Table of contents

Volume 133

Number 1019, 2021 January

Previous issue Next issue

Paper

Extragalactic Astronomy and Galaxies (Including the Milky Way)

014101

A new radio map of the Abell 85 Brightest Cluster Galaxy (BCG) was obtained with the Karl G. Jansky Very Large Array. With a resolution of 0farcs02, this radio image shows two kiloparsec-scale bipolar active galactic nucleus jets emanating from the active galactic nucleus of the A85 BCG. The galaxy core appears as a single entity on the new radio map. It has been assumed that the A85 BCG contained a binary black hole in its core. However, Chandra X-ray data and the new high-resolution radio map show no evidence that the A85 BCG harbors a binary black hole. The assumption that this galaxy contains a binary black hole was based on the analysis of its optical surface brightness profile obtained under poor seeing conditions. We demonstrate how the well-known blurring effects of atmospheric seeing can mimic the effects of a binary supermassive black hole (SMBH). Likewise, SDSS J004150.75–091824.3 was postulated to be "a third" SMBH associated with the BCG. In the optical and X-rays, SDSS J004150.75–091824.3 is a point-like source located ∼14'' away from the nucleus of the A85 BCG. A new spectrum of SDSS J004150.75–091824.3, obtained with the 10.4 m Gran Telescopio Canarias, reveals that this source is a background quasar at a redshift of z = 1.5603 ± 0.003 and not associated in any way with the A85 cluster.

014102

, , , , , , , , , et al

Extragalactic very-high-energy (VHE; E > 100 GeV) sources are unique objects to study the most powerful particle accelerators in nature, as active galactic nuclei are likely sources of ultra-high-energy cosmic rays. BL Lacertae blazars are the most frequent extragalactic objects found in the VHE gamma-ray catalogs. It is very difficult to estimate their redshifts, considering they have no strong enough optical spectral features, hence ∼20% of them have unknown or poorly constrained redshifts. KUV 00311–1938 is a VHE BL Lacertae blazar, with an uncertain redshift in the range of 0.5 < z < 0.98. We have obtained deep spectroscopy using Gemini and the GTC telescopes of KUV 00311–1938 and its surroundings with high signal-to-noise ratio in 2016–2017. The lack of features did not allow us to determine the spectroscopic redshift of KUV 00311–1938; nevertheless, we obtain a lower limit of z ≳ 0.475. We determined the redshifts of 41 galaxies observed in the field-of-view of the blazar and through a population study, identified three pairs and four groups consisting of 3 or 4 members with redshifts in the range z = 0.1468–0.4756. Due to the absence of a large group of galaxies, we could not associate KUV 00311–1938 with any of the groups detected.

Brown Dwarfs, Planets, and Planetary Systems (Including the Solar System)

014401

and

The photometric light curves of BRITE satellites were examined through a machine learning technique to investigate whether there are possible exoplanets moving around nearby bright stars. Focusing on different transit periods, several convolutional neural networks were constructed to search for transit candidates. The convolutional neural networks were trained with synthetic transit signals combined with BRITE light curves until the accuracy rate was higher than 99.7%. Our method could efficiently lead to a small number of possible transit candidates. Among these ten candidates, two of them, HD37465, and HD186882 systems, were followed up through future observations with a higher priority. The codes of convolutional neural networks employed in this study are publicly available at http://www.phys.nthu.edu.tw/~jiang/BRITE2020YehJiangCNN.tar.gz.

014402

, , , , , , , , , et al

The transit method of exoplanet discovery and characterization has enabled numerous breakthroughs in exoplanetary science. These include measurements of planetary radii, mass–radius relationships, stellar obliquities, bulk density constraints on interior models, and transmission spectroscopy as a means to study planetary atmospheres. The Transiting Exoplanet Survey Satellite (TESS) has added to the exoplanet inventory by observing a significant fraction of the celestial sphere, including many stars already known to host exoplanets. Here we describe the science extraction from TESS observations of known exoplanet hosts during the primary mission. These include transit detection of known exoplanets, discovery of additional exoplanets, detection of phase signatures and secondary eclipses, transit ephemeris refinement, and asteroseismology as a means to improve stellar and planetary parameters. We provide the statistics of TESS known host observations during Cycle 1 and 2, and present several examples of TESS photometry for known host stars observed with a long baseline. We outline the major discoveries from observations of known hosts during the primary mission. Finally, we describe the case for further observations of known exoplanet hosts during the TESS extended mission and the expected science yield.

Astronomical Software, Data Analysis, and Techniques

014501

, , , , , , , , , et al

In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that appear to show a similarity in their orbital parameters has led to the suggestion that one or more undetected planets, an as yet undiscovered "Planet 9", may be present in the outer solar system. DES is well placed to detect such a planet and has already been used to discover many other TNOs. Here, we perform tests on eight different supervised machine learning algorithms, using a data set consisting of simulated TNOs buried within real DES noise data. We found that the best performing classifier was the Random Forest which, when optimized, performed well at detecting the rare objects. We achieve an area under the receiver operating characteristic (ROC) curve, (AUC) = 0.996 ± 0.001. After optimizing the decision threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we are able to run the orbit-fitting stage of our detection pipeline five times faster.

014502

Extensive least-squares wavelet and cross-wavelet analyses are performed on the Very Long Baseline Interferometry (VLBI) baseline length and temperature time series for a network of four VLBI antennas located in different continents. These analyses do not rely on any pre-processing of the measurements including interpolations or gap-filling, and they can provide accurate instantaneous frequency information along with phase differences in the time–frequency domain. Out of four antennas mounted in Fortaleza, Hartebeesthoek, Westford, and Wettzell, the most and the least possibly impacted VLBI time series by the annual temperature variation are Westford–Wettzell and Fortaleza–Hartebeesthoek, respectively. Furthermore, the annual components of the temperature time series in Westford and Wettzell lead the ones in the corresponding VLBI time series by nearly one month, where one of the baseline sides is either in Westford or Wettzell.

014503
The following article is Open access

, , , , , , , , , and

The Transiting Exoplanet Survey Satellite (TESS) is a NASA Explorer-class mission designed for finding exoplanets around nearby stars. TESS image data can also serve as a valuable resource for asteroid and comet detection, including near-Earth objects (NEOs). In order to exploit the TESS image data for moving object detection and potential object discovery, our team has developed an image processing pipeline as part of the Lincoln Near-Earth Asteroid Research (LINEAR) program, sponsored by the NASA NEO Observations Program. The LINEAR-TESS pipeline is currently in operation and reporting asteroid observations to the Minor Planet Center. In this paper we discuss the algorithms and methodology utilized to push the limits of the astrometric accuracy and photometric sensitivity of the TESS instrument for asteroid detection without a priori information on the ephemerides of the objects, and report on observation statistics from the first two years of TESS mission data.

014504

, , , , , , , , , and

Arsenic doped back illuminated blocked impurity band (BIBIB) silicon detectors have advanced near and mid-IR astronomy for over thirty years; they have high quantum efficiency (QE), especially at wavelengths longer than 10 μm, and a large spectral range. Their radiation hardness is also an asset for space based instruments. Three examples of Si:As BIBIB arrays are used in the Mid-InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST), observing between 5 and 28 μm. In this paper, we analyze the parameters leading to high quantum efficiency (up to ∼60%) for the MIRI devices between 5 and 10 μm. We also model the cross-shaped artifact that was first noticed in the 5.7 and 7.8 μm Spitzer/IRAC images and has since also been imaged at shorter wavelength (≤10 μm) laboratory tests of the MIRI detectors. The artifact is a result of internal reflective diffraction off the pixel-defining metallic contacts to the readout detector circuit. The low absorption in the arrays at the shorter wavelengths enables photons diffracted to wide angles to cross the detectors and substrates multiple times. This is related to similar behavior in other back illuminated solid-state detectors with poor absorption, such as conventional CCDs operating near 1 μm. We investigate the properties of the artifact and its dependence on the detector architecture with a quantum-electrodynamic (QED) model of the probabilities of various photon paths. Knowledge of the artifact properties will be especially important for observations with the MIRI LRS and MRS spectroscopic modes.

Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization

015001

and

The noise performance of integrated low noise amplifiers (LNAs) is impaired by on-chip inductors owing to their low-quality factor, especially when inductors are used in the signal path at the input, such as for the inductively degenerated common-emitter amplifier. The inductively degenerated common-emitter configuration is largely used in LNA design, owing mainly to its ability to achieve impedance and noise matching simultaneously. This paper proposes an LNA configuration that achieves impedance matching and noise matching simultaneously without an inductor in the input signal path, owing to capacitive feedback and transistor sizing. Only the resistive component of the optimum noise resistance is matched to the source resistance. The impact of the mismatch due to the reactive component to the noise figure is reduced by the ratio Gs/Rn. A technique initially developed for the broadband matching of a single-layer microstrip patch antenna is used for the output matching network. Using a 130 nm silicon–germanium heterojunction bipolar transistor process, simulation results indicate a noise figure of 2.3 dB, a gain of 26 dB and S11 and S22 that are better than −12 dB at 1.42 GHz. This frequency corresponds to the 21 cm hydrogen line. This novel multi-stage LNA can be used for the detection of electromagnetic radiation from neutral hydrogen atoms from space in radio astronomy and the proposed design methodology can be generalized to LNAs.