Table of contents

Buy this issue in print

Papers

113001
The following article is Open access

, and

Systems that evolve towards a state from which they cannot depart are common in nature. But the fluctuation-dissipation theorem (FDT), a fundamental result in statistical mechanics, is mainly restricted to systems near-stationarity. In processes with absorbing states, the total probability decays with time, eventually reaching zero and rendering the predictions from the standard response theory invalid. In this article, we investigate how such processes respond to external perturbations and develop a new theory that extends the framework of the FDT. We apply our theory to two paradigmatic examples that span vastly different fields—a birth–death process in forest ecosystems and a targeted search on DNA by proteins. These systems can be affected by perturbations which increase their rate of extinction/absorption, even though the average or the variance of population sizes are left unmodified. These effects, which are not captured by the standard response theory, are exactly predicted by our framework. Our theoretical approach is general and applicable to any system with absorbing states. It can unveil important features of the path to extinction masked by standard approaches.

113002
The following article is Open access

, , , and

Propagation of ballistic electrons shows various optical-like phenomena. Here, we demonstrate a flexible method to modulate the band structure and manipulate the electron beams propagation in 8-Pmmn borophene by an off-resonant linearly polarized light. It is proposed to form fully tunable anisotropic dispersion by changing the polarization direction of the off-resonant light in an experimentally controllable way. Accompanied with it, the pseudospin symmetry of the electronic state in 8-Pmmn borophene collapses from a helical form into x or y direction, which undergoes a dramatic alteration. As a result of the wedge-shaped dispersions, the electron wave packet can be guided to propagate with undistorted shape along different directions, multidirectional electron supercollimations are exhibited in the system. Moreover, by constructing the optical sensing np and npn junctions, interesting transport phenomena such as all-electrons Klein tunneling and omnidirectional reflection are realized by modulating the illumination parameters of the off-resonant light, both of them are independent of the incident energy and wave vector. It is expected that the peculiar transport properties in 8-Pmmn borophene modified by the off-resonant light field can offer more opportunities for device applications in valleytronics and electron-optics.

113003
The following article is Open access

, and

We present a feasible scheme to implement a planar and tunable quantum state transfer (QST) via topologically protected zero-energy mode in a splicing Y-junction Su–Schrieffer–Heeger (SSH) chain. The introduction of the elaborate nearest-neighbor (NN) hopping enables one to generate a topological interface at the central site of the Y-junction. By modulating the NN hopping adiabatically in the chain, the quantum state initially prepared at the central site can be simultaneously transferred to the three endpoints of the Y-junction with the equal/unequal probabilities. The planar distribution of QST is expected to realize a quantum router, whose function is to make the quantum information on the central site (input port) appear equally/unequally at the three endpoints (output ports) with different directions. Moreover, the numerical simulations demonstrate that the scheme possesses the robustness on the fluctuations of the NN hopping and the on-site potential in the system. Furthermore, we show that the number of the output ports with different directions can be flexibly increased in an extended X-junction SSH chain, and the experimental feasibility for implementing special QST in a superconducting qubit-resonator system is briefly discussed. Our work extends the space distribution of QST from linear distribution to planar distribution and promotes the construction of large-scale quantum networks.

113004
The following article is Open access

, , and

Prepare-and-measure scenarios (pm), in their many forms, can be seen as the basic building blocks of communication tasks. As such, they can be used to analyze a diversity of classical and quantum protocols—of which dense coding and random access codes are key examples—in a unified manner. In particular, the use of entanglement as a resource in pm scenarios have only recently started to be systematically investigated, and many crucial questions remain open. In this work, we explore such scenarios and provide answers to some seminal questions. More specifically, we show that, in scenarios where entanglement is a free resource, quantum messages are equivalent to classical ones with twice the capacity. We also prove that, in such scenarios, it is always advantageous for the parties to share entangled states of dimension greater than the transmitted message. Finally, we show that unsteerable states cannot provide advantages in classical communication tasks, thus proving that not all entangled states are useful resources in these scenarios.

113005
The following article is Open access

, and

We study the impact of compressibility on two-dimensional turbulent flows, such as those modeling astrophysical disks. We demonstrate that the direction of cascade undergoes continuous transition as the Mach number Ma increases, from inverse at Ma = 0, to direct at $Ma = \infty$. Thus, at $Ma \sim 1$ comparable amounts of energy flow from the pumping scale to large and small scales, in accord with previous data. For supersonic turbulence with $Ma \gg 1$ the cascade is direct, as in three dimensions, which results in multifractal density field. For that regime ($Ma \gg 1$) we derive a Kolmogorov-type law for potential forcing and obtain an explicit expression for the third order correlation tensor of the velocity. We further show that all third order structure functions are zero up to first order in the inertial range scales, which is in sharp contrast with incompressible turbulence where the third order structure function, that describes the energy flux associated with the energy cascade is non-zero. The properties of compressible turbulence have significant implications on the amplification of magnetic fields in conducting fluids. We thus demonstrate that imposing external magnetic field on compressible flows of conducting fluids allows to manipulate the flow producing possibly large changes even at small Mach numbers. Thus Zeldovich's antidynamo theorem, by which at Ma = 0 the magnetic field is zero in the steady state, must be used with caution. Real flows have finite Ma and, however small it is, for large enough values of I, the magnetic flux through the disk, the magnetic field changes the flow appreciably, or rearranges it completely. This renders the limit Ma → 0 singular for non-zero values of I. Of particular interest is the effect of the density multifractality, at $Ma\gg 1$ which is relevant for astrophysical disks. We demonstrate that in that regime, in the presence of non-zero I the magnetic field energy is enhanced by a large factor as compared to its estimates based on the mean field. Finally, based on the insights described above, we propose a novel two-dimensional Burgers' turbulence, whose three-dimensional counterpart is used for studies of the large-scale structure of the Universe, as a model for supersonic two-dimensional magnetohydrodynamic flows.

113006
The following article is Open access

, , , and

Based on the nonequilibrium Green's function (NEGF), we develop a quantum nonlinear theory to study time-dependent ac transport properties in the low frequency and nonlinear bias voltage regimes. By expanding NEGF in terms of time to the linear order in Wigner representation, we can explicitly include the time-dependent self-consistent Coulomb interaction induced by external ac bias. Hence this theory automatically satisfies two basic requirements, i.e. current conservation and gauge invariance. Within this theory, the nonlinear ac current can be evaluated at arbitrarily large bias voltages under the low frequency limit. In addition, we obtain the expression of time-dependent current under the wide band limit and derive the relation between the nonlinear electrochemical capacitance and the bias voltage, which are very useful in predicting the dynamical properties of nanoelectronic devices. This quantum theory can be directly combined with density functional theory to investigate time-dependent ac transport from first-principles calculation.

113007
The following article is Open access

, , and

We report on a novel phase-locking technique for fiber-based Mach–Zehnder interferometers based on discrete single-photon detections, and demonstrate this in a setup. Our interferometer decodes relative-phase-encoded optical pulse pairs for quantum key distribution applications and requires no locking laser in addition to the weak received signal. Our new simple locking scheme is shown to produce an Ornstein–Uhlenbeck dynamic and achieve optimal phase noise for a given count rate. In case of wavelength drifts that arise during the reception of Doppler-shifted satellite signals, the arm-length difference gets continuously readjusted to keep the interferometer phase stable.

113008
The following article is Open access

and

In this paper we present and analyze an information-theoretic task that consists in learning a bit of information by spatially moving the 'target' particle that encodes it. We show that, on one hand, the task can be solved with the use of additional independently prepared quantum particles, only if these are indistinguishable from the target particle. On the other hand, the task can be solved with the use of distinguishable quantum particles, only if they are entangled with the target particle. Our task thus provides a new example in which the entanglement apparently inherent to independently prepared indistinguishable quantum particles is put into use for information processing. Importantly, a novelty of our protocol lies in that it does not require any spatial overlap between the involved particles. Besides analyzing the class of quantum-mechanical protocols that solve our task, we gesture towards possible ways of generalizing our results and of applying them in cryptography.

113009
The following article is Open access

, , , and

Edge states occurring in Chern and quantum spin-Hall phases are signatures of the topological electronic band structure in two-dimensional (2D) materials. Recently, a new topological electromagnetic phase of graphene characterized by the optical N-invariant was proposed. Optical N-invariant arises from repulsive Hall viscosity in hydrodynamic many-body electron systems, distinct from the Chern and Z2 invariants. In this paper, we introduce the topologically protected edge excitation—optical N-plasmon of interacting many-body electron systems in the topological optical N-phase. These optical N-plasmons are signatures of the topological plasmonic band structure in 2D materials. We demonstrate that optical N-plasmons exhibit unique dispersion relations, stability against various boundary conditions, and edge profiles when compared with the topologically trivial edge magneto plasmons. Based on the optical N-plasmon, we design an ultra sub-wavelength broadband topological hydrodynamic circulator, which is a chiral quantum radio-frequency circuit component crucial for information routing and interfacing quantum–classical computing systems. Furthermore, we reveal that optical N-plasmons can be effectively tuned by the neighboring dielectric environment without breaking the topological properties. Our work provides a smoking gun signature of topological electromagnetic phases occurring in 2D materials arising from repulsive Hall viscosity.

113010
The following article is Open access

and

The implementation of a superradiant laser as an active frequency standard is predicted to provide better short-term stability and robustness to thermal and mechanical fluctuations when compared to standard passive optical clocks. However, despite significant recent progress, the experimental realization of continuous wave superradiant lasing still remains an open challenge as it requires continuous loading, cooling, and pumping of active atoms within an optical resonator. Here we propose a new scenario for creating continuous gain by using optical forces acting on the states of a two-level atom via bichromatic coherent pumping of a cold atomic gas trapped inside a single-mode cavity. Analogous to atomic maser setups, tailored state-dependent forces are used to gather and concentrate excited-state atoms in regions of strong atom-cavity coupling while ground-state atoms are repelled. To facilitate numerical simulations of a sufficiently large atomic ensemble, we rely on a second-order cumulant expansion and describe the atomic motion in a semi-classical point-particle approximation subject to position-dependent light shifts which induce optical gradient forces along the cavity axis. We study minimal conditions on pump laser intensities and detunings required for collective superradiant emission. Balancing Doppler cooling and gain-induced heating we identify a parameter regime of a continuous narrow-band laser operation close to the bare atomic frequency.

113011
The following article is Open access

, , and

We propose a minimal effective impurity model that captures the phenomenology of the Mott–Hubbard metal–insulator transition of the half-filled Hubbard model on the Bethe lattice in infinite dimensions as observed by dynamical mean field theory (DMFT). This involves extending the standard Anderson impurity model Hamiltonian to include an explicit Kondo coupling J, as well as a local on-site correlation Ub on the conduction bath site connected directly to the impurity. For the case of attractive local bath correlations ($U_{b}\lt 0$), the extended Anderson impurity model (e-SIAM) sheds new light on several aspects of the DMFT phase diagram. For example, the T = 0 metal-to-insulator quantum phase transition (QPT) is preceded by an excited state QPT (ESQPT) where the local moment eigenstates are emergent in the low-lying spectrum. Long-ranged fluctuations are observed near both the QPT and ESQPT, suggesting that they are the origin of the quantum critical scaling observed recently at high temperatures in DMFT simulations. The T = 0 gapless excitations at the quantum critical point display particle-hole interconversion processes, and exhibit power-law behaviour in self-energies and two-particle correlations. These are signatures of non-Fermi liquid behaviour that emerge from the partial breakdown of the Kondo screening.

113012
The following article is Open access

and

We study (In,Ga)(As,Sb)/GaAs quantum dots (QDs) embedded in a GaP (100) matrix, which are overgrown by a thin GaSb capping layer with variable thickness. QD samples are studied by temperature-dependent photoluminescence, and we observe that the QD emission shows anomalous temperature dependence, i.e. increase of energy with temperature increase from 10 K to ∼70 K, followed by energy decrease for larger temperatures. With the help of fitting of luminescence spectra by Gaussian bands with energies extracted from eight band $\textbf{k}\cdot\textbf{p}$ theory with multiparticle corrections calculated using the configuration interaction method, we explain the anomalous temperature dependence as mixing of momentum direct and indirect exciton states. We also find that the k-indirect electron–hole transition in type-I regime at temperatures ${\lt} 70$ K is optically more intense than k-direct. Furthermore, we identify a band alignment change from type-I to type-II for QDs overgrown by more than one monolayer of GaSb. Finally, we predict the retention time of (In,Ga)(As,Sb)/GaAs/AlP/GaP QDs capped with GaSb layers with varying thickness, for usage as storage units in the QD-Flash nanomemory concept and observe that by using only a 2 ML-thick GaSb capping layer, the projected storage time surpasses the non-volatility limit of ten years.

113013
The following article is Open access

, , , and

We treat the Cooper pairs in the superconducting electrodes of a Josephson junction (JJ) as an open system, coupled via Andreev scattering to external baths of electrons. The disequilibrium between the baths generates the direct-current bias applied to the JJ. In the weak-coupling limit we obtain a Markovian master equation that provides a simple dynamical description consistent with the main features of the JJ, including the form of the current–voltage characteristic, its hysteresis, and the appearance under periodic voltage driving of discrete Shapiro steps. For small dissipation, our model also exhibits a self-oscillation of the JJ's electrical dipole with frequency $\Omega = 2 eV/\hbar$ around mean voltage V. This self-oscillation, associated with 'hidden attractors' of the nonlinear equations of motion, explains the observed production of monochromatic radiation with frequency Ω and its harmonics. We argue that this picture of the JJ as a quantum engine resolves open questions about the Josephson effect as an irreversible process and could open new perspectives in quantum thermodynamics and in the theory of dynamical systems.

113014
The following article is Open access

, , and

We investigate the energetic advantage of accelerating a quantum harmonic oscillator Otto engine by use of shortcuts to adiabaticity (for the expansion and compression strokes) and to equilibrium (for the hot isochore), by means of counter-diabatic (CD) driving. By comparing various protocols with and without CD driving, we find that, applying both type of shortcuts leads to enhanced power and efficiency even after the driving costs are taken into account. The hybrid protocol not only retains its advantage in the limit cycle, but also recovers engine functionality (i.e. a positive power output) in parameter regimes where an uncontrolled, finite-time Otto cycle fails. We show that controlling three strokes of the cycle leads to an overall improvement of the performance metrics compared with controlling only the two adiabatic strokes. Moreover, we numerically calculate the limit cycle behavior of the engine and show that the engines with accelerated isochoric and adiabatic strokes display a superior power output in this mode of operation.

113015
The following article is Open access

, , , and

Continuous U(1) gauge symmetry, which guarantees the conservation of total excitations in linear bosonic systems, will be broken when it comes to the strong-coupling regime where the rotation wave approximation (RWA) fails. Here we develop analytic solutions for multi-mode bosonic systems with XX-type couplings beyond RWA, and propose a novel scheme to implement high-fidelity quantum state transfer (QST) and entanglement preparation (EP) with high speed. The scheme can be realized with designated coupling strength and pulse duration with which the excitation number keeps unchanged regardless of the breakdown of the global U(1) symmetry. In QST tasks, we consider several typical quantum states and demonstrate that this method is robust against thermal noise and imperfections of experimental sequence. In EP tasks, the scheme is successfully implemented for the preparation of Bell states and W-type states, within a shortest preparation time.

113016
The following article is Open access

, , and

Quantum image processing, which merges classical image processing techniques with quantum computing, provides exceptional storage capacity and unparalleled parallel computing power. In this study, we present a quantum color image watermarking scheme that employs quantum error correction codes to address issues such as pixel loss and image distortion during watermark embedding and extraction. By utilizing the least significant bit method to embed the color values of the watermark image into those of the carrier image, we improve the scheme's robustness. We also address the error correction capabilities of channel coding for phase-flip errors and follow the majority principle, resulting in more accurate extraction of the watermark image's color and enhancing the watermarking scheme's reliability and integrity. Our experimental simulations demonstrate that the proposed watermarking scheme boasts high security, strong robustness, and excellent concealment.

113017
The following article is Open access

, , , , and

We present an experimental and numerical study of ion field evaporation from LaB6 nanotips using single-cycle terahertz (THz) transients and a static bias voltage. Varying the amplitude and phase of the THz pulses and the value of the bias, we explore the THz-induced reshaping of the ions energy and their time-of-flight spectra. These results prove that short THz transient of about 1 ps can induce ionization and emission of ions from LaB6 samples by a field effect: the THz transient acts as an ultra-short electrical pulse. Moreover, comparing numerical and experimental results, we prove that the response time of surface atoms to the THz transient is shorter than 1 ps, corresponding to the vibration times of acoustic phonons in LaB6.

113018
The following article is Open access

, and

The quantum state associated to an unknown experimental preparation procedure can be determined by performing quantum state tomography. If the statistical uncertainty in the data dominates over other experimental errors, then a tomographic reconstruction procedure must express this uncertainty. A rigorous way to accomplish this is via statistical confidence regions (CRs) in state space. Naturally, the size of this region decreases when increasing the number of samples, but it also depends critically on the construction method of the region. We compare recent methods for constructing CRs as well as a reference method based on a Gaussian approximation. For the comparison, we propose an operational measure with the finding, that there is a significant difference between methods, but which method is preferable can depend on the details of the state preparation scenario.

113019
The following article is Open access

, , , and

Universality of the long-distance behavior across the Bardeen–Cooper–Schrieffer (BEC)-Bose–Einstein condensate (BCS) smooth transition for two-body density correlation functions and the Cooper-pair probability density is demonstrated in a balanced mixture of a two-component Fermi gas at T = 0. It is numerically shown at the mean-field level that these two-body quantities exhibit an exponential decay in terms of the chemical potential and the low-energy behavior of the gap. A general expression is found for the two-body distributions holding for different features of finite-range potentials, such as divergences at the origin, discontinuities at a finite radius, power-law decay, and exponential decay. The correlation length characterizing the long-distance behavior unravels the dependence on the energy needed to break pairs along the BEC-BCS crossover, a quantity meaningful to the stability of the many-body state.

113020
The following article is Open access

, , , , and

We demonstrate capacitive coupling of coherent quantum phase slip (CQPS) flux qubits to a resonator patterned on a highly disordered TiN film. We are able to detect and characterise CQPS flux qubits with linewidths down to $\Delta\omega = 12\pm1\,\text{MHz}$ on several resonator modes, and show that, unlike inductive coupling, here the coupling strength does not depend on the qubit's energy. Since the qubit is galvanically decoupled from the resonator, our approach provides flexibility in material, design and fabrication choices for CQPS-based devices. Our results are two-fold: we report CQPS in TiN and demonstrate, to our knowledge for the first time, capacitive coupling of a CQPS flux qubit.

113021
The following article is Open access

, , , and

The transport properties of electrons in graphene pn junction with uniform Kekulé lattice distortion have been studied using the tight-binding model and the Landauer–Büttiker formalism combined with the nonequilibrium Green's function method. In the Kekulé-ordered graphene, the original K and Kʹ valleys of the pristine graphene are folded together due to the $\sqrt{3} \times \sqrt{3}$ enlargement of the primitive cell. When the chiral symmetry breaking of a valley leads to a single-valley phase, there are special transport properties of Dirac electrons in the Kekulé lattice. In the O-shaped Kekulé graphene pn junction, Klein tunneling is suppressed, and only resonance tunneling occurs. In the Y-shaped Kekulé graphene pn junction, the transport of electrons is dominated by Klein tunneling. When the on-site energy modification is introduced into the Y-shaped Kekulé structure, both Klein tunneling and resonance tunneling occur, and the electron tunneling is enhanced. Under strong magnetic fields, the conductance of O-shaped and on-site energy-modified Y-shaped Kekulé graphene pn junctions is non-zero due to the presence of resonance tunneling. It is also found that the disorder can enhance conductance, with conductance plateaus forming in the appropriate range of disorder strength.

113022
The following article is Open access

, , and

One of the striking properties of quantum mechanics is the occurrence of the Bell-type non-locality. They are a fundamental feature of the theory that allows two parties that share an entangled quantum system to observe correlations stronger than possible in classical physics. In addition to their theoretical significance, non-local correlations have practical applications, such as device-independent randomness generation, providing private unpredictable numbers even when they are obtained using devices delivered by an untrusted vendor. Thus, determining the quantity of certifiable randomness that can be produced using a specific set of non-local correlations is of significant interest. In this paper, we present an experimental realization of recent Bell-type operators designed to provide private random numbers that are secure against adversaries with quantum resources. We use semi-definite programming to provide lower bounds on the generated randomness in terms of both min-entropy and von Neumann entropy in a device-independent scenario. We compare experimental setups providing Bell violations close to the Tsirelson's bound with lower rates of events, with setups having slightly worse levels of violation but higher event rates. Our results demonstrate the first experiment that certifies close to two bits of randomness from binary measurements of two parties. Apart from single-round certification, we provide an analysis of finite-key protocol for quantum randomness expansion using the Entropy Accumulation theorem and show its advantages compared to existing solutions.

113023
The following article is Open access

, , and

We define and fully characterize the witnesses based on second moments detecting steering in Gaussian states by means of Gaussian measurements. All such tests, which arise from linear combination of variances or second moments of canonical operators, are easily implemented in experiments. We propose also a set of linear constraints fully characterizing steering witnesses when the steered party has one bosonic mode, while in the general case the constraints restrict the set of tests detecting steering. Given an unknown quantum state we implement a semidefinite program providing the appropriate steering test with respect to the number of random measurements performed. Thus, it is a 'repeat-until-success' method allowing for steering detection with less measurements than in full tomography. We study the efficiency of steering detection for two-mode squeezed vacuum states, for two-mode general unknown states, and for three-mode continuous variable GHZ states. In addition, we discuss the robustness of this method to statistical errors.

113024
The following article is Open access

and

Localized surface plasmons in metal nanoparticles are widely used in nano-optics to confine and enhance optical fields. It has been previously shown that, if the nanoparticles are distributed periodically, an additional enhancement can be achieved by coupling the localized surface plasmons to the diffraction orders of the lattice, forming surface lattice resonances. In this work, we study an even further improvement of the near-field enhancement by placing a metal-dielectric slab waveguide beneath the lattice of the particles to excite coupled waveguide-plasmon polaritons. These excitations can extend over many periods of the lattice, making the metasurface highly nonlocal. We numerically demonstrate that the approach can provide a significant extra increase in the near-field intensity—by a factor of 80 over that produced by a single-particle plasmon resonance and by 7 over the lattice-resonance enhancement. The described enhancement mechanism can be used to design extraordinarily efficient nonlocal optical metasurfaces for many applications, including surface-enhanced Raman spectroscopy, fluorescence spectroscopy, nonlinear optics, and solar energy harvesting.

113025
The following article is Open access

, and

In this work, the changes in the energy of electrons and holes, oscillator strength and interband transition time when external fields are applied to a GaAs/AlGaAs semiconductor double ring grown by the droplet epitaxy technique are theoretically analyzed. We consider a static electric field and an intense laser field nonresonant with the quantum structure, with variable intensities and orientations with respect to the symmetry axis of the quantum ring (QR). In the formalism of the effective mass approximation for electrons and holes, the energies and wavefunctions were numerically computed using the finite element method implemented with an accurate three-dimensional model of the real QR. Laser dressing of the confining potential was performed using the exact integration formula at each point. Our results show major differences between the effects of the two types of applied fields, caused mainly by the static electric-field-induced strong polarizability of the confined electron-hole pair. In addition, the effects of both fields exhibit strong anisotropy in the electronic properties as a result of the particular flattened geometry of the QR. Proper combinations of field strengths and orientations are helpful in designing accurate tools for the sensitive manipulation of interband radiative properties.

113026
The following article is Open access

, , and

Quantum hypothesis testing plays a pivotal role in quantum technologies, making decisions or drawing conclusions about quantum systems based on observed data. Recently, quantum control techniques have been successfully applied to quantum hypothesis testing, enabling the reduction of error probabilities in the task of distinguishing magnetic fields in presence of environmental noise. In real-world physical systems, such control is prone to various channels of inaccuracies. Therefore improving the robustness of quantum control in the context of quantum hypothesis testing is crucial. In this work, we utilize optimal control methods to compare scenarios with and without accounting for the effects of signal frequency inaccuracies. For parallel dephasing and spontaneous emission, the optimal control inherently demonstrates a certain level of robustness, while in the case of transverse dephasing with an imperfect signal, it may result in a higher error probability compared to the uncontrolled scheme. To overcome these limitations, we introduce a robust control approach optimized for a range of signal noise, demonstrating superior robustness beyond the predefined tolerance window. On average, both the optimal control and robust control show improvements over the uncontrolled schemes for various dephasing or decay rates, with the robust control yielding the lowest error probability.

113027
The following article is Open access

and

Coherent control of quantum systems depends on the manipulation of quantum interference through external fields. In this work, we investigate the effects of DC bias field on coherent control of quantum pathways in two-color laser photoemission using exact analytical solutions of the one-dimensional time dependent Schrödinger equation. Increasing DC bias lowers and narrows the surface potential barrier, shifting the dominant emission to lower order multiphoton photoemission, photo-assisted tunneling and then direct tunneling. Those lower order photon absorption processes result in fewer possible pathways, and therefore modulation of photoemission current can be suppressed as DC field increases. It is shown that a maximum modulation depth of 99.4% can be achieved for a gold emitter at local DC bias F0 = 0.5 V nm−1, fundamental (800 nm) laser field F1 = 2.6 V nm−1 and second harmonic laser field F2 = 0.25 V nm−1 . For a given set of input parameters, the total photoemission consists of different k-photon processes, each of which has their own different multiple possible pathways and interference effects. However, the quantum pathways and their interference for the dominant k-photon process and for the total photoemission probability show the same trends. This study demonstrates strong flexibility in tuning two-color lasers induced photoemission using a DC bias and provides insights into coherent control schemes of general quantum systems.

113028
The following article is Open access

, and

We analyse the quantum Cheshire cat using contextuality theory, to see if this can tell us anything about how best to interpret this paradox. We show that this scenario can be analysed using the relation between three different measurements, which seem to result in a logical contradiction. We discuss how this contextual behaviour links to weak values, and coherences between prohibited states. Rather than showing a property of the particle is disembodied, the quantum Cheshire cat instead demonstrates the effects of these coherences, which are typically found in pre- and post-selected systems.

113029
The following article is Open access

, and

The precise manipulation of magnetic solitons remains a challenge and is considered a crucial process in magnetic storage. In this paper, we investigate the control of velocity and spatial manipulation of magnetic solitons using the voltage-controlled magnetic anisotropy effect. A long-wave model, known as the generalized derivative nonlinear Schrödinger (GDNLS) equation, is developed to describe the dynamics of magnetic solitons in an anisotropic ferromagnetic nanowire. By constructing the Lax pair for the GDNLS equation, we obtain the exact solutions including magnetic dark solitons, anti-dark solitons, and periodic solutions. Moreover, we propose two approaches to manipulate magnetic solitons: direct voltage application and inhomogeneous insulation layer design. Numerically results show the direct modulation of soliton velocity by a constant voltage, while time-varying voltage induces periodic oscillations. Investigation of Gaussian-type defects reveals soliton being trapped beyond a critical defect depth. These results provide a theoretical basis for future applications in magnetic soliton-based memory devices.

113030
The following article is Open access

, , and

Coherent multimode instabilities are responsible for several phenomena of recent interest in semiconductor lasers, such as the generation of frequency combs and ultrashort pulses. These techonologies have proven disruptive in optical telecommunications and spectroscopy applications. While the standard Maxwell-Bloch equations (MBEs) encompass such complex lasing phenomena, their integration is computationally expensive and offers limited analytical insight. In this paper, we demonstrate an efficient spectral approach to the simulation of multimode instabilities via a quantitative analysis of the instability of single-frequency lasing in ring lasers, referred to as the Lorenz-Haken (LH) instability or the RNGH instability in distinct parameter regimes. Our approach, referred to as CFTD, uses generally non-Hermitian Constant Flux modes to obtain projected Time Domain equations. CFTD provides excellent agreement with finite-difference integration of the MBEs across a wide range of parameters in regimes of non-stationary inversion, including frequency comb formation and spatiotemporal chaos. We also develop a modal linear stability analysis using CFTD to efficiently predict multimode instabilities in lasers. The combination of numerical accuracy, speedup, and semi-analytic insight across a variety of dynamical regimes make the CFTD approach ideal to analyze multimode instabilities in lasers, especially in more complex geometries or coupled laser arrays.

113031
The following article is Open access

, , and

In many physical situations, there appears the problem of reaching a single target that is spatially distributed. Here we analyse how stochastic resetting, also spatially distributed, can be used to improve the search process when the target location is quenched, i.e. it does not evolve in time. More specifically, we consider a model with minimal but sufficient ingredients that allows us to derive analytical results for the relevant physical quantities, such as the first passage time distribution. We focus on the minimisation of the mean first passage time (MFPT) and its fluctuations (standard deviation), which proves to be non-trivial. Our analysis shows that the no-disorder case is singular: for small disorder, the resetting rate distribution that minimises the MFPT leads to diverging fluctuations—which impinge on the practicality of this minimisation. Interestingly, this issue is healed by minimising the fluctuations: the associated resetting rate distribution gives first passage times that are very close to the optimal ones.

113032
The following article is Open access

, , , , , , , , and

We report the existence of entangled steady-states in bipartite quantum magnonic systems at elevated temperatures. We consider dissipative dynamics of two magnon modes in a bipartite antiferromagnet, subjected to interaction with a phonon mode and an external rotating magnetic field. To quantify the bipartite magnon–magnon entanglement, we use entanglement negativity and compute its dependence on temperature and magnetic field. We provide evidence that the coupling between magnon and phonon modes is necessary for the entanglement, and that, for any given phonon frequency and magnon–phonon coupling rate, there are always ranges of the magnetic field amplitudes and frequencies for which magnon–magnon entanglement persists at room temperature.

113033
The following article is Open access

, , , , and

Nodal-line semimetals are new members of the topological materials family whose experimental characterization has seen recent progress using both ARPES and quantum oscillation measurements. Here, we theoretically study the presence of a disorder-induced phase transition in a cubic lattice nodal-line semimetal using numerical diagonalization and spectral calculations. In contrast to the 3D nodal-point semimetals, we found that nodal-line semimetals do not display a stable disordered semimetal phase, as an infinitely weak disorder can lead to a diffusive metal phase. The absence of a semimetal phase is also reflected in the quadratic relationship of the electronic specific heat at low temperatures. Furthermore, we illustrate that a localization transition occurs under the influence of strong disorder, shifting the material from a weakly localized diffusive metal state to an Anderson insulator. This transition is substantiated by calculating the adjacent gap ratio and the typical density of states.

113034
The following article is Open access

, and

We numerically investigate the dynamics of an SIR model with infection level-based lockdowns on Small-World networks. Using a large-deviation approach, namely the Wang–Landau algorithm, we study the distribution of the cumulative fraction of infected individuals. We are able to resolve the density of states for values as low as 10−85. Hence, we measure the distribution on its full support giving a complete characterization of this quantity. The lockdowns are implemented by severing a certain fraction of the edges in the Small-World network, and are initiated and released at different levels of infection, which are varied within this study. We observe points of non-analytical behaviour for the pdf and discontinuous transitions for correlations with other quantities such as the maximum fraction of infected and the duration of outbreaks. Further, empirical rate functions were calculated for different system sizes, for which a convergence is clearly visible indicating that the large-deviation principle is valid for the system with lockdowns.

113035
The following article is Open access

, , and

The combination of electron spin resonance with scanning tunneling microscopy has resulted in a unique surface probe with sub-nm spatial and neV energy resolution. The preparation of a stable magnetic microtip is of central importance, yet, at the same time remains one of the hardest tasks. In this work, we rationalize why creating such microtips by picking up a few iron atoms often results in magnetically stable probes with two distinct magnetic states. By using density functional theory, we show that randomly formed clusters of five iron atoms can exhibit this behavior with magnetic anisotropy barriers of up to 73 meV. We explore the dependence of the magnetic behavior of such clusters on the geometrical arrangement and find a strong correlation between magnetic and geometric anisotropy—the less regular the cluster the higher its magnetic anisotropy barrier. Finally, our work rationalizes the experimental strategy of obtaining stable magnetic microtips.

113036
The following article is Open access

, and

We present a method to infer the arbitrary space-dependent drift and diffusion of a nonlinear stochastic model driven by multiplicative fractional Gaussian noise from a single trajectory. Our method, fractional Onsager-Machlup optimisation (fOMo), introduces a maximum likelihood estimator by minimising a field-theoretic action which we construct from the observed time series. We successfully test fOMo for a wide range of Hurst exponents using artificial data with strong nonlinearities, and apply it to a data set of daily mean temperatures. We further highlight the significant systematic estimation errors when ignoring non-Markovianity, underlining the need for nonlinear fractional inference methods when studying real-world long-range (anti-)correlated systems.

113037
The following article is Open access

, , , and

We investigate network nonlocality in the triangle scenario when all three parties have no input and binary outputs. Through an explicit example, we prove that this minimal scenario supports nonlocal correlations compatible with no-signaling and independence of the three sources, but not with realisations based on independent quantum or classical sources. This nonlocality is robust to noise. Moreover, we identify the equivalent to a Popescu-Rohrlich box in the minimal triangle scenario.

113038
The following article is Open access

and

We examine a charge lattice coupled to a one-dimensional asymmetric potential in the presence of an applied magnetic field, which induces gyrotropic effects in the charge motion. This system could be realized for Wigner crystals in nanostructured samples, dusty plasmas, or other classical charge-ordered states where gyrotropic motion and damping can arise. For zero magnetic field, an applied external ac drive can produce a ratchet effect in which the particles move along the easy flow direction of the substrate asymmetry. The zero field ratchet effect can only occur when the ac drive is aligned with the substrate asymmetry direction; however, when a magnetic field is added, the gyrotropic forces generate a Hall effect that leads to a variety of new behaviors, including a transverse ratchet motion that occurs when the ac drive is perpendicular to the substrate asymmetry direction. We show that this system exhibits commensuration effects as well as reversals in the ratchet effect and the Hall angle of the motion. The magnetic field also produces a nonmonotonic ratchet efficiency when the particles become localized at high fields.

113039
The following article is Open access

, , , , and

Quantum walks hold enormous potential applications in various areas such as quantum computing and quantum simulation. Discrete-time quantum walks on a ladder offer greater prospects compared to traditional quantum walks, especially in addressing physical problems in higher-dimension coupled systems. Here we give an experimental proposal of quantum walks on a two-leg ladder using linear optics, and further apply it to non-Hermitian systems by introducing loss-based non-unitary evolutions. Non-Hermitian systems under nonreciprocity-induced evolution present an exotic phenomenon, known as the non-Hermitian skin effect (NHSE). In a two-leg non-Hermitian system with the same preferred direction of NHSE, the direction has recently been found to reverse when interchain couplings are introduced. Based on quantum walks on a ladder, we also propose an experimentally feasible scheme to demonstrate the direction reversal of NHSE. Through the simulated results we show that particles on each chain accumulate to the preferred boundary driven by nonreciprocal hopping, while particles are transported in the opposite direction when interchain hopping is allowed, clearly demonstrating the existence of reversed NHSE. Our work further expands the application of the quantum walk platform and opens a door for the experimental investigation of reversed NHSE.

113040
The following article is Open access

, , and

Early during the era of cosmic inflation, rotational invariance may have been broken, only later emerging as a feature of low-energy physics. This motivates ongoing searches for residual signatures of anisotropic space-time, for example in the power spectrum of the cosmic microwave background. We propose that dipolar Bose–Einstein condensates (BECs) furnish a laboratory quantum simulation platform for the anisotropy evolution of fluctuation spectra during inflation, exploiting the fact that the speed of dipolar condensate sound waves depends on direction. We construct the anisotropic analogue space-time metric governing sound, by linking the time-varying strength of dipolar and contact interactions in the BEC to the scale factors in different coordinate directions. Based on these, we calculate the dynamics of phonon power spectra during an inflation that renders the initially anisotropic Universe isotropic. We find that the expansion speed provides an experimental handle to control and study the degree of final residual anisotropy. Gravity analogues using dipolar condensates can thus provide tuneable experiments for a field of cosmology that was until now confined to a single experiment, our Universe.

113041
The following article is Open access

, and

We study the two-dimensional site-percolation model on a square lattice. In this paradigmatic model, sites are randomly occupied with probability p; a second-order phase transition from a non-percolating to a fully percolating phase appears at occupation density pc, called percolation threshold. Through supervised deep learning approaches like classification and regression, we show that standard convolutional neural networks (CNNs), known to work well in similar image recognition tasks, can identify pc and indeed classify the states of a percolation lattice according to their p content or predict their p value via regression. When using instead of p the spatial cluster correlation length ξ as labels, the recognition is beginning to falter. Finally, we show that the same network struggles to detect the presence of a spanning cluster. Rather, predictive power seems lost and the absence or presence of a global spanning cluster is not noticed by a CNN with a local convolutional kernel. Since the existence of such a spanning cluster is at the heart of the percolation problem, our results suggest that CNNs require careful application when used in physics, particularly when encountering less-explored situations.

113042
The following article is Open access

, , , , and

Spin-based quantum information processing makes extensive use of spin-state manipulation. This ranges from dynamical decoupling of nuclear spins in quantum sensing experiments to applying logical gates on qubits in a quantum processor. Fast manipulation of spin states is highly desirable for accelerating experiments, enhancing sensitivity, and applying elaborate pulse sequences. Strong driving using intense radio-frequency (RF) fields can, therefore, facilitate fast manipulation and enable broadband excitation of spin species. In this work, we present an antenna for strong driving in quantum sensing experiments and theoretically address challenges of the strong driving regime. First, we designed and implemented a micron-scale planar spiral RF antenna capable of delivering intense fields to a sample. The planar antenna is tailored for quantum sensing experiments using the diamond's nitrogen-vacancy (NV) center and should be applicable to other solid-state defects. The antenna has a broad bandwidth of 22 MHz, is compatible with scanning probes, and is suitable for cryogenic and ultrahigh vacuum conditions. We measure the magnetic field induced by the antenna and estimate a field-to-current ratio of $113 \pm 16$ G/A, representing a six-fold increase in efficiency compared to the state-of-the-art, crucial for cryogenic experiments. We demonstrate the antenna by driving Rabi oscillations in 1H spins of an organic sample on the diamond surface and measure 1H Rabi frequencies of over 500 kHz, i.e. $\mathrm{\pi}$-pulses shorter than 1 $\mu\mathrm{s}$—an order of magnitude faster than previously reported in NV-based nuclear magnetic resonance (NMR). Finally, we discuss the implications of driving spins with a field tilted from the transverse plane in a regime where the driving amplitude is comparable to the spin-state splitting, such that the rotating wave approximation does not describe the dynamics well. We present a simple recipe to optimize pulse fidelity in this regime based on a phase and offset-shifted sine drive, which may be optimized in situ without numerical optimization procedures or precise modeling of the experiment. We consider this approach in a range of driving amplitudes and show that it is particularly efficient in the case of a tilted driving field. The results presented here constitute a foundation for implementing fast nuclear spin control in various systems.

113043
The following article is Open access

, and

Epidemic tends to break out with information spreading which occurs between pairwise individuals or in groups. In active social online platform, three or more individuals can share information or exchange opinion, which could be modeled as a clique beyond pairwise interaction. This work studies the influence of information with higher-order cliques whose closure probability is described by higher-order clustering coefficient on epidemic spreading. The coupled spreading process of disease and awareness follows an unaware-aware-unaware-susceptible-infected-susceptible model on multiplex networks. We deduce the epidemic threshold of multiplex network with higher-order cliques, and explore the effects of cliques on epidemic spreading process at slow, middle and fast pairwise information spreading rates. The results show that the epidemic threshold and higher-order clustering coefficient are positively correlated. Moreover, we find that the effect of higher-order cliques could be ignored when pairwise information spreading rate is large enough. Finally, we show that the steady infection ratio decreases with the increase of the higher-order clustering coefficient.

113044
The following article is Open access

, and

In cross-domain scenarios, the simultaneous presence of multiple sensing delays exerts a profound influence on collective behavior. Motivated by this, our paper presents a system based on self-propelled particles that consists of two swarms containing two intra-swarm sensing delays and an inter-swarm sensing delay. Three state emerges from the system, namely translating state, ring state, and rotating state. Employing mean field approximation and bifurcation analysis, we theoretically examine the parameter space's boundaries that govern these three states. Our detailed findings emphasize that within the translating and rotating states, variations in the two intra-swarm delays can lead to the separation of the two swarms. Meanwhile, the extent of separation is influenced by the inter-swarm delay. Finally, we conduct numerical simulations to validate the accuracy of our theoretical derivations.

113045
The following article is Open access

, , and

From chemical reactions to human communications, higher-order interactions are ubiquitous in real-world networks. Entities within higher-order interactions often exhibit collective behaviors that could create synergistic effects on robustness of the underlying system. Here we propose an analytical model to investigate the robustness of higher-order networks, in which potential higher-order synergistic protection is incorporated. In this model, higher-order networks are described with simplicial complexes, and robustness is studied under the proposed dynamics of extended bond percolation. We provide theoretical analysis for robustness quantities including the relative size of the giant component and percolation threshold. We discover that the percolation threshold could drop to zero, which is an indicator of notably strong robustness, with synergistic protective effects and dense higher-order simplices. We also find that higher-order interactions have strong impacts on the association between robustness and clustering. Specifically, a larger clustering coefficient could invariably indicate stronger robustness once the strength of protective effects exceeds a certain value. Our theoretical solutions are verified by simulation results in simplicial complexes with Poisson, exponential and power-law distributions.

113046
The following article is Open access

, , and

We have studied the possibility of utilizing artificial intelligence (AI) models to optimize high-temperature superconducting (HTS) multilayer structures for applications working in a specific field and temperature range. For this, we propose a new vortex dynamics simulation method that enables unprecedented efficiency in the sampling of training data required by the AI models. The performance of several different types of AI models has been studied, including kernel ridge regression (KRR), gradient-boosted decision tree (GBDT) and neural network. From these, the GBDT based model was observed to be clearly the best fitted for the associated problem. We have demonstrated the use of GBDT for finding optimal multilayer structure at 10 K temperature under 1 T field. The GBDT model predicts that simple doped-undoped bilayer structures, where the vast majority of the film is undoped superconductor, provide the best performance under the given environment. The obtained results coincide well with our previous studies providing further validation for the use of AI in the associated problem. We generally consider the AI models as highly efficient tools for the broad-scale optimization of HTS multilayer structures and suggest them to be used as the foremost method to further push the limits of HTS films for specific applications.

113047
The following article is Open access

, , and

Numerical simulations are used to examine the transition dynamics between metastable and ground state vortex lattice phases in a system with combined sixfold and twelvefold contributions to the vortex–vortex interactions. The system is initially annealed using a twelvefold anisotropy, yielding domains of two different orientations and separated by grain boundaries. The vortex–vortex interaction is then suddenly changed to a sixfold anisotropy, rendering the twelvefold state metastable. Applying a drive that mimics an oscillating magnetic field causes the metastable state to decay, indicated by the structure factor that evolves from twelve to six peaks. The results fit the behavior seen in recent small-angle neutron scattering studies of the vortex lattice in MgB2. At higher drive amplitudes, the decay exhibits a two step process in which the initial fast decrease is followed by a slower regime where avalanches or bursts are correlated with dislocation annihilation events. The results are compared to other types of metastable systems with quenched disorder that decay under a periodic external drive.