Table of contents

Volume 53

Number 5, October 2016

Previous issue Next issue

Foreword

Focus issue papers

A6
The following article is Open access

, and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

The redefinition of the kilogram, expected to be approved in the autumn of 2018, will replace the artefact definition of the kilogram by assigning a fixed numerical value to a fundamental constant of physics. While the concept of such a change is pleasing, the mass community as represented by the Consultative Committee for Mass and Related Quantities (CCM) was faced with a number of technical and procedural challenges that needed to be met in order to profit in any meaningful way from the proposed change. In the following, we outline these challenges and how the CCM has met and is meeting them. We focus especially on what the mass community requires of the new definition and the process by which the CCM has sought to ensure that these needs will be met.

A12

, and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

The very first definition of the kilogram was in terms of a constant of nature, although this idea could not be fully realized at the end of the 18th century. Instead the kilogram was defined by an artefact whose mass was made to approximate as closely as possible a physical constant with unit kg m−3—the maximum density of distilled water at atmospheric pressure. For the next two centuries, mass comparators improved greatly as did the materials from which artefacts could be constructed. These improvements put tighter constraints on the realization of a non-artefact definition of the kilogram. However, it is now expected that the goal of redefining the kilogram in terms of fundamental constants will be achieved in 2018. We present a history of the kilogram with emphasis on continuity of this unit of mass each time it has been redefined and the stability of a unit defined by the mass of an artefact.

A19
The following article is Open access

, , , , , , , , and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

When the kilogram is redefined in terms of the fixed numerical value of the Planck constant h, the x-ray-crystal-density (XRCD) method, among others, is used for realizing the redefined kilogram. The XRCD method has been used for the determination of the Avogadro constant NA by counting the number of atoms in a 28Si-enriched crystal, contributing to a substantial reduction of uncertainty in the values of NA and h to 2 parts in 108. This method can be therefore used reversely for the mass determination of a 1 kg sphere prepared from the crystal. This is realized by SI-traceable measurements of its lattice parameter, isotopic composition, volume, and surface properties. Details of the corresponding measurements are provided, as well as the concept of the XRCD method, isotope enrichment, crystal production, sphere manufacturing, and evaluation of impurities and self-point defects in the crystal, together with mass comparison with respect to the silicon sphere for disseminating mass standards.

A46
The following article is Open access

and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

The redefinition of the SI unit of mass in terms of a fixed value of the Planck constant has been made possible by the Kibble balance, previously known as the watt balance. Once the new definition has been adopted, the Kibble balance technique will permit the realisation of the mass unit over a range from milligrams to kilograms. We describe the theory underlying the Kibble balance and practical techniques required to construct such an instrument to relate a macroscopic physical mass to the Planck constant with an uncertainty, which is achievable at present, in the region of 2 parts in 108. A number of Kibble balances have either been built or are under construction and we compare the principal features of these balances.

A75

, , , and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

The ratio $h/{{m}_{\text{u}}}$ between the Planck constant and the unified atomic mass constant should have a special status in the framework of the future international system of units. Currently (before the redefinition), this ratio allowed the comparison between determinations of h (watt balance) and determinations of ${{m}_{\text{u}}}$ (the XRCD method). In the future SI, as the Planck constant h will be fixed, the ratio $h/{{m}_{\text{u}}}$ will ensure the realization of the new kilogram (quantum kilogram) at the atomic scale. Furthermore as the Avogadro constant will be fixed, the carbon molar mass M(12C), which will no longer be equal to $12~\text{g}\centerdot \text{mo}{{\text{l}}^{-1}}$ , will be determined from mu. This ratio is also key data for the realization of the kilogram at the macroscopic scale using the XRCD method.

In this paper we present the state of the art on experiments that provide the most precise value of the ratio $h/{{m}_{\text{u}}}$ . We focus on the one that is based on the measurement of the atomic recoil due to the photon momentum.

A83
The following article is Open access

, , , , , , and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.

A86

, , , , , , , and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

Although mass is typically defined within the International System of Units (SI) at the kilogram level, the pending SI redefinition provides an opportunity to realize mass at any scale using electrical metrology. We propose the use of an electromechanical balance to realize mass at the milligram level using SI electrical units. An integrated concentric-cylinder vacuum gap capacitor allows us to leverage the highly precise references available for capacitance, voltage and length to generate an electrostatic reference force. Weighing experiments performed on 1 mg and 20 mg artifacts show the same or lower uncertainty than similar experiments performed by subdividing the kilogram. The measurement is currently limited by the stability of the materials that compose the mass artifacts and the changes in adsorbed layers on the artifact surfaces as they are transferred from vacuum to air.

A95

, , , , , and

Focus on Realization, Maintenance and Dissemination of the New Kilogram

The redefinition of the kilogram, along with another three of the base units of the International System of Units (SI), is scheduled for 2018. The current definition of the SI unit of mass assigns a mass of exactly one kilogram to the International Prototype of the kilogram, which is maintained in air and from which the unit is disseminated. The new definition, which will be from the Planck constant, involves the realisation of the mass unit in vacuum by the watt balance or Avogadro experiments. Thus, for the effective dissemination of the mass unit from the primary realisation experiments to end users, traceability of mass standards transferred between vacuum and air needs to be established and the associated uncertainties well understood. This paper describes a means of achieving the link between a unit realised in vacuum and standards used in air, and the ways in which their use can be optimised. It also investigates the likely uncertainty contribution introduced by the vacuum–air transfer process.

S149

, and

BIPM Workshop on Measurement Uncertainty

The contents of the current edition, JCGM 100:2008, of the Guide to the Expression of Uncertainty in Measurement (GUM) and its Supplements are reviewed and remarks made concerning a proposed revision of the GUM. A committee draft of the revision was circulated to member organizations of the Joint Committee for Guides in Metrology (JCGM) and all national metrology institutes in December 2014. The motivation for the proposed changes is given and reactions to the committee draft are summarized. Some of the contents of this paper are solely an expression by the authors and do not constitute an official statement by the JCGM.

Papers

1154

, , , , , and

The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

1165

, and

A torque-generating measuring device in the 1 MN force standard machine of Physikalisch-Technische Bundesanstalt allows combined load conditions to be generated. Superposition is possible in measuring ranges from 20 kN to 1 MN for axial load and from 20 N · m to 2 kN · m for torque. The measurement facility is unique in the world and offers the opportunity to characterize multi-component sensors specifically with regard to their signal crosstalk. The expanded relative measurement uncertainty (k  =  2) of the axial force is 2 · 10−5. In the following, the technical details of the torque measuring device and the metrological characterization from the modelling to the measurement uncertainty budget will be described. The model provides an expanded relative measurement uncertainty (k  =  2)  <  3.9 · 10−4. The results of comparison measurements will be discussed.

1177

, , and

Currently, the piston-cylinder assembly known as PG39 is used as a primary pressure standard at the National Institute of Standards and Technology (NIST) in the range of 20 kPa to 1 MPa with a standard uncertainty of $3\times {{10}^{-6}}$ as evaluated in 2006. An approximate model of gas flow through the crevice between the piston and sleeve contributed significantly to this uncertainty. The aim of this work is to revise the previous effective cross sectional area of PG39 and its uncertainty by carrying out more exact calculations that consider the effects of rarefied gas flow. The effective cross sectional area is completely determined by the pressure distribution in the crevice. Once the pressure distribution is known, the elastic deformations of both piston and sleeve are calculated by finite element analysis. Then, the pressure distribution is recalculated iteratively for the new crevice dimension. As a result, a new value of the effective area is obtained with a relative difference of $3\times {{10}^{-6}}$ from the previous one. Moreover, this approach allows us to reduce significantly the standard uncertainty related to the gas flow model so that the total uncertainty is decreased by a factor of three.

1185

and

Focus on Time Scale Algorithms

In this paper a new approach to Coordinated Universal Time (UTC) calculation is presented by means of the Kalman filter. An ensemble of atomic clocks participating in UTC is selected for analyzing and testing the potentiality of this new method.

1193

, and

Chemical purity assessment using quantitative 1H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation. Furthermore, there may be other uncertainty components inherent in the experimental design, such as independent implementation of multiple calibration standards. As such, the uncertainty evaluation is not purely bottom up (based on the measurement equation) or top down (based on the experimental design), but inherently contains elements of both. This hybrid form of uncertainty analysis is readily implemented with Bayesian statistical analysis. In this article we describe this type of analysis in detail and illustrate it using data from an evaluation of chemical purity and its uncertainty for a folic acid material.

1204
The following article is Open access

, , and

In 2014 the Bureau International des Poids et Mesures (BIPM) carried out a calibration campaign using the international prototype of the kilogram (IPK). This is the second part in a series of publications describing the results of that campaign. As reported (Metrologia523106), following the comparisons between the IPK and its official copies, it was found that the BIPM 'as-maintained mass unit' was offset by 35 μg from the mass of the IPK in 2014. We report here the results of an investigation into this offset that has considered all data available from internal BIPM mass comparisons carried out between 1992 and 2014. This has enabled us to model the evolution of the offset in the as-maintained mass unit and to identify some possible reasons why it has developed. We also report how the model has been used to estimate corrections to all 1 kg mass calibration certificates issued by the BIPM during this period.

1215

, and

For highest accuracy fluorescence colorimetry, standardizing organizations recommend the use of a two-monochromator method with a bidirectional illumination and viewing geometry (45:0 or 0:45). For this reason, reference fluorescence instruments developed by National Measurement Institutes (NMIs) have largely conformed to this bidirectional geometry. However, for many practical applications in colorimetry where the samples exhibit texture, surface roughness or other spatial non-uniformities, the relevant standard test methods specify a sphere geometry with diffuse illumination or viewing (e.g. d:8 or 8:d) which gives improved measurement precision. This difference in the measurement geometry between the primary instrument used to realize the fluorescence scale and the secondary testing instruments used for practical measurements, compromises the traceability of these fluorescence calibrations. To address this metrology issue, a two-monochromator goniospectrofluorimeter instrument has been developed at the National Research Council of Canada (NRC). This instrument can be configured for different illumination and viewing geometries to conform with international standards for different colorimetric applications. To improve the traceability chain for measurements using different geometries, the instrument has been thoroughly characterized and validated by means of comparison measurements with NRC's other spectrophotometric and fluorescence reference instruments. This uncertainty analysis has been carried out in a step-wise manner; first, for a bidirectional geometry (45:0) and then for a sphere geometry (8:d) to provide an uninterrupted traceability to primary radiometric scales. The first paper in this two paper series reviews the background to this work and provides details of the basic design of the new instrument and its characterization for measurements using a bidirectional geometry (45:0), including a representative uncertainty budget. In part 2, the major sources of sphere error are described and minimized in a modified sphere design. The instrument characterization and validation are then extended to a sphere geometry (8:d) to provide direct traceability for practical fluorescence colorimetry.