, any traditional kompang with different size can be replaced by another membrane material if the tension is set to the correct tension value. The numerical tool used is useful and handy to calculate the tension of the alternative membrane material.

012025
The following article is Open access

, , , and

Heat ventilation air conditioning system (HVAC) is one of the ducting systems that broadly applied in the building. There are HVAC silencers in the market, however the sound absorptive material commonly used is mineral wool. In this research study, a sound absorptive material made of coconut fiber was tested to identify its performance as a potential replacement of green material for ducting silencer. The experiment was carried out in a testing apparatus that follows the BS EN ISO 11691:2009 standard. Different configurations of sound absorptive material and contents of coconut fiber were investigated in the study. The trend of insertion loss at 1/3 octave frequency was identified where at frequency below 3000Hz, the insertion loss of dissipative silencer is observed high at certain frequency with a very narrow range. At 3000Hz, the insertion loss of 4dB to 6dB is constant until 4000Hz and drops until 5000Hz before it increases again steadily up to 13dB at 10000Hz. A similar trend was observed for different configuration of sound absorptive material. Despite the configuration different, the outcome shows that the insertion loss is increasing with higher content of coconut fiber.

012026
The following article is Open access

and

Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers' health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value which is 5 ms-2. Thus, control measure such as engineering and administrative control should be implemented to reduce the severity of hand-transmitted vibration hazard.

SPEAR

012027
The following article is Open access

, , , and

Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.

012028
The following article is Open access

, , , , , , , and

'Silat' is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of 'silat'. By using the 3D Depth Camera motion capture system, two subjects are to perform 'Jurus Satu' in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects' execution of the 'Jurus Satu'. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects' execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of 'Jurus Satu' and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.

012029
The following article is Open access

, , , , and

The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.

012030
The following article is Open access

, , , and

In this study, the model of hip joint and the main muscles are modelled by finite elements. The parts included in the model are hip joint, hemi pelvis, gluteus maximus, quadratus femoris and gamellus inferior. The materials that used in these model are isotropic elastic, Mooney Rivlin and Neo-hookean. The hip resultant force of the normal gait and stair climbing are applied on the model of hip joint. The responses of displacement, stress and strain of the muscles are then recorded. FEBio non-linear solver for biomechanics is employed to conduct the simulation of the model of hip joint with muscles. The contact interfaces that used in this model are sliding contact and tied contact. From the analysis results, the gluteus maximus has the maximum displacement, stress and strain in the stair climbing. Quadratus femoris and gamellus inferior has the maximum displacement and strain in the normal gait however the maximum stress in the stair climbing. Besides that, the computational model of hip joint with muscles is produced for research and investigation platform. The model can be used as a visualization platform of hip joint.

012031
The following article is Open access

, , , , , , , , , et al

This paper describes the assessment and continuous quality improvement of Programme Learning Outcomes (PLOs) in the Faculty of Mechanical Engineering and Manufacturing. PLO is known as an elementary requirement in Outcome Based Education (OBE) system. All PLOs have been mapped with graduate attributes by EAC Manual 2012. Conceptual process for establishing and reviewing PLOs has been explained in the Plan-Check-Do-Act cycle. PLO assessment has been shown in different types which classified as direct and indirect methods. Continuous Quality Improvement has been extracted from a variety of assessment and has been discussed. Seven (7) CQIs are identified using different assessment methods of PLO during years 2013 to 2016 and subsequent improvement actions have been taken by the faculty within three years.

ADCARe

012032
The following article is Open access

, , , and

The aim of the optimization is to obtain the best solution among other solutions in order to achieve the objective of the problem without evaluation on all possible solutions. In this study, an improved flower pollination algorithm, namely, the Modified Flower Pollination Algorithms (MFPA) is developed. Comprising of the elements of chaos theory, frog leaping local search and adaptive inertia weight, the performance of MFPA is evaluated in optimizing five benchmark mechanical engineering design problems - tubular column design, speed reducer, gear train, tension/compression spring design and pressure vessel. The obtained results are listed and compared with the results of the other state-of-art algorithms. Assessment shows that the MFPA gives promising result in finding the optimal design for all considered mechanical engineering problems.

012033
The following article is Open access

, , , , , , , , , et al

Universiti Tun Hussein Onn Malaysia (UTHM) is the 15th of the 20 public universities established in Malaysia. UTHM consists of eight faculties. One of them is the Faculty of Mechanical and Manufacturing Engineering (FKMP). The programme offered - Bachelor of Mechanical Engineering with Honours (BDD), undergoes continuous auditing and accreditation by the Engineering Accreditation Council (EAC). To fulfill the requirement for accreditation, EAC requires the faculty to assess and evaluate the programme learning outcomes' (PLOs) attainment of the graduates, such that all graduates are targeted to achieve the performance indicator (PI) upon graduation. This paper discusses the methods developed by the FKMP for PLOs' measurement and evaluation. Two approaches are utilized in this regards, (i) the direct assessment based on students' performance in courses, and (ii) the indirect assessment based the industrial and graduates' perception. The PLOs' attainment for graduates of cohort 2010-2012 are analysed in this study. Consolidation data shows that the PI for majority of the PLOs are achieved, indicating that the programme offered complies with the standard expected by different stakeholders.

012034
The following article is Open access

, and

Optimization of boom sprayer collecting plate angle is a tedious procedure if it is done fully experimental. This paper demonstrates that the optimization process is more practical by simulation analysis validate through logical reflection of particles. This study is carrying out through simulating the distribution parts of the boom sprayer by using the commercial software, ANSYS. The multiphysics capabilities of ANSYS enable ANSYS to carrying out this simulation. The simulation is carrying out by manipulating the angle of the collecting plate, 32o, 60o,90o and 120o of the boom sprayer to find the optimum range of angle that will produce a good distribution for different sizes of the granular fertilizers and air velocity of the blower. The constant variables in this simulation are the atmospheric pressure of 1 atm and the particles size of Potassium K is 1mm. There are 60 per cent of the images produce by ANSYS, through observing the number of stream lines and the angle of distribution show that the optimum angle is between 32o to 60o. For further study, in order to increase the accuracy, the simulation is further validate through experiment. It is preferred to carry up the experiment through scaled down model without causing any changes to the current design and in order to be carrying out in the lab.

012035
The following article is Open access

, , , , , and

In order to solve the electromagnetic interference (EMI) issue and provide a new application for palm oil fuel ash (POFA), POFA was used as the cement filler for enhancing the EMI absorption of cement-based composites. POFA was refined by using water precipitation for 24 hours to remove the filthiness and distinguish the layer 1 (floated) and layer 2 (sink) of POFA. Both layers POFA were dried for 24 hours at 100 ± 5 °C and grind separately for sieve at 140 μm (Fine) and 45 цш sizes (Ultrafine). The micro structure and element content of the both layers POFA were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) respectively. The results showed layer 1 POFA has potentialities for EMI shielding effectiveness (SE) due to its higher carbon content and porous structure. The study reveals that EMI SE also influenced by the particle size of POFA, where smaller particle size can increase 5 % to 13 % of EMI SE. When the specimen consists of 50% POFA with passing through 45 μm sieve, the EMI was shield -13.08 dB in between 50 MHz to 2 GHz range. Flower Pollination Algorithm (FPA) proves that POFA passing 45 μm sieve with 50% mixed to OPC is optimal parameter. The error between experimental and FPA simulation data is below 1.2 for both layers POFA.

012036
The following article is Open access

, , , and

In the preparation of triaxial porcelain from Palm Oil Fuel Ash (POFA), a new parameter variable must be determined. The parameters involved are the particle size of POFA, percentage of POFA in triaxial porcelain composition, moulding pressure, sintering temperature and soaking time. Meanwhile, the shrinkage is the dependent variable. The optimization process was investigated using a hybrid Taguchi design and flower pollination algorithm (FPA). The interaction model of shrinkage was derived from regression analysis and found that the shrinkage is highly dependent on the sintering temperature followed by POFA composition, moulding pressure, POFA particle size and soaking time. The interaction between sintering temperature and soaking time highly affects the shrinkage. From the FPA process, targeted shrinkage approaching zero values were predicted for 142 μm particle sizes of POFA, 22.5 wt% of POFA, 3.4 tonne moulding pressure, 948.5 °C sintering temperature and 264 minutes soaking time.