Brought to you by:

Table of contents

Volume 16

Number 1, January 2021

Previous issue Next issue

Buy this issue in print

Topical Review

011001
The following article is Open access

, , , and

The endoskeleton of echinoderms (Deuterostomia: Echinodermata) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour and functional design. The sea urchin (Echinodermata: Echinoidea) endoskeleton consists of three main structural components: test, dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure–function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies.

Special Issue Article

015001
The following article is Open access

, and

Understanding how animals regulate their gait during locomotion can give biological insight and inspire controllers for robots. Why animals use the gallop at the highest speeds remains incompletely explained. Hypothesized reasons for galloping include that it enables recruitment of spinal musculoskeletal structures, that it minimizes energy losses as predicted by collisional theory, or that it provides extended flight phases with more time for leg placement and hence enhances or provides necessary maneuverability [Alexander 1988 Am. Zool.28 237–45; Ruina, Bertram and Srinivasan 2005 J. Theor. Biol.237 170–92; Usherwood 2019 J. Exp. Zool. Part A 333 9–19; Hildebrand1989 Bioscience39 766–75]. The latter-most hypothesis has implications in robotics, where controllers based on the concept of multistability have gained some traction. Here we examine this hypothesis by studying the dynamics of dog gait on flat and rough terrain. This hypothesis predicts that injection of noise into timing and location of ground contacts during the galloping gait by rough terrain will result in an isotropically more noisy gallop gait, centered around the gallop used on flat terrain. We find that dog gait in terms of leg swing timing on rough terrain is not consistently more variable about the mean gait, and constrain the upper limits of this variability to values that are unlikely to be biologically relevant. However the location of the mean gait indeed only shifts by a small amount. Therefore, we find limited support for this hypothesis. This suggests that achieving a target gallop gait with tight regulation is still the desired behavior, and that large amounts of variability in gait are not a desired feature of the gallop. For robotics, our results suggest that the emergent animal-environment dynamics on rough terrain do not exhibit uniformly wider basins of attraction. Future robotics work could test whether controllers that do or do not allow shifts in mean gait and gait variability produce more economical and/or stable gallops.

Papers

016002

, and

Burst-and-coast swimming is an intermittent mode of locomotion used by various fish species. The intermittent gait has been associated with certain advantages such as stabilizing the visual field, improved sensing ability, and reduced energy expenditure. We investigate burst-coast swimming in rummy nose tetra fish (Hemigrammus bleheri) using a combination of experimental data and numerical simulations. The experiments were performed in a shallow water channel where the tetra fish swam against an imposed inflow. High speed video recordings of the fish were digitized to extract the undulatory kinematics at various swimming speeds. The kinematics data were then used in Navier–Stokes simulations to prescribe the undulatory motion for three-dimensional geometrical models of the fish. The resulting steady-state speeds of the simulated self-propelled swimmers agree well with the speeds observed experimentally. We examine the power requirements for various realistic swimming modes, which indicate that it is possible to use continuous swimming gaits that require considerably less mechanical energy than intermittent burst-coast modes at comparable speeds. The higher energetic cost of burst-coast swimming suggests that the primary purpose of intermittent swimming may not be to conserve energy, but it may instead be related to a combination of other functional aspects such as improved sensing and the likely existence of a minimum tail-beat frequency. Importantly, using sinusoidal traveling waves to generate intermittent and continuous kinematics, instead of using experiment-based kinematics, results in comparable power requirements for the two swimming modes.

016001

, , , and

Insects such as honeybees are capable of fusing the information sensed by multiple sensory organs for attitude and heading determination. In this paper, inspired by the sensory fusion mechanism of insects' polarization compass and haltere, a bioinspired polarization-based attitude and heading reference system (PAHRS) is presented. The PAHRS consists of compound eye polarization compass and inertial measurement unit (IMU). By simulating multi-view structure of the dorsal rim area in insects' compound eyes, a non-coplanar 'polarization-opponent (POL)-type' architecture is adopted for the compound eye polarization compass. The polarization compass has multi-directional observation channels, which is capable of adaptively selecting the angle of polarization and obtaining the polarization vectors. Therefore, the environmental adaptability of the polarization compass can be enhanced. In addition, the integration strategy between the compound eye polarization compass and IMU is proposed. Moreover, the sources of system errors are analyzed to improve the heading angle accuracy, based on which a new calibration model is established to compensate the installation errors of the PAHRS. Finally, experiments are carried out under both clear sky and cloudy conditions. The test results show that the error root mean square of heading angle is 0.14° in clear sky, and 0.42° in partly cloudy conditions.

016003
The following article is Open access

, , , and

The work in this paper focuses on the examination of the effect of variable stiffness distributions on the kinematics and propulsion performance of a tuna-like swimmer. This is performed with the use of a recently developed fully coupled fluid-structure interaction solver. The two different scenarios considered in the present study are the stiffness varied along the fish body and the caudal fin, respectively. Our results show that it is feasible to replicate the similar kinematics and propulsive capability to that of the real fish via purely passive structural deformations. In addition, propulsion performance improvement is mainly dependent on the better orientation of the force near the posterior part of swimmers towards the thrust direction. Specifically, when a variable body stiffness scenario is considered, the bionic body stiffness profile results in better performance in most cases studied herein compared with a uniform stiffness commonly investigated in previous studies. Given the second scenario, where the stiffness is varied only in the spanwise direction of the tail, similar tail kinematics to that of the live scombrid fish only occurs in association with the heterocercal flexural rigidity profile. The resulting asymmetric tail conformation also yields performance improvement at intermediate stiffness in comparison to the cupping and uniform stiffness.

016004
The following article is Open access

, , and

Cerebellar synaptic plasticity is vital for adaptability and fine tuning of goal-directed movements. The perceived sensory errors between desired and actual movement outcomes are commonly considered to induce plasticity in the cerebellar synapses, with an objective to improve desirability of the executed movements. In rapid goal-directed eye movements called saccades, the only available sensory feedback is the direction of reaching error information received only at end of the movement. Moreover, this sensory error dependent plasticity can only improve the accuracy of the movements, while ignoring other essential characteristics such as reaching in minimum-time. In this work we propose a rate based, cerebellum inspired adaptive filter model to address refinement of both accuracy and movement-time of saccades. We use optimal control approach in conjunction with information constraints posed by the cerebellum to derive bio-plausible supervised plasticity rules. We implement and validate this bio-inspired scheme on a humanoid robot. We found out that, separate plasticity mechanisms in the model cerebellum separately control accuracy and movement-time. These plasticity mechanisms ensure that optimal saccades are produced by just receiving the direction of end reaching error as an evaluative signal. Furthermore, the model emulates encoding in the cerebellum of movement kinematics as observed in biological experiments.

016005

, and

Flapping insect wings deform during flight. This deformation benefits the insect's aerodynamic force production as well as energetic efficiency. However, it is challenging to measure wing displacement field in flying insects. Many points must be tracked over the wing's surface to resolve its instantaneous shape. To reduce the number of points one is required to track, we propose a physics-based reconstruction method called system equivalent reduction expansion processes to estimate wing deformation and strain from sparse measurements. Measurement locations are determined using a weighted normalized modal displacement method. We experimentally validate the reconstruction technique by flapping a paper wing from 5–9 Hz with 45° and measuring strain at three locations. Two measurements are used for the reconstruction and the third for validation. Strain reconstructions had a maximal error of 30% in amplitude. We extend this methodology to a more realistic insect wing through numerical simulation. We show that wing displacement can be estimated from sparse displacement or strain measurements, and that additional sensors spatially average measurement noise to improve reconstruction accuracy. This research helps overcome some of the challenges of measuring full-field dynamics in flying insects and provides a framework for strain-based sensing in insect-inspired flapping robots.

016006

and

Aquatic organisms jumping for aerial prey require high-performance propulsion, accurate aim, and trajectory control to succeed. Archer fish, capable of jumping up to twice their body length out of the water, address these considerations through multifaceted fin and body kinematics. In this study, we utilized 3D synthetic aperture particle image velocimetry to visualize the wakes of archer fish throughout the jumping process. We found that multiple modes of interaction between the anal and caudal fins occur during jump behaviors. Time-resolved volumetric measurements presented herein illustrate the hydrodynamics of each interaction mode in detail. Additionally, regardless of which fin uses and interactions were exhibited during a jump, we found similar relationships between the cumulative impulse of multiple propulsive vortices in the wake and the instantaneous ballistic momentum of the fish. Our results suggests that fin use may compensate for variations in individual kinematic events and in the aiming posture assumed prior to jumping and highlight how interactions between tailbeats and other fins help the archer fish reach necessary prey heights in a spatially- and visually-constrained environment. In the broader context of bioinspired propulsion, the archer fish exemplifies that multiple beneficial hydrodynamic interactions can be generated in a high-performance scenario using a single set of actuators.

016007
The following article is Open access

, , and

The tail-flapping propulsion of a robotic fish forms a hydrodynamic pressure field that depends primarily on the flapping frequency and amplitude. In a two-robot aligned group, the tail of the front robot generates an oscillating pressure that is detectable by its follower. This paper proposes a position estimator for the follower to locate the position of the leading robotic fish. The position estimator uses the hydrodynamic pressure measured on a sensor array installed on the forefront of the following vehicle body. We derive a potential flow model to describe the pressure field of the leader in the presence of the follower. Using this pressure field model, we further derive an observability measure which is used to determine the relative positions of the leader and follower for which the position estimator will produce a reliable estimate. The position estimator employs the Levenberg–Marquardt algorithm, due to the nonlinearity of the pressure model. Results from the observability analysis show that a satisfactory estimation of the leader position is achieved when the leader is located directly ahead, on the starboard-bow, or the port-bow of the follower, similar to the formation pattern generally found in a school of fish. The observability analysis also shows that poor estimation is obtained when the leader is abeam of the follower. Tank experiments confirm the observability analysis and also demonstrate the use of the position estimator for feedback control by the follower.

016008

, , , , , and

Numerous fluid-structure interaction problems in biology have been investigated using the immersed boundary method. The advantage of this method is that complex geometries, e.g., internal or external morphology, can easily be handled without the need to generate matching grids for both the fluid and the structure. Consequently, the difficulty of modeling the structure lies often in discretizing the boundary of the complex geometry (morphology). Both commercial and open source mesh generators for finite element methods have long been established; however, the traditional immersed boundary method is based on a finite difference discretization of the structure. Here we present a software library for obtaining finite difference discretizations of boundaries for direct use in the 2D immersed boundary method. This library provides tools for extracting such boundaries as discrete mesh points from digital images. We give several examples of how the method can be applied that include passing flow through the veins of insect wings, within lymphatic capillaries, and around starfish using open-source immersed boundary software.

016009

, , and

Application of bio-inspired design in geotechnical engineering shows promise for improving the energy and material efficiency of several processes in infrastructure construction and site characterization. This project examines tree root systems for use in future bio-inspired design to improve the capacity of foundations used to support, for example, buildings and bridges. Foundation and anchorage elements used in industry are comprised almost solely of linear elements with a constant cross-sectional geometry. This functional form has remained the same for more than a century, primarily due to material availability and installation simplicity. Knowledge and understanding of the mechanisms that contribute to capacity development of natural nonlinear or branched foundation systems, such as tree root systems, could make foundation design more sustainable. The experiments described herein show that the root systems studied are 6–10 times as efficient as a conventional micropile system in developing tensile capacity on a per volume basis, with some systems displaying nearly 100 times efficiency in comparison to a conventional shallow footings. This paper explores the relationship between root system architecture and force–displacement behavior of tree root systems to better understand how to improve foundation capacity and demonstrates the potential for a more efficient use of materials and energy as compared to conventional pile and footing approaches.

016010

, and

Hummingbirds perform a variety of agile maneuvers, and one of them is the escape maneuver, in which the birds can steer away from threats using only 3–4 wingbeats in less than 150 ms. A distinct kinematic feature that enables the escape maneuver is the rapid backward tilt of the wing stroke plane at the beginning of the maneuver. This feature results in a simultaneous nose-up pitching and backward acceleration. In this work, we investigated how the magnitude and timing of the wing stroke-plane tilt (relative to the phase of flapping cycle) affected the generation of backward thrust, lift, and pitching moment and therefore the maneuverability of escape flight. Investigations were performed using experiments on dynamically scaled robotic wings and computational fluid dynamic simulation based on a simplified harmonic wing stroke and rotation kinematics at Re = 1000 and hummingbird wing kinematics at Re ≈ 10 000. Results showed that the wing stroke-plane tilt timing exerted a strong influence on the aerodynamic force generation. Independent of the tilt magnitude, the averaged backward thrust and pitching moment were maximized when the stroke plane tilt occurred near the end of the half strokes (e.g., upstroke and downstroke). Relative to the other timings of stroke-plane tilt, the 'optimal' timings led to a maximal backward tilt of the total aerodynamic force during the wing upstroke; hence, the backward thrust and nose-up pitching moment increased. The 'optimal' timings found in this work were in good agreement with those identified in the escape maneuvers of four species of hummingbirds. Therefore, hummingbirds may use a similar strategy in the beginning of their escape maneuver.

016011

, , and

This study investigated the function of the beetle's claw for its smooth and slipless walking and designed an artificial claw open–close cycle mechanism to mimic the beetle's walking. First, the effects of claw opening and closing on beetles' ability to attach to surfaces were examined. A beetle does not have an attachment pad, and only its claws work to grip the ground; its claw opens and closes and attaches with two sharp hooks. With their claws, beetles can smoothly walk, neither slipping on nor having their claws stuck in the surface. How do they perform smooth walking with sharp claws? In this study, we observed that beetles close their claws when they raise and swung their legs forward, while they open their claws when they lowered their legs to the ground. We then conducted non-destructive tests: their claws were forced open or closed. There was a significant difference in the trajectories of forced-closed claws compared to intact claws and forced-open claws. When their claws were forced-closed, this caused slippage in walking. On the other hand, when a claw was forced-open and its rotation was also inhibited, the claw stuck heavily in the surface, and the beetle could not walk. Based on these findings, we designed an artificial claw to open and close in the same cyclic manner as in the case of natural beetles. The performance of the artificial claw was consistent with the conclusions drawn from natural beetles: the locomotive robot with the artificial claw smoothly moved without slippage. Through these observations, non-destructive tests and performance of the bio-inspired artificial claws, this study confirmed the function of the open–close cycle of beetle claws and demonstrated and successfully adopted it for a locomotive robot.

016012

, , and

The lateral line enables fish to efficiently sense the surrounding environment, thus assisting flow-related fish behaviors. Inspired by this phenomenon, varieties of artificial lateral line systems (ALLSs) have been developed and applied to underwater robots. This article focuses on using the pressure sensor arrays based ALLS-measured hydrodynamic pressure variations (HPVs) for estimating the relative states between an upstream oscillating fin and a downstream robotic fish. The HPVs and relative states are measured in flume experiments in which the oscillating fin and the robotic fish have been locate with upstream-downstream formation in a flume. The relative states include the relative oscillating frequency, amplitude, and offset of the upstream oscillating fin to the downstream robotic fish, the relative vertical distance, the relative yaw angle, the relative pitch angle, and the relative roll angle between the upstream oscillating fin and the downstream robotic fish. Regression models between the ALLS-measured and the mentioned relative states are investigated, and regression models-based relative state estimations are conducted. Specifically, two criteria are proposed firstly to investigate not only the sensitivity of each pressure sensor to the variations of relative state but also the insufficiency and redundancy of the pressure sensors. And thus the pressure sensors used for regression analysis are determined. Then four typical regression methods, including random forest (RF) algorithm, support vector regression, back propagation neural network, and multiple linear regression method are used for establishing regression models between the ALLS-measured HPVs and the relative states. Then regression effects of the four methods are compared and discussed. Finally, the RF-based method, which has the best regression effect, is used to estimate the relative yaw angle and oscillating amplitude using the ALLS-measured HPVs and exhibits excellent estimation performance.

016013

, , and

Active flight control plays a crucial role in stabilizing the body posture of insects to stay aloft under a complex natural environment. Insects can achieve a closed-loop flight control by integrating the external mechanical system and the internal working system through manipulating wing kinematics according to feedback information from multiple sensors. While studies of proportional derivative/proportional integral derivative-based algorithms are the main subject to explore the continuous flight control mechanisms associated with insect flights, it is normally observed that insects achieve an intermittent spike firing in steering muscles to manipulate wings in flight control discontinuously. Here we proposed a novel intermittent control strategy for a 3 degree of freedom (DoF) pitch-control and explored its stabilization robustness in bumblebee hovering. An integrated computational model was established and validated, which comprises an insect-inspired dynamic flight simulator and a novel discrete feedback controller as well as a simplified free-flight dynamic model. We found that the intermittent control model can achieve an angular-dominant flight control, whereas the continuous control model corresponds to an angular-velocity-dominant one. Given the biological constraints in sensorimotor neurobiology and musculoskeletal mechanics, the intermittent control strategy was examined capable of enhancing the stabilization robustness in terms of sensory latency, stroke derivation, spike interval, and damping strength. Our results indicate that the intermittent control strategy is likely a sophisticated flight control mechanism in insect flights while providing a bioinspired flight-control design for insect size flapping-wing micro air vehicles.

016014

, , , , , and

The compliance and conformability of soft robots provide inherent advantages when working around delicate objects or in unstructured environments. However, rapid locomotion in soft robotics is challenging due to the slow propagation of motion in compliant structures, particularly underwater. Cephalopods overcome this challenge using jet propulsion and the added mass effect to achieve rapid, efficient propulsion underwater without a skeleton. Taking inspiration from cephalopods, here we present an underwater robot with a compliant body that can achieve repeatable jet propulsion by changing its internal volume and cross-sectional area to take advantage of jet propulsion as well as the added mass effect. The robot achieves a maximum average thrust of 0.19 N and maximum average and peak swimming speeds of 18.4 cm s−1 (0.54 body lengths/s) and 32.1 cm s−1 (0.94 BL/s), respectively. We also demonstrate the use of an onboard camera as a sensor for ocean discovery and environmental monitoring applications.

016015

, and

The complex structure of natural bio-organic matter has inspired scientists to utilise these as templates to design 'biomorphic materials', which retain the intricate architecture of the materials while acting as a useful bioactive material. Biomorphic hydroxyapatite-based fibres were synthesised using Harakeke leaf fibre as a template, which constitutes a powerful method for manufacturing bioactive ceramic fibres. Furthermore, in creating the hydroxyapatite-based fibres, a natural source of calcium and phosphate ions (from bovine bone) was utilised to create the digest solution in which the leaf fibres were immersed prior to their calcination to form the inorganic fibres. Chemical, thermogravimetric and microscopic characterisation confirmed that the final product was able to successfully replicate the shape of the fibres and furthermore be transformed into calcium deficient, bone-like hydroxyapatite.

016016

, , and

Encoding of sensory information is fundamental to closing the performance gap between man-made and biological sensing. It has been hypothesized that the coupling of sensing and actuation, a phenomenon observed in bats among other species, is critical to accomplishing this. Using horseshoe bats as a model, we have developed a biomimetic pinna model with a soft actuation system along with a prototype strain sensor for enabling motor feedback. The actuation system used three individually controlled pneumatic actuators per pinna which actuated different portions of the baffle. This prototype produced eight different possible motions that were shown to have significant effects on incoming sound and could hence function as a substrate for adaptive sensing. The range of possible motions could be expanded by adjusting the fill and release parameters of the actuation system. Additionally, the strain sensor was able to represent the deformation of the pinna as measurements from this sensor were highly correlated with deformation estimates based on stereo vision. However, the relationship between displacements of points on the pinna and the sensor output was nonlinear. The improvements embodied in the system discussed here could lead to enhancements in the ability of autonomous systems to encode relevant information about the real world.

016017

, , and

We investigated the effect of the wing–wing interaction, which is one key aspect of flight control, of damselflies (Matrona cyanoptera and Euphaea formosa) in forward flight that relates closely to their body morphologies and wing kinematics. We used two high-speed cameras aligned orthogonally to measure the flight motions and adopted 3D numerical simulation to analyze the flow structures and aerodynamic efficiencies. The results clarify the effects of wing–wing interactions, which are complicated combinations of biological morphology, wing kinematics and fluid dynamics. As the amplitude of the hindwing of M. cyanoptera is larger than that of E. formosa, the effect of the wing–wing interaction is more constructive. Restricted by the body morphology of E. formosa, the flapping range of the hindwing is below the body. With the forewing in the lead, the hindwing is farther from the forewing, which is not susceptible to the wake of the forewing, and enables superior lift and thrust. Because of the varied rotational motions, the different shed direction of the wakes of the forewings causes the optimal thrust to occur in different wing phases. Because of its biological limitations, a damselfly can use an appropriate phase to fulfill the desired flight mode. The wing–wing interaction is a compromise between lift efficiency and thrust efficiency. The results reveal that a damselfly with the forewing in the lead can have an effective aerodynamic performance in flight. As an application, in the design concept of a micro-aircraft, increasing the amplitude of the hindwing might enhance the wing–wing interaction, thus controlling the flight modes.

016018

, , , and

To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between flexible bodies of natural aquatic species and water around them. Advanced modal decomposition techniques provide us with tools to develop more in-depth understating about these complex dynamical systems. In this paper, we employ proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle jack (Caranx hippos) fish. Then, we present a computational framework for handling fluid–structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of the structure in the remaining modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-order mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species.

016019

, and

The flapping flight of many bat species is characterized by a high degree of maneuverability and provides fertile ground for biomimetic design. However, there has been little prior work toward understanding bat flight maneuvers, particularly using a coupled kinematic and aerodynamic framework. Here, wing kinematic data of a large insectivorous bat (Hipposideros armiger) in straight and turning flight is investigated. Fundamental to turning flight are asymmetries in the wing kinematics and consequently asymmetries in the aerodynamic forces. Forces were calculated from the wing kinematics using aerodynamic numerical simulations. Aspects of the wing kinematics in the turn that were distinguishable from straight flight were an increase in stroke plane deviation angle, nominal increase in flapping amplitude, and a decrease in the horizontal stroke plane angle of the wing inside the turn. While prior work on the mechanics of turning flight in animals has focused on classifying a turn as either banking or yawing, in the present work we show evidence of simultaneous and synergistic banking and yawing mechanisms. During the initiation of the turn, the bank angle was low, and elevated thrust by the outside wing generated a significant yaw rotational moment during both the upstroke and downstroke. Later in the turn, the bank angle increased to approximately 25 degrees tilting the net force vector toward the inside of the turn providing centripetal acceleration thereby turning the bat. Understanding the details of the turning mechanism—combined yaw and bank—provides useful design and control principles for biomimetic flapping MAVs.