Table of contents

Papers

P10023

, , , , , , , , , et al

In halo dark matter axion search experiments, cylindrical microwave cavities are typically employed to detect signals from the axion-photon conversion. To enhance the conversion power and reduce the noise level, cavities are placed in strong solenoid magnetic fields at sufficiently low temperatures. Exploring high mass regions in cavity-based axion search experiments requires high frequency microwave cavities and thus understanding cavity properties at high frequencies in extreme conditions is deemed necessary. We present a study of the magnetoresistance of copper using a cavity with a resonant frequency of 12.9 GHz at the liquid helium temperature in magnetic fields up to 15 T utilizing a second generation high temperature superconducting magnet. The observations are interpreted to be consistent with the anomalous skin effect and size effect. This is the first measurement of magnetoresistance at a high frequency (>10 GHz) in high magnetic fields (>10 T).

P10022

and

In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than −16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.

P10021

, , , , , , , , and

The Water Cherenkov Detector Array (WCDA), which is one of the main components of the Large High Altitude Air Shower Observatory (LHAASO), functions in surveying the northern sky for high-energy gamma ray sources at the energy range around of 100 GeV–30 TeV. The precision of the time measurement for shower particles hitting every detector in the array is directly associated with the detection sensitivity for the sources. The calibration precision of the time offsets among the detector cells should be less than 0.1 ns to obtain less than 0.1o pointing error of the detector to any point source. In this regard, "cross calibration" is employed for the detector array, with 180 bundles of fiber systems guiding the lights of LEDs to each PMT. A test bench comprising fast PMTs and an one-dimensional slide platform is set up in the laboratory to test the fiber bundles. The test bench and the test procedure is described in this paper, and the test results are presented.

P10020

, , , , , , , , , et al

Investigation of HV-CMOS sensors for use as a tracking detector in the ATLAS experiment at the upgraded LHC (HL-LHC) has recently been an active field of research. A potential candidate for a pixel detector built in Silicon-On-Insulator (SOI) technology has already been characterized in terms of radiation hardness to TID (Total Ionizing Dose) and charge collection after a moderate neutron irradiation. In this article we present results of an extensive irradiation hardness study with neutrons up to a fluence of 1× 1016 neq/cm2. Charge collection in a passive pixelated structure was measured by Edge Transient Current Technique (E-TCT). The evolution of the effective space charge concentration was found to be compliant with the acceptor removal model, with the minimum of the space charge concentration being reached after 5× 1014 neq/cm2. An investigation of the in-pixel uniformity of the detector response revealed parasitic charge collection by the epitaxial silicon layer characteristic for the SOI design. The results were backed by a numerical simulation of charge collection in an equivalent detector layout.

P10019

, , , , , , and

Muon scattering tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear materials. However, the flux of cosmic ray muons is low, in the real life application, the detection has to be done a short timescale with small numbers of muons. In this paper, we present a novel approach to detection of special nuclear material by using cosmic ray muons. We use the degree of grey incidence to distinguish typical waste fuel material, uranium, from low-Z material, medium-Z material and other high-Z materials of tungsten and lead. The result shows that using this algorithm, it is possible to detect high-Z materials with an acceptable timescale.

P10018

, and

This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2⋅s epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.

P10017

, , , and

A study of the localization properties of a single-element Resistive Plate WELL (RPWELL) detector is presented. The detector comprises of a single-sided THick Gaseous Electron Multiplier (THGEM) coupled to a segmented readout anode through a doped silicate-glass plate of 1010 Ω⋅cm bulk resistivity. Operated in ambient \nech gas, the detector has been investigated with 150 GeV muons at CERN-SPS. Signals induced through the resistive plate on anode readout strips were recorded with APV25/SRS electronics. The experimental results are compared with that of Monte Carlo simulations. The effects of various physics phenomena on the position resolution are discussed. The measured position resolution in the present configuration is 0.28 mm RMS—compatible with the holes-pattern of the multiplier. Possible ways for improving the detector position resolution are suggested.

P10016

, and

This document presents a detailed study of the performance of a set of digital filters whose implementations are based on the best linear unbiased estimator theory interpreted as a constrained optimization problem that could be relaxed depending on the input signal characteristics. This approach has been employed by a number of recent particle physics experiments for measuring the energy of particle events interacting with their detectors. The considered filters have been designed to measure the peak amplitude of signals produced by their detectors based on the digitized version of such signals. This study provides a clear understanding of the characteristics of those filters in the context of particle physics and, additionally, it proposes a phase related constraint based on the second derivative of the Taylor expansion in order to make the estimator less sensitive to phase variation (phase between the analog signal shaping and its sampled version), which is stronger in asynchronous experiments. The asynchronous detector developed by the ν-Angra Collaboration is used as the basis for this work. Nevertheless, the proposed analysis goes beyond, considering a wide range of conditions related to signal parameters such as pedestal, phase, sampling rate, amplitude resolution, noise and pile-up; therefore crossing the bounds of the ν-Angra Experiment to make it interesting and useful for different asynchronous and even synchronous experiments.

P10015

, , , , , , , , , et al

A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ∼107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ∼3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.

P10014

, , , , , , , , , et al

PandaX III is a High Pressure gaseous xenon Time Projection Chamber for Double Beta Decay detection. It will be installed deep underground in the JinPing Laboratory in Szechuan province, China. During its first phase the detector will operate with 200 kg of enriched 136Xe. The detector consists of a mesh cathode in the center of a cylindrical vessel and Micro-Bulk Micro-Megas at both ends to read out the drifting charges. The active volume is surrounded by an array of electrodes to shape the homogeneous drift field, the so called field cage. Gaseous xenon, however, is a poor dielectric. It would require in excess of 10 cm to safely stand off the HV between these electrodes and the grounded detector walls. Nearly a quarter of our available xenon would be wasted in this dead space. In a new design the electric field outside the field shaping is totally contained in a cylinder 1.6 m diameter and 2 m long. For manufacturing two 50 mm thick Acrylic plates are bend into half cylinders and bonded together. The outside surface of the cylinder is covered with a copper mesh as ground plane. The gap between field cage and detector vessel can be now reduced to 1 mm, and this gap is field free. The amount of wasted xenon is reduced by a factor 100. The field shaping electrodes and the resistive divider network are mounted on 5 mm thick Acrylic panels suspended on the inside of the field cage. This design is realized with low radioactivity materials.

P10013
The following article is Open access

, , , , , , , , , et al

Spectral computed tomography (CT) systems are employed with energy-resolving photon counting detectors. Incorporation of a spectrally accurate x-ray beam model in image reconstruction helps to improve material identification and quantification by these systems. Using an inaccurate x-ray model in spectral reconstruction can lead to severe image artifacts, one of the extreme cases of this is the well-known beam-hardening artifacts. An often overlooked spectral feature of x-ray beams in spectral reconstruction models is the angular dependence of the spectrum with reference to the central beam axis. To address these factors, we have developed a parameterized semi-analytical x-ray source model in the diagnostic imaging range (30-120 kVp) by applying regression techniques to data obtained from Monte Carlo simulations (EGSnrc). This x-ray beam model is generalized to describe the off-axis spectral information within ±17o along θ (vertical direction), ±5o along ϕ (horizontal direction) of the central axis, and can be parameterized for specific x-ray tube models. Comparisons of our model with those generated by SpekCalc, TOPAS, and IPEM78 at central axis show good agreement (within 2 %). We have evaluated the model with experimental data collected with a small animal spectral scanner.

P10012

, , , , , , , , , et al

Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism for A STable experiment II (BEAST II) project is particularly designed to measure the beam backgrounds around the interaction point of the SuperKEKB collider for the Belle II experiment. We develop a system using bismuth germanium oxide (BGO) crystals with optical fibers connecting to a multianode photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA) embedded readout board for monitoring the real-time beam backgrounds in BEAST II. The overall radiation sensitivity of this system is estimated to be (2.20±0.26)×10−12 Gy/ADU (analog-to-digital unit) with the standard 10 m fibers for transmission and the MAPMT operating at 700 V. Our γ-ray irradiation study of the BGO system shows that the exposure of BGO crystals to 60Co γ-ray doses of 1 krad has led to immediate light output reductions of 25–40%, and the light outputs further drop by 30–45% after the crystals receive doses of 2–4 krad. Our findings agree with those of the previous studies on the radiation hard (RH) BGO crystals grown by the low thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the BGO system is also consistent with the simulation, and is estimated to be about 1.18 times the equivalent dose. These results prove that the BGO system is able to monitor the background dose rate in real time under extreme high radiation conditions. This study concludes that the BGO system is reliable for the beam background study in BEAST II.

P10011
The following article is Open access

, , , , , and

In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8–10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4–6.1 kV⋅cm−1⋅ bar−1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.

P10010

, , , , , , , , , et al

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation, we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.

P10009
The following article is Open access

, , , , , , , , , et al

We present results from the first measurement of axial range components of fiducialized neutron induced nuclear recoil tracks using the DRIFT directional dark matter detector. Nuclear recoil events are fiducialized in the DRIFT experiment using temporal charge carrier separations between different species of anions in 30:10:1 Torr of CS2:CF4:O2 gas mixture. For this measurement, neutron-induced nuclear recoil tracks were generated by exposing the detector to 252Cf source from different directions. Using these events, the sensitivity of the detector to the expected axial directional signatures were investigated as the neutron source was moved from one detector axis to another. Results obtained from these measurements show clear sensitivity of the DRIFT detector to the axial directional signatures in this fiducialization gas mode.

P10008

, , , , , , and

The resistive anode readout facilitates a good spatial resolution with a large reduction of the electronics channels. The application of such readout method on a 100×100 mm2 triple-GEM detector is presented. The detector anode covers 88×88 mm2 sensitive area and consists of 11×11 resistive cells with the cell dimension of 8×8 mm2. The detector has been tested by using a 55Fe source (5.9 keV) and an X-ray tube (8 keV). It is found that the spatial resolution (σ) is about 120 μ m with the intrinsic detector response better than 100 μ m. The position nonlinearity of the whole sensitive area is better than 3%. The energy resolution for 5.9 keV X rays is around 20% (FWHM) and the gain nonuniformity between different cells is better than 7%. The detector shows a quite good 2D imaging performance as well. Especially, the detector costs only half of the number of the electronics channels compared with that using the 2D strip readout.

P10007

, , , , , , , , and

The newly-built high resolution neutron diffractometer (HRND) at China Academy of Engineering Physics (CAEP) could not acquire high-quality diffraction patterns. In order to solve the problem, the present work introduces the Monte Carlo method based software called Geant4 which is rarely applied in the field of neutron diffraction. The geometrical structure of HRND has been structured by Geant4, thus simulation results can not only re-display the problems of HRND but help to solve such problems as well. According to the simulation results, some effective measures have been carried out to obtain higher instrument performance. It is found that the performance of HRND is improved eventually after new experimental diffraction patterns are acquired.

P10006

, and

Nanowires, due to their special physical properties and also high surface to volume ratio, can have considerable applications in designing and development of novel nanodevices. For the radiation shielding, higher absorption coefficient of nanostructures in comparison to bulk ones is an advantage. In gas detectors, designing a proper converter that absorbs higher energy of gamma and X-rays and convert it to more free electrons is one of the major problems. Since the nanowires have higher surface to volume ratio in comparison to the bulk one, so it is expected that by optimizing the thickness, the generated electrons can have higher chance to escape from the surface. In this work, the random CuO nanowires with diameter of 40 nm are deposited on thin glass slide. This nanostructure with different thicknesses are tested by plastic and CsI scintillators by X-ray tube with HVs in the range of 16 to 25 kV. The results show that for the same thickness, the CuO nanowires can release electrons six times more than the bulk ones and for the same energy the optimum QE of nanoconverter can be three times greater than the bulk converter. This novel nanoconverter with higher detection efficiency can have applications in high energy physics, medical imaging and also astronomy.

P10005

, , , and

Short-term pronounced increases of the ambient dose equivalent rate, due to rainfall are a well-known phenomenon. Increases in the same order of magnitude or even below may also be caused by a nuclear or radiological event, i.e. by artificial radiation. Hence, it is important to be able to identify natural rain events in dosimetric early warning networks and to distinguish them from radiological events. Novel spectrometric systems based on scintillators may be used to differentiate between the two scenarios, because the measured gamma spectra provide significant nuclide-specific information. This paper describes three simple, automatic methods to check whether an dot H*(10) increase is caused by a rain event or by artificial radiation. These methods were applied to measurements of three spectrometric systems based on CeBr3, LaBr3 and SrI2 scintillation crystals, investigated and tested for their practicability at a free-field reference site of PTB.

P10004

, , , , , , , , , et al

The optimized stellarator Wendelstein 7-X started operation in December 2015 with a 10 week limiter campaign. Divertor experiments will begin in the second half of 2017. The W7-X Thomson scattering system is an essential diagnostic for electron density and temperature profiles. In this paper the Thomson scattering diagnostic is described in detail, including its design, calibration, data evaluation and first experimental results. Plans for further development are also presented. The W7-X Thomson system is a Nd:YAG setup with up to five lasers, two sets of light collection lenses viewing the entire plasma cross-section, fiber bundles and filter based polychromators. To reduce hardware costs, two or three scattering volumes are measured with a single polychromator. The relative spectral calibration is carried out with the aid of a broadband supercontinuum light source. The absolute calibration is performed by observing Raman scattering in nitrogen. The electron temperatures and densities are recovered by Bayesian modelling. In the first campaign, the diagnostic was equipped for 10 scattering volumes. It provided temperature profiles comparable to those measured using an electron cyclotron emission diagnostic and line integrated densities within 10% of those from a dispersion interferometer.

P10003
The following article is Open access

, , , , , , , , , et al

The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic τ decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8\TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions.

P10002

, , , and

Data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.

P10001

, , , , , , , , , et al

Silicon targets enriched with hydrogen and doped with boron at high atomic concentration (1020–1022 cm−3) were designed and fabricated using ion implantation and thermal diffusion processes to be used for experiments in the field of laser driven nuclear fusion. Two main types of target were prepared: thin (2 μ m) foils and thick (500 μ m) slabs. Such targets were irradiated with a sub-nanosecond, kJ-class laser with a moderate intensity (∼ 1016 W/cm2) to trigger the p(11B,α)2α  nuclear fusion reaction thanks to the acceleration of proton streams with energy of 0.1–1 MeV . The combination of the ad-hoc developed targets and the given laser pulse parameters allowed to generate a very high flux of alpha particles (107–109/sr per shot). The paper mainly focuses on microfabrication techniques and processes optimized for the fabrication of such advanced targets and on a comparison of the key results achieved with the different targets used in the experiment. Hydrodynamic simulations are also discussed.

Conference proceedings

C10014

, , , , , , , , , et al

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Direct measurements of fast electrons, which are produced in high-temperature plasma and escape from tokamak-type facilities, are of particular interest for ITER and future fusion devices, where intense runaway electrons (RE) can significantly damage the first wall components. Therefore, the runaway control and mitigation based on credible measuring methods should be developed already in present devices. A team from the National Centre for Nuclear Research (NCBJ), Poland, developed special probes equipped with Cherenkov-type detectors for measurements of the fast electrons within edge plasmas of tokamaks. Studies of the fast runaway electrons were extensively carried out at the COMPASS tokamak at the Institute of Plasma Physics (IPP) in Prague during experimental campaigns in 2014–2016. In order to investigate an electron-beam energy distribution a three-channel probe equipped with the Cherenkov-type detectors sensitive to electrons of different energies has been constructed. The measurements performed by means of these detectors showed that the first fast electron peak appears usually in the current ramp-up phase, even before the hard X-rays (HXR) pulse. Some electron signals can also be observed during subsequent HXR emissions. However, the most distinct electron peaks in all energy channels appear mainly during the plasma disruption. A correlation of Cherenkov signals with the MHD activity was also studied.

C10013

, , , , , , and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Recent completion of the thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on DIII-D [J.L. Luxon, Nucl. Fusion 42 (2002) 614] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the edge, providing high resolution measurements of the pedestal and steep gradient edge region of H-mode plasmas. The complexities of the Dα spectrum require fitting with a comprehensive model, as well as using iterative collisional radiative modeling to determine the underlying thermal deuterium ion properties. Large differences in the structure and magnitude of impurity (C6+) and main-ion (D+) toroidal rotation profiles are seen in the H-mode pedestal. Additionally the D+ temperature can be half the value of the C6+ temperature at the separatrix and shows more of a pedestal structure. Typically only the impurity properties are measured and the main-ion properties are either assumed to be the same, or inferred using neoclassical models, which require validation in the steep gradient region. These measured differences have implications for transport model validation, intrinsic rotation studies, pedestal stability, and the boundary conditions for scrape off layer and plasma material interactions studies.

C10012

, , , , , and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \textasciitilde 1 s response time from the sensor cluster [1].

C10011

, , , , , , and

19th International Workshop on Radiation Imaging Detectors (IWORID2017)

In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency movement of the beam position can be studied, up to 340 Hz. The system is capable of realizing an independent energy measure of the beam by using the Medipix3RX variable energy threshold feature.

C10010

, , , , , and

A stationary afterglow apparatus in conjunction with a laser absorption cavity ring-down spectrometer has been employed to observe absorption lines in the P- and R-branches of the (200) ← (000) and (2110) ← (0110) vibrational bands of the N2H+ molecular ion as a part of an ongoing study of the electron-ion recombination of N2H+ in afterglow plasmas. The probed absorption lines lie in the near-infrared spectral region around 1580 nm. The observed transition wavenumbers were fitted to experimental accuracy and improved molecular constants for the (200) vibrational state were obtained. The employed experimental technique enables probing of the translational, rotational and vibrational temperature of the studied ions as well as the determination of the number densities of different quantum states of the ion in discharge and afterglow plasma.

C10009

, , , , , , , , , et al

2nd European Conference on Plasma Diagnostics (ECPD 2017)

The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^− density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

C10008

, , and

The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.

C10007

, , , , , , , , , et al

2nd European Conference on Plasma Diagnostics (ECPD 2017)

A new compact gamma-ray spectrometer based on a Silicon Photo-Multiplier (SiPM) coupled to a LaBr3(Ce) crystal has been developed for the upgrade of the Gamma Camera (GC) of JET, where it must operate in a high intensity neutron/gamma-ray admixed field. The work presents the results of an experiment aimed at characterizing the effect of 14 MeV neutron irradiation on both LaBr3(Ce) and SiPM that compose the full detector. The pulse height spectrum from neutron interactions with the crystal has been measured and is successfully reproduced by MCNP simulations. It is calculated that about 8% of the impinging neutrons leave a detectable signal of which less than < 4% of the events occur in the energy region above 3 MeV, which is of interest for gamma-ray spectroscopy applications. Neutron irradiation also partly degrades the performance of the SiPM and this is mostly manifested as an increase of the dark current versus the neutron fluence. However, it was found that the SiPM can be still operated up to a fluence of 4×1010 n/cm2, which is the highest value we experimentally tested. Implications of these results for GC measurements at JET are discussed.

C10006

, , , , , , , , , et al

2nd European Conference on Plasma Diagnostics (ECPD 2017)

The triple Gas Electron Multiplier (GEM) is a good candidate for the observation of the plasma volume emitting X-rays photons in the energy band up to 30 keV . The GEM camera system can be simply installed outside the port of a fusion device and it's a micropattern proportional gas detector which consists of an ionization gap, where X-rays photon conversion occurs, three consecutive foils working as amplification stage and finally a dedicated printed circuit board. Its simple experimental setup can be made in different configurations with 1D or 2D imaging possibilities: perpendicular GEM camera allows a 1D emissivity profile reconstruction instead a tangential GEM camera allows a poloidal cross-section image. Moreover, they offer high sensitivity, noise free, optical flexibility (zooming and tilting, magnification 10× up to 30×), high contrast, high dynamic range (6 orders of magnitude) and good time resolution (submillisecond). In this work several experimental results already observed on the Frascati Tokamak Upgrade (FTU) and the Korean Superconducting Tokamak Advanced Research (KSTAR) devices will be presented. The perpendicular installation on FTU allows a 1D radial profile with 128 lines of sight, while thanks to the 2D tangential view of the plasma, the reconstruction of the cross section has been done on KSTAR. Between them there are dynamic and precursors of sawtooth, effects of Edge Localized Mode (ELM) in the core and possible interplay between core and edge in ELMs (high m modes), effects of plasma rotation in the core, dynamic of injected impurities in the outer part of the plasma or also impurity accumulation and localized effects of additional heating. Installation of GEM systems is planned on Wendelstein 7-X (W7-X) and the Experimental Advanced Superconducting Tokamak (EAST) also for their robustness and flexibility X-rays detection in presence of high radiative environments (neutrons and gammas). In future applications on the above mentioned fusion devices, another possibility under evaluation is to use standard tomographic methods using two orthogonal GEM camera systems.

C10005

, , , , , , , , , et al

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm−1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3 × 1013 m−2/mV, indicating a high sensitivity.

C10004

, and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.

C10003

, , , , , and

2nd European Conference on Plasma Diagnostics (ECPD 2017)

A K-band (18.5÷26.5 GHz) microwave interferometry/polarimetry setup, based on the Frequency-Modulated Continuous-Wave (FMCW) method, has been developed at INFN-LNS under the VESPRI project. The interferometer has been proven to provide reliable measurements of the plasma density even in the extreme unfavorable conditions λp≃ Lp Lc, being λp, Lp and Lc the probing signal wavelength, the plasma dimension and the plasma chamber length respectively. The VESPRI setup has been therefore upgraded with a rotating polarimetric system based on waveguide OMTs (OrthoModeTransducers) for the measurement of the magnetoplasma-induced Faraday rotation. An analysis method has been developed on purpose in order to discriminate the polarization plane rotation due to the plasma only, excluding the effects of the cavity resonator which represents the primary error source on phase angle measurement. Results about the first collected data, showing a significative agreement of the plasma-induced polarization plane rotation with the well-known λ2 law, are hereby presented. The developed method will be a powerful tool for probing plasmas in very compact magnetic traps such as Electron Cyclotron Resonance Ion Sources.

C10002

, , , and

18th International Symposium on Laser-Aided Plasma (LAPD18)

A pulse-burst laser system has been built for Thomson scattering on NSTX-U, and is currently being integrated into the NSTX-U Thomson scattering diagnostic system. The laser will be operated in three distinct modes. The base mode is continuous 30 Hz rep rate, and is the standard operating mode of the laser. The base mode will be interrupted to produce a "slow burst" (specified 1 kHz rep rate for 50 ms) or a "fast burst" (specified 10 kHz rep rate for 5 ms). The combination of base mode→ interruption→ burst mode is new and has not been implemented on any previous pulse-burst laser system. Laser pulsing is halted for a set period (∼ 1 minute) following a burst to allow the YAG rods to cool; this type of operation is called a heat-capacity laser. The laser is Nd:YAG operated at 1064 nm, q-switched to produce ⩾ 1.5 J pulses with ∼ 20 ns FWHM. It is flashlamp pumped, with dual-rod oscillator (9 mm) and dual-rod amplifier (12 mm). Variable pulsewidth drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction. The laser system has demonstrated compliance with all specifications, and is capable of exceeding design specifications by significant margins, e.g., higher rep rates for longer burst periods. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, the L-H transition, and various MHD modes.

C10001

International Conference on Instrumentation for Colliding Beam Physics (INSTR17)

The KLOE-2 experiment is steadily taking data since November 2014 at DAΦNE, the ϕ-factory in the Frascati National Laboratories. An integrated luminosity of 3.5 fb−1 has been collected up to now, with an average rate of 10 pb−1/day. Performances of the detector, data taking conditions, data quality monitoring and physics perspectives will be discussed.

Technical reports

T10010
The following article is Open access

, , , and

With ever increasing particle beam energies and interaction rates in modern High Energy Physics (HEP) experiments in the present and future accelerator facilities, there has always been the demand for robust Data Acquisition (DAQ) schemes which perform in the harsh radiation environment and handle high data volume. The scheme is required to be flexible enough to adapt to the demands of future detector and electronics upgrades, and at the same time keeping the cost factor in mind. To address these challenges, in the present work, we discuss an efficient DAQ scheme for error resilient, high speed data communication on commercially available state-of-the-art FPGA with optical links. The scheme utilises GigaBit Transceiver (GBT) protocol to establish radiation tolerant communication link between on-detector front-end electronics situated in harsh radiation environment to the back-end Data Processing Unit (DPU) placed in a low radiation zone. The acquired data are reconstructed in DPU which reduces the data volume significantly, and then transmitted to the computing farms through high speed optical links using 10 Gigabit Ethernet (10GbE). In this study, we focus on implementation and testing of GBT protocol and 10GbE links on an Intel FPGA. Results of the measurements of resource utilisation, critical path delays, signal integrity, eye diagram and Bit Error Rate (BER) are presented, which are the indicators for efficient system performance.

T10009

, , and

We have developed a compact gas switch intended for operation in oscillatory (low damping) regime of discharge. It is two-electrode switch with electrodynamic acceleration of a spark channel and a matched series injection trigger generator. A series inductance is employed for isolation of a trigger pulse from a surrounded circuit. Two operations regimes have been investigated, namely "fast" regime with current amplitude ~ 160 kA, total charge ~ 12 C, period of oscillations 60 μ s, full pulse length ~ 400 μ s and "slow" regime with current amplitude ~ 30 kA, total charge 18 C, period of oscillations 360 μ s, full pulse length ~ 3 ms. The spark gap can be triggered reliably from 16 to 50 kV (at 72 kV self-breakdown voltage). Time delay in firing was less than 35 ns at 1 ns jitter at 30 mm gap and 40 kV charging voltage. The spark gap is designed for 50 kV charging voltage, at a current up to 200 kA, and up to 20 C charge transfer. Arc motion and electrodes erosion in this spark gap have been investigated. The main results are as follows: the arc channel moves on ~ 18 cm in fast regime and ~ 25 cm in slow regime. Results of the switch operation in slow and fast regimes with operational voltage of 40 kV and stored energy 32 kJ promise to get high lifetime. In this paper we present design for the spark gap and trigger generator. Test bed schematics and results of the tests are also described.

T10008

, , , , and

The proton precession magnetometer with single sensor is commonly used in geomagnetic observation and magnetic anomaly detection. Due to technological limitations, the measurement accuracy is restricted by several factors such as the sensor performance, frequency measurement precision, instability of polarization module, etc. Aimed to improve the anti-interference ability, an Overhauser magnetic gradiometer with dual sensor structure was designed. An alternative design of a geomagnetic sensor with differential dual-coil structure was presented. A multi-channel frequency measurement algorithm was proposed to increase the measurement accuracy. A silicon oscillator was adopted to resolve the instability of polarization system. This paper briefly discusses the design and development of the gradiometer and compares the data recorded by this instrument with a commonly used commercially Overhauser magnetometer in the world market. The proposed gradiometer records the earth magnetic field in 24 hours with measurement accuracy of ± 0.3 nT and a sampling rate of 3 seconds per sample. The quality of data recorded is excellent and consistent with the commercial instrument. In addition, experiments of ferromagnetic target localization were conducted. This gradiometer shows a strong ability in magnetic anomaly detection and localization. To sum up, it has the advantages of convenient operation, high precision, strong anti-interference, etc., which proves the effectiveness of the dual sensor structure Overhauser magnetic gradiometer.

T10007

, , , , and

The front-end digitization electronics for thin-Resistive Plate Chambers to be installed as part of the ATLAS Muon Spectrometer Phase-I upgrade project is described. The design is based on the CERN HPTDC and GOL chips. In this paper, the design of the digitization system is presented, including power, connection interfaces to front-end amplifier-shaper-discriminator board and to the low level trigger processor board. System performance tests were conducted and validated with a prototype which includes one HPTDC/GOL pair.

T10006

, , , , , , and

Whilst the performance of small THGEMs is well known, here we consider the challenges in scaling these up to large area charge readouts. We first verify the expected gain of larger THGEMs by reporting experimental Townsend coefficients for a 10 cm diameter THGEM in low-pressure CF4. Large area 50 cm by 50 cm THGEMs were sourced from a commercial PCB supplier and geometrical imperfections were observed which we quantified using an optical camera setup. The large area THGEMs were experimentally characterised at Boulby Underground Laboratory through a series of gain calibrations and alpha spectrum measurements. ANSYS, Magboltz and Garfield++ simulations of the design of a TPC based on the large area THGEMs are presented. We also consider their implications for directional dark matter research and potential applications within nuclear security.

T10005

, , , , , , , , , et al

An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA) . The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4+0.9−0.3% and 10.3+2.8−1.7% respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8+2.1−1.3% in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60°.

T10004

, , , , and

The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β  or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α−n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α−n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies comparable to the Qβ β -value) originating from thermal neutron capture with all stable elemental isotopes present in the TPC. We show that to limit the most probable reactions to a rate of one event per year or less, the neutron flux would have to be reduced to (3–6) × 10−10 cm−2⋅s−1. The predictions of our crude theoretical calculation are in good agreement with full simulation of TPC radiation background by existing experimental collaboration using xenon for 0ν β β  experiment.

T10003

, , , , , , , , and

The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

T10002
The following article is Open access

and

The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

T10001

, , , and

From 2012 to 2015, Taiwan government has a most important technology project is Taiwan Photon Source (TPS), the total budget of TPS fund to over US300 million. It set up a synchrotron storage ring (electron energy of 3.3 GeV, circumference of 518 m, and low emittance) that provides one of the world's brightest synchrotron sources of x-rays. This study presents a compensator design for corrector magnet power supply to avoid limitations in stabilizing the frequency when the machine output current load is valid. A lead-lag compensator had been built in a full-bridge converter to improve the system bandwidth. Lead-lag compensators influence various disciplines, such as robotics, satellite control, automobile diagnostics, and laser frequency stabilization. These components are important building blocks in analog control systems and can also be used in digital control. A 50V output voltage and 10A output current prototype converter is fabricated in the laboratory. From the experimental results, the effectiveness of the control loop design can be verified from the gain margin and phase margin.