Brought to you by:

Focus on Perovskite Thin Films and Nanomaterials for Applications in Optoelectronic Devices

Figure
Figure courtesy of Sheng Hsiung Chang.

Guest Editors

Sheng Hsiung Chang, Chung Yuan Christian University, Taiwan
Wei-Chen Tu, National Cheng Kung University, Taiwan
Chia-Lung Tsai, Chang Gung University, Taiwan

Scope

In the past decade, perovskite crystal-based materials have been widely investigated in solar cells, light-emitting diodes (LEDs) and photo-detectors (PDs) due to their superior optoelectronic properties and the low-cost fabrication process. However, the unique defect properties and the un-predictable contacts at the perovskite/organic material interface and perovskite/inorganic material interface impeded the developments of optoelectronic devices based on perovskite. However, the surface and optoelectronic properties of perovskite thin films and nanomaterials can be manipulated by varying the compositions and the nanoscale morphologies. The focus collection will address the latest developments and breakthroughs in the fields of perovskite-based optoelectronic devices, including solar cells, LEDs, PDs, lasers, x-ray detectors, memory devices and flexible devices.

Submission process and deadline for submission

Researchers are invited to contribute their original research articles to this collection. Please submit using our online submission form.

The deadline for submissions is 31 August 2020. Nanotechnology publishes focus collections incrementally. This means that articles submitted early will be published as soon as they are accepted and prepared for publication, without being delayed waiting for other papers in the collection. If you are not able to meet the deadline, please let us know.

Review

Perovskite random lasers: a tunable coherent light source for emerging applications

Tsung Sheng Kao et al 2021 Nanotechnology 32 282001

Metal halide perovskites have attracted increasing attention due to their superior optical and electrical characteristics, flexible tunability, and easy fabrication processes. Apart from their unprecedented successes in photovoltaic devices, lasing action is the latest exploitation of the optoelectronic performance of perovskites. Among the substantial body of research on the configuration design and light emission quality of perovskite lasers, the random laser is a very interesting stimulated emission phenomenon with unique optical characteristics. In this review article, we first comprehensively overview the development of perovskite-based optoelectronic devices and then focus our discussion on random lasing performance. After an introduction to the historical development of versatile random lasers and perovskite random lasers, we summarize several synthesis methods and discuss their material configurations and stability in synthesized perovskite materials. Following this, a theoretical approach is provided to explain the random lasing mechanism in metal halide perovskites. Finally, we propose future applications of perovskite random lasers, presenting conclusions as well as future challenges, such as quality stability and toxicity reduction, of perovskite materials with regard to practical applications in this promising field.

Papers

Improving device performance of MAPbI3 photovoltaic cells by manipulating the crystal orientation of tetragonal perovskites

Anjali Chandel et al 2022 Nanotechnology 33 415405

The properties of CH3NH3PbI3 (MAPbI3) crystalline thin films and the device performance of highly efficient MAPbI3 photovoltaic cells are investigated by varying the temperature of the antisolvent from 20 °C to 50 °C during the washing enhanced nucleation (WEN) process. The surface, structural, optoelectronic and defect properties of the perovskite thin films are characterized through atomic-force microscopy, X-ray diffractometry and photoluminescence spectrometry. The experimental results show that changing the temperature of the antisolvent during the WEN process can manipulate the MAPbI3 crystalline thin films from the (110)–(002) complex phase to a (002) preferred phase. It is noted that the highest power conversion efficient of the inverted MAPbI3 photovoltaic cells is 19.30%, mainly due to the increased carrier collection efficiency and reduced carrier recombination when the temperature of the antisolvent is 30 °C.

Improvement of interfacial contact for efficient PCBM/MAPbI3 planar heterojunction solar cells with a binary antisolvent mixture treatment

Anjali Chandel et al 2021 Nanotechnology 32 485401

Atomic-force microscopic images, x-ray diffraction patterns, Urbach energies and photoluminescence quenching experiments show that the interfacial contact quality between the hydrophobic [6,6]-phenyl-C61-buttric acid methyl ester (PCBM) thin film and hydrophilic CH3NH3PbI3 (MAPbI3) thin film can be effectively improved by using a binary antisolvent mixture (toluene:dichloromethane or chlorobenzene:dichloromethane) in the anti-solvent mixture-mediated nucleation process, which increases the averaged power conversion efficiency of the resultant PEDOT:PSS (P3CT-Na) thin film based MAPbI3 solar cells from 13.18% (18.52%) to 13.80% (19.55%). Beside, the use of 10% dichloromethane (DCM) in the binary antisolvent mixture results in a nano-textured MAPbI3 thin film with multicrystalline micrometer-sized grains and thereby increasing the short-circuit current density and fill factor (FF) of the resultant solar cells. It is noted that a remarkable FF of 80.33% is achieved, which can be used to explain the stable photovoltaic performance without additional encapsulations.

Fabricating efficient and stable quasi-3D and 3D/2D perovskite solar cells with 2D-sheets connected by inorganic type ionic-bond

Yangyang Liu et al 2021 Nanotechnology 32 355201

In this work, we report a novel two-dimensional (2D) (SrBr)2PbI4 perovskite layered architecture, which were formed by the reaction of strontium bromide (SrBr2), strontium iodide (SrI2) and lead iodide (PbI2). Formation of 2D (SrBr)2PbI4 was verified by small angle XRD peak at 6.4°, which corresponds to the layer distance of 13.78 Å. The best one of solar cells fabricated with Quasi-3D perovskite, (SrBr)2FA59Pb60I181 (n = 60), showed a power conversion efficiency (PCE) of 18.46% and retained 95% of the initial PCE at 1000 h in the dry air. Further, the 2D (SrBr)2PbI4 as the surface passivation layer on the 3D FAPbI3 perovskite greatly reduced the defects at the perovskite/Spiro-OMeTAD interface, and the corresponding solar cells with FAPbI3/(SrBr)2PbI4 3D/2D structure achieved a PCE of 22.14% and over 90% retention of the original PCE at 1000 h. In short, this work provides an example of inorganic complex cations that can form 2D perovskites and achieve perovskite solar cells with high PCE and stabilization at the same time.

Influencing factors and growth kinetics analysis of carbon nanotube growth on the surface of continuous fibers

Jianjie Qin et al 2021 Nanotechnology 32 285702

Carbon nanotubes (CNTs) were continuously grown on the surface of the moving carbon fiber by chemical vapor deposition method using a custom-designed production line to prepare composite reinforcements on a large-scale. The systematic study of different parameters affecting the CNT growth revealed simple growth kinetics, which helps to control the surface morphology and structural quality of CNTs. Since hydrogen maintains the activity of the catalyst, it promotes the growth of CNTs in a continuous process. The increase of acetylene partial pressure promotes the accumulation of amorphous or graphite carbon on the catalyst surface, resulting in the decrease of CNT growth rate when acetylene concentration reaches 40%. The growth temperature significantly affects the CNT diameter and structural quality. As the temperature increases, the crystallinity of the tube wall increases obviously, and the CNT diameter increases due to the aggregate growth of the catalyst particles. According to the Arrhenius formula, the apparent activation energy is observed to be 0.67 eV, which proves that both bulk diffusion and surface diffusion exist when activated carbon passes through the catalyst to form CNTs.

Hole transport free flexible perovskite solar cells with cost-effective carbon electrodes

Haixia Xie et al 2021 Nanotechnology 32 105205

Low temperature derived carbon electrodes are employed to fabricate low cost hole transport layer free perovskite solar cells, in which perovskite films annealed in glovebox and ambient air are used as the absorbers, respectively. Results suggest that the air annealed sample has bigger crystal grains and higher crystallinity, and the existence of a small amount of lead iodide which passivates grain boundaries contributes to a lower trap density. As a result, a maximum power conversion efficiency (PCE) of 13.07% was obtained on the air annealed device, which is higher than those of devices annealed in glovebox (11.25%). Furthermore, the stability of unencapsulated devices stored in wet (with humidity around 90% ± 5%) air atmosphere are investigated and the results prove that our devices exhibit good stability. In addition to rigid devices, flexible perovskite solar cells are also fabricated using the same procedure. The highest PCE of 11.53% is demonstrated on the champion flexible device, and 69% of its initial PCE can be maintained even after 2000 bending cycles with a bending radius of 2 mm. Our work provides a promising and simple rout for low-cost, air-stable, high-efficiency carbon perovskite solar cells for both large area production and flexible electronic devices industry.

Highly transparent, low sheet resistance and stable Tannic acid modified-SWCNT/AgNW double-layer conductive network for organic light emitting diodes

Ze-Ru Zhu et al 2021 Nanotechnology 32 015708

In this paper, we used tannic acid (TA) functionalized carbon nanotubes (TCNTs), and silver nanowires (AgNWs) to construct a new type of transparent conductive film (TCF) with a double-layered conductive network structure. The hybrid film exhibits excellent light transmittance, high electrical conductivity, ultra-flexibility, and strong adhesion. These outstanding performances benefit from the filling and adhesion of hydrophilic TCNT layers to the AgNW networks. Besides, we introduced the post-treatment process of mechanical pressing and covering polymer conductive polymer PEDOT:PSS, which obtained three layers of TCNT/AgNW/PEDOT hybrid film and greatly improved the comprehensive properties. The hybrid film can reach a sheet resistance of 9.2 Ω sq−1 with a transmittance of 83.4% at 550 nm wavelength, and a low root mean square (RMS) roughness (approximately 3.8 nm). After 10 000 bends and tape testing, the conductivity and transmittance of the hybrid film remain stable. The resistance of the film has no significant degradation after 14 d of exposure to high temperature of 85 °C and humidity of 85%, indicating excellent stability. The organic light-emitting diodes (OLEDs) with TCNT/AgNW/PEDOT hybrid film as anode exhibit high current density and luminosity, confirming this process has considerable potential application in photovoltaic devices.

High-stability inorganic perovskite quantum dot–cellulose nanocrystal hybrid films

Chih-Hao Chiang et al 2020 Nanotechnology 31 324002

Inorganic perovskite quantum dots (IPQDs) such as cesium lead halide (CsPbX3, X = Cl, Br and I) quantum dots have attracted much attention for developing cadmium-free quantum light-emitting displays (QLEDs) based on outstanding light emission properties including narrow full width at half maximum (FWHM), tunable bandgap and ultrahigh (>90%) photoluminescence quantum yield (PLQY). Nevertheless, their poor stability under ambient conditions, at high temperature or under continuous light irradiation is the main problem for practical applications. In this study, a new method is proposed to effectively stabilize CsPbBr3 IPQDs by synthesizing them with sulfate-functionalized cellulose nanocrystals (CNCs) at room temperature without using traditional quantum dot stabilizers such as oleylamine (OLA) and oleic acid (OA). The as-prepared CsPbBr3 IPQD/CNC hybrid paper-like films are highly stable and the relative photoluminescence (PL) intensity can be maintained at 92% under continuous UV light (306 nm, 15 W) illumination for 130 h, >99% at high temperature (100 °C) for 130 h, and >99% in ambient conditions for 15 d. Additionally, the PLQY and FWHM of IPQD/CNC are 45.69% and 22 nm, respectively. The ultrahigh stability and narrow FWHM characteristics proposed here for IPQD/CNC hybrid films can provide new possibilities for practical applications in the future development of IPQD-related devices.

Commercially available jeffamine additives for p–i–n perovskite solar cells

Hsiang-Lin Hsu et al 2020 Nanotechnology 31 274002

Commercially available Jeffamines (polyetheramine) with average molecular weights of 2000 and 3000 g mol−1; one (M2005), two (D2000), and three (T3000) primary amino groups end-capping on the polyether backbone; and propylene oxide (PO) and ethylene oxide (EO) functionality were explored as additives for application in MAPbI3 perovskite solar cells (PSCs). The results indicated that the embedding of Jeffamine additives effectively passivates the defects in the grain boundaries of perovskite through the coordination bonding between the nitrogen atom and the uncoordinated lead ion of perovskite. We fabricated p–i–n PSC devices with the structure of glass/indium tin oxide (ITO)/NiOx/CH3NH3PbI3 (with and without Jeffamine)/PC61BM/BCP/Ag. We observed the interaction between the Jeffamine and perovskites. This interaction led to increased lifetimes of the carriers of perovskite, which enabled the construction of high-performance p–i–n PSCs. For the Jeffamine-D2000-derived device, we observed an increase in the power conversion efficiency from 14.5% to 16.8% relative to the control device. Furthermore, the mechanical properties of the perovskite films were studied. The interaction between the additive and perovskite reinforced the flexibility of the thin film, which may pave the way for stretchable optoelectronics.