Focus on 2D Material Nanophotonics

Figure
Figure. A 2D material and its associated energy band gap. Image provided by Xinfeng Liu

Guest Editors

Anlian Pan, Hunan University, China
Kai Zhang, Suzhou Institute of Nano-tech and Nano-bionics, China
Xinfeng Liu, National Centre for Nanoscience and Technology, China
Cheng-Wei Qiu, National University of Singapore, Singapore

Scope

Two-dimensional (2D) materials have triggered intensive research and progress in electronic and optoelectronic devices. This Focus Collection in Nanotechnology is instead dedicated to the advancement of the optical and photonic applications of 2D atomic layered materials. The collection aims to address a series of promising and interdisciplinary new ideas across all areas of 2D nanophotonics.

Topics of interest include, but are not limited to;

  • optical spectrum analysis
  • carrier dymanics
  • light-mater interactions
  • plasmonic/photonic modulation
  • device construction of 2D structured materials and their associated heterostructures

Submission process and deadline for submission

All articles to feature in this Focus Collection are invited contributions, and authors who have agreed to submit should do so by visiting our online submission form.

The deadline for submissions is 20 January 2017. Nanotechnology is able to publish focus collections incrementally. If you submit early in the period your article will not be delayed waiting for other papers in the collection. If you are not able to meet the deadline, please let us know.

Papers

High-performance photodetector based on hybrid of MoS2 and reduced graphene oxide

Rahul Kumar et al 2018 Nanotechnology 29 404001

2D materials are a promising new class of materials for next generation optoelectronic devices owing to their appealing optical and electrical properties. Pristine molybdenum disulfide (MoS2) is widely used in next generation photovoltaic and optoelectronic devices, but its low photo-dark current ratio prevents its use in highly efficient photo detection applications. Here, we decorated crumpled reduced graphene oxide (rGO) particles on a large-area vertically aligned MoS2 flake network to enhance the performance of the MoS2-based photodetector by forming multiple nanoscale p–n heterojunctions. The rGO/MoS2 device exhibited a significantly improved photoresponsivity of ∼2.10 A W−1 along with a good detectivity of ∼5 × 1011 Jones (Jones = cm Hz1/2/W) compared to that of the pristine MoS2 photodetector in ambient atmosphere. Moreover, the rGO/MoS2 photodetector showed a fast response of ∼18 ms with excellent stability and reproducibility in ambient air even after three months. The high performance of the photodetector is attributed to enhanced photoexcited carrier density and suppressed photo generated electron–hole recombination due to the strong local built-in electric field developed at the rGO/MoS2 interface. Our results showed that integration of rGO with MoS2 provides an efficient platform for photo detection applications.

Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors

Yi Gao et al 2018 Nanotechnology 29 244001

Metal-phosphorus-trichalcogenides (MPTs), represented by NiPS3, FePS3, etc, are newly developed 2D wide-bandgap semiconductors and have been proposed as excellent candidates for ultraviolet (UV) optoelectronics. In spite of having superior advantages for solar-blind UV photodetectors, including those free of surface trap states, being highly compatible with versatile integrations as well as having an appropriate band gap, to date relevant study is rare. In this work, the photoresponse characteristic of UV detectors based on few-layer FePS3 has been comprehensively investigated. The responsivity of the photodetector, which is observed to be determined by bias gate voltage, may achieve as high as 171.6 mAW−1 under the illumination of 254 nm weak light, which is comparable to most commercial UV detectors. Notably, both negative and positive photoconductivities exist in the FePS3 photodetectors and can be controllably switched with bias voltage. The eminent and novel photoresponse property paves the way for the further development and practical use of 2D MPTs in high-performance UV photodetections.

Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

Shaolong Jiang et al 2018 Nanotechnology 29 204003

Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy

Xiangdong Guo et al 2018 Nanotechnology 29 184004

Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%–9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V−1 s−1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.

Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)

Sijie Liu et al 2018 Nanotechnology 29 184002

Photodetectors with high polarization sensitivity are in great demand in advanced optical communication. Here, we demonstrate that photodetectors based on titanium trisulfide (TiS3) are extremely sensitive to polarized light (from visible to the infrared), due to its reduced in-plane structural symmetry. By density functional theory calculation, TiS3 has a direct bandgap of 1.13 eV. The highest photoresponsivity reaches 2500 A W−1. What is more, in-plane optical selection caused by strong anisotropy leads to the photoresponsivity ratio for different directions of polarization that can reach 4:1. The angle-dependent photocurrents of TiS3 clearly display strong linear dichroism. Moreover, the Raman peak at 370 cm−1 is also very sensitive to the polarization direction. The theoretical optical absorption of TiS3 is calculated by using the HSE06 hybrid functional method, in qualitative agreement with the observed experimental photoresponsivity.

Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

Wenjun Liu et al 2018 Nanotechnology 29 174002

In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice

X J Li et al 2018 Nanotechnology 29 174001

We investigate theoretically the effects of modulated periodic perpendicular magnetic fields on the electronic states and optical absorption spectrum in monolayer black phosphorus (phosphorene). We demonstrate that different phosphorene magnetic superlattice (PMS) orientations can give rise to distinct energy spectra, i.e. tuning the intrinsic electronic anisotropy. Rashba spin–orbit coupling (RSOC) develops a spin-splitting energy dispersion in this phosphorene magnetic superlattice. Anisotropic momentum-dependent carrier distributions along/perpendicular to the magnetic strips are demonstrated. The manipulations of these exotic electronic properties by tuning superlattice geometry, magnetic field and the RSOC term are addressed systematically. Accordingly, we find bright-to-dark transitions in the ground-state electron–hole pair transition rate spectrum and the PMS orientation-dependent anisotropic optical absorption spectrum. This feature offers us a practical way of modulating the electronic anisotropy in phosphorene by magnetic superlattice configurations and detecting this modulation capability by using an optical technique.

Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity

Liu Jiang-Tao et al 2018 Nanotechnology 29 144001

The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3–14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.

Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study

Yuanzheng Li et al 2018 Nanotechnology 29 124001

Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS2 and WSe2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS2/WSe2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

Large-area and highly crystalline MoSe2 for optical modulator

Jinde Yin et al 2017 Nanotechnology 28 484001

Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm−2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

Negative terahertz photoconductivity in 2D layered materials

Junpeng Lu et al 2017 Nanotechnology 28 464001

The remarkable qualities of 2D layered materials such as wide spectral coverage, high strength and great flexibility mean that ultrathin 2D layered materials have the potential to meet the criteria of next-generation optoelectronic devices. Photoconductivity is one of the critical parameters of materials applied to optoelectronics. In contrast to traditional semiconductors, specific ultrathin 2D layers present anomalous negative photoconductivity. This opens a new avenue for designing novel optoelectronic devices. It is important to have a deep understanding of the fundamentals of this anomalous response, in order to design and optimize such devices. In this review, we provide an overview of the observation of negative photoconductivity in 2D layered materials including graphene, topological insulators and transitional metal dichalcogenides. We also summarize recent reports on investigations into the fundamental mechanism using ultrafast terahertz (THz) spectroscopies. Finally, we conclude the review by discussing the existing challenges and proposing the possible prospects of this direction of research.