Table of contents

Volume 913

Number 2, 2021 June 1

Previous issue Next issue

77

and

During planet formation, numerous small impacting bodies result in cratering impacts on large target bodies. A fraction of the target surface is eroded, while a fraction of the impactor material accretes onto the surface. These fractions depend upon the impact velocities, the impact angles, and the escape velocities of the target. This study uses smoothed particle hydrodynamics simulations to model cratering impacts onto a planar icy target for which gravity is the dominant force and material strength is neglected. By evaluating numerical results, scaling laws are derived for the escape mass of the target material and the accretion mass of the impactor material onto the target surface. Together with recently derived results for rocky bodies in a companion study, a conclusion is formulated that typical cratering impacts on terrestrial planets, except for those on Mercury, led to a net accretion, while those on the moons of giant planets, e.g., Rhea and Europa, led to a net erosion. Our newly derived scaling laws would be useful for predicting the erosion of the target body and the accretion of the impactor for a variety of cratering impacts that would occur on large rocky and icy planetary bodies during planet formation and collisional evolution from ancient times to today.

78

, , , , , , , and

We report on the results of multiwavelength follow-up observations with Gemini, Very Large Array (VLA), and Australia Telescope Compact Array to search for a host galaxy and any persistent radio emission associated with FRB 180309. This FRB is among the most luminous FRB detections to date, with a luminosity of >8.7 × 1032 erg Hz−1 at the dispersion-based redshift upper limit of 0.32. We used the high-significance detection of FRB 180309 with the Parkes Telescope and a beam model of the Parkes Multibeam Receiver to improve the localization of the FRB to a region spanning approximately $\sim 2^{\prime} \times 2^{\prime} $. We aimed to seek bright galaxies within this region to determine the strongest candidates as the originator of this highly luminous FRB. We identified optical sources within the localization region above our r-band magnitude limit of 24.27, 14 of which have photometric redshifts whose fitted mean is consistent with the redshift upper limit (z < 0.32) of our FRB. Two of these galaxies are coincident with marginally detected "persistent" radio sources of flux density 24.3 μJy beam−1 and 22.1 μJy beam−1, respectively. Our redshift-dependent limit on the luminosity of any associated persistent radio source is comparable to the luminosity limits for other localized FRBs. We analyze several properties of the candidate hosts we identified, including chance association probability, redshift, and presence of radio emission; however, it remains possible that any of these galaxies could be the host of this FRB. Follow-up spectroscopy on these objects to explore their Hα emission and ionization contents, as well as to obtain more precisely measured redshifts, may be able to isolate a single host for this luminous FRB.

79

, , , , , , , and

Einstein's theory of General Relativity predicts that the spacetime metric around astrophysical black holes is described by the Kerr solution. In this work, we employ state-of-the-art relativistic reflection modeling to analyze a selected set of NuSTAR spectra of Galactic black holes to obtain the most robust and precise constraints on the Kerr black hole hypothesis possible today. Our constraints are much more stringent than those from other electromagnetic techniques and, with some sources, we find stronger constraints than those currently available from gravitational waves.

80

, , , , , , and

We present a large statistical study of the fluctuation anisotropy in minimum variance (MV) frames of the magnetic field and solar wind velocity. We use 2, 10, 20, and 40 minute intervals of simultaneous magnetic field (the Wind spacecraft) and velocity (the Spektr-R spacecraft) observations. Our study confirms that magnetic turbulence is a composite of fluctuations varying along the mean magnetic field and those changing in the direction perpendicular to the mean field. Regardless of the length scale within the studied range of spacecraft-frame frequencies, ≈90% of the observed magnetic field fluctuations exhibit an MV direction aligned with the mean magnetic field, ≈10% of events have the MV direction perpendicular to the background field, and a negligible portion of fluctuations has no preferential direction. On the other hand, the MV direction of velocity fluctuations tends to be distributed more uniformly. An analysis of magnetic compressibility and density fluctuations suggests that the fluctuations resemble properties of Alfvénic fluctuations if the MV direction is aligned with background magnetic field whereas slow-mode-like fluctuations have the MV direction perpendicular to the background field. The proportion between Alfvénic and slow-mode-like fluctuations depends on plasma β and length scale: the dependence on the solar wind speed is weak. We present 3D numerical MHD simulations and show that the numerical results are compatible with our experimental results.

81

, , , , , and

Several mechanisms for the transformation of blue star-forming to red quiescent galaxies have been proposed, and the green valley (GV) galaxies amid them are widely accepted in a transitional phase. Thus, comparing the morphological and environmental differences of the GV galaxies with early-type disks (ETDs; bulge dominated and having a disk) and late-type disks (LTDs; disk dominated) is suitable for distinguishing the corresponding quenching mechanisms. A large population of massive (M* ≥ 1010 M) GV galaxies at 0.5 ≤ z ≤ 1.5 in 3D-HST/CANDELS is selected using extinction-corrected (UV)rest color. After eliminating any possible active galactic nucleus candidates and considering the "mass-matching," we finally construct two comparable samples of GV galaxies with either 319 ETD or 319 LTD galaxies. Compared to the LTD galaxies, it is found that the ETD galaxies possess higher concentration index and lower specific star formation rate, whereas the environments surrounding them are not different. This may suggest that the morphological quenching may dominate the star formation activity of massive GV galaxies rather than the environmental quenching. To quantify the correlation between the galaxy morphology and the star formation activity, we define a dimensionless morphology quenching efficiency Qmor and find that Qmor is not sensitive to the stellar mass and redshift. When the difference between the average star formation rate of ETD and LTD galaxies is about 0.7 M yr−1, the probability of Qmor ≳ 0.2 is higher than 90%, which implies that the degree of morphological quenching in GV galaxies might be described by Qmor ≳ 0.2.

82

, , , , , , and

Infrared quasi-stellar objects (IR QSOs) are a rare subpopulation selected from ultraluminous infrared galaxies (ULIRGs) and have been regarded as promising candidates of ULIRG-to-optical QSO transition objects. Here we present NOEMA observations of the CO (1−0) line and 3 mm continuum emission in IR QSO IRAS F07599+6508 at z = 0.1486, which has many properties in common with Mrk 231. The CO emission is found to be resolved with a major axis of ∼6.1 kpc that is larger than the size of ∼4.0 kpc derived for 3 mm continuum. We identify two faint CO features located at a projected distance of ∼11.4 and 19.1 kpc from the galaxy nucleus, both of which are found to have counterparts in the optical and radio bands and may have a merger origin. A systematic velocity gradient is found in the CO main component, suggesting that the bulk of molecular gas is likely rotationally supported. Based on the radio-to-millimeter spectral energy distribution and IR data, we estimate that about 30% of the flux at 3 mm arises from free–free emission and infer a free–free-derived star formation rate of 77 M yr−1, close to the IR estimate corrected for the AGN contribution. We find a high-velocity CO emission feature at the velocity range of about −1300 to −2000 km s−1. Additional deep CO observations are needed to confirm the presence of a possible very high velocity CO extension of the OH outflow in this IR QSO.

83

, , , , , , , , and

A novel application of machine-learning (ML) based image processing algorithms is proposed to analyze an all-sky map (ASM) obtained using the Fermi Gamma-ray Space Telescope. An attempt was made to simulate a 1 yr ASM from a short-exposure ASM generated from 1-week observation by applying three ML-based image processing algorithms: dictionary learning, U-net, and Noise2Noise. Although the inference based on ML is less clear compared to standard likelihood analysis, the quality of the ASM was generally improved. In particular, the complicated diffuse emission associated with the galactic plane was successfully reproduced only from 1-week observation data to mimic a ground truth (GT) generated from a 1 yr observation. Such ML algorithms can be implemented relatively easily to provide sharper images without various assumptions of emission models. In contrast, large deviations between simulated ML maps and the GT map were found, which are attributed to the significant temporal variability of blazar-type active galactic nuclei (AGNs) over a year. Thus, the proposed ML methods are viable not only to improve the image quality of an ASM but also to detect variable sources, such as AGNs, algorithmically, i.e., without human bias. Moreover, we argue that this approach is widely applicable to ASMs obtained by various other missions; thus, it has the potential to examine giant structures and transient events, both of which are rarely found in pointing observations.

84

and

Analysis of energetic particle inner heliospheric spacecraft data increasingly suggests the existence of anomalous diffusion phenomena that should be addressed to achieve a better understanding of energetic particle transport and acceleration in the expanding solar wind medium. Related to this is fast-growing observational evidence supporting the long-standing prediction from magnetohydrodynamic (MHD) theory and simulations of the presence of an inner heliospheric, dominant quasi-two-dimensional MHD turbulence component that contains coherent contracting and merging (reconnecting) small-scale magnetic flux rope (SMFR) structures. This suggests that energetic particle trapping in SMFRs should play a role in anomalous diffusion in the solar wind that warrants further investigation. However, progress in studying such anomalous energetic particle transport phenomena in the solar wind is hampered by the lack of a fundamental derivation of a general fractional kinetic transport equation linking macroscopic energetic particle fractional transport to the microscopic physics of energetic particle interaction with SMFR structures. Here, we outline details of how one can derive a closed ensemble-averaged focused transport equation in the form of a general kinetic fractional diffusion-advection equation from first principles following the nonlinear Eulerian correlation function closure approach of Sanchez et al. With this equation one can model the anomalous diffusion of energetic particles in ordinary, momentum, and pitch-angle space in response to particle trapping in numerous SMFRs advected with the solar wind flow.

85

, , , , , , , , , et al

Measurement of magnetic field strengths in a molecular cloud is essential for determining the criticality of magnetic support against gravitational collapse. In this paper, as part of the JCMT BISTRO survey, we suggest a new application of the Davis–Chandrasekhar–Fermi (DCF) method to estimate the distribution of magnetic field strengths in the OMC-1 region. We use observations of dust polarization emission at 450 and 850 μm, and C18O (3–2) spectral line data obtained with the JCMT. We estimate the volume density, the velocity dispersion, and the polarization angle dispersion in a box, 40'' × 40'' (5×5 pixels), which moves over the OMC-1 region. By substituting three quantities in each box with the DCF method, we get magnetic field strengths over the OMC-1 region. We note that there are very large uncertainties in the inferred field strengths, as discussed in detail in this paper. The field strengths vary from 0.8 to 26.4 mG, and their mean value is about 6 mG. Additionally, we obtain maps of the mass-to-flux ratio in units of a critical value and the Alfvén Mach number. The central parts of the BN–KL and South (S) clumps in the OMC-1 region are magnetically supercritical, so the magnetic field cannot support the clumps against gravitational collapse. However, the outer parts of the region are magnetically subcritical. The mean Alfvén Mach number is about 0.4 over the region, which implies that the magnetic pressure exceeds the turbulent pressure in the OMC-1 region.

86

GRB 190114C extends the focus of gamma-ray burst (GRB) research to the high-energy regime, in which a prime question is "Do all long-duration GRBs emit GeV photons?" Based on the Fermi Large Area Telescope (LAT) 10 yr observations, 54 GRBs initially within the Fermi-LAT field of view and with known redshift are sampled. Within 26 of these GRBs at least one GeV photon has been detected with a probability of >95%, while the other 28 GRBs have no confident GeV photon detection. We hypothesize that all the samples intrinsically emit GeV photons, and the lack of detection is due to the limited capacity of the satellite. We estimate the theoretical number of photons that LAT receives by considering the GRB energy, the distance, and the LAT effective area. Results show, within the uncertainty, that all 26 GRBs with GeV photon detection have a theoretical photon number of >1, and 27 out of 28 GRBs without GeV photon detection have a theoretical photon number of <1. This agreement tends to support our hypothesis and give an answer of "yes" to our initial question.

87

, , and

A time–distance helioseismic technique, similar to the one used by Ilonidis et al., is applied to two independent numerical models of subsurface sound-speed perturbations to determine the spatial resolution and accuracy of phase travel time shift measurements. The technique is also used to examine pre-emergence signatures of several active regions observed by the Michelson Doppler Imager and the Helioseismic Magnetic Imager. In the context of similar measurements of quiet-Sun regions, three of the five studied active regions show strong phase travel time shifts several hours prior to emergence. These results form the basis of a discussion of noise in the derived phase travel time maps and possible criteria to distinguish between true and false-positive detection of emerging flux.

88

, , , , , , , and

We use combined South Pole Telescope (SPT)+Planck temperature maps to analyze the circumgalactic medium (CGM) encompassing 138,235 massive, quiescent 0.5 ≤ z ≤ 1.5 galaxies selected from data from the Dark Energy Survey (DES) and Wide-Field Infrared Survey Explorer (WISE). Images centered on these galaxies were cut from the 1.85 arcmin resolution maps with frequency bands at 95, 150, and 220 GHz. The images were stacked, filtered, and fit with a graybody dust model to isolate the thermal Sunyaev–Zel'dovich (tSZ) signal, which is proportional to the total energy contained in the CGM of the galaxies. We separated these M = 1010.9M–1012M galaxies into 0.1 dex stellar mass bins, detecting tSZ per bin up to 5.6σ and a total signal-to-noise ratio of 10.1σ. We also detect dust with an overall signal-to-noise ratio of 9.8σ, which overwhelms the tSZ at 150 GHz more than in other lower-redshift studies. We corrected for the 0.16 dex uncertainty in the stellar mass measurements by parameter fitting for an unconvolved power-law energy-mass relation, ${E}_{\mathrm{therm}}={E}_{\mathrm{therm},\mathrm{peak}}{\left({M}_{\star }/{M}_{\star ,\mathrm{peak}}\right)}^{\alpha }$, with the peak stellar mass distribution of our selected galaxies defined as M⋆,peak = 2.3 × 1011M. This yields an ${E}_{\mathrm{therm},\mathrm{peak}}={5.98}_{-1.00}^{+1.02}\,\times {10}^{60}$ erg and $\alpha ={3.77}_{-0.74}^{+0.60}$. These are consistent with z ≈ 0 observations and within the limits of moderate models of active galactic nucleus feedback. We also computed the radial profile of our full sample, which is similar to that recently measured at lower-redshift by Schaan et al.

89
The following article is Open access

, , , , , and

We investigate 16 solar energetic electron (SEE) events measured by WIND/3DP with a double-power-law spectrum and the associated western hard X-ray (HXR) flares measured by RHESSI with good count statistics, from 2002 February to 2016 December. In all the 16 cases, the presence of an SEE power-law spectrum extending down to ≤5 keV at 1 au implies that the SEE source would be high in the corona, at a heliocentric distance of ≥1.3 solar radii, while the footpoint or footpoint-like emissions shown in HXR images suggest that the observed HXRs are likely produced mainly by HXR-producing electrons via thick-target bremsstrahlung processes very low in the corona. We find that for all the 16 cases, the estimated power-law spectral index of HXR-producing electrons is no less than the observed high-energy spectral index of SEEs, and it shows a positive correlation with the high-energy spectral index of SEEs. In addition, the estimated number of SEEs is only ∼10−4–10−2 of the estimated number of HXR-producing electrons at energies above 30 keV, but with a positive correlation between the two numbers. These results suggest that in these cases, SEEs are likely formed by upward-traveling electrons from an acceleration source high in the corona, while their downward-traveling counterparts may undergo a secondary acceleration before producing HXRs via thick-target bremsstrahlung processes. In addition, the associated 3He/4He ratio is positively correlated with the observed high-energy spectral index of SEEs, indicating a possible relation of the 3He ion acceleration with high-energy SEEs.

90

, , , , and

Presolar silicon carbide (SiC) grains in meteoritic samples can help constrain circumstellar condensation processes and conditions in C-rich stars and core-collapse supernovae (CCSNe). This study presents our findings on eight presolar SiC grains from asymptotic giant branch (AGB) stars (four mainstream and one Y grain) and CCSNe (three X grains), chosen on the basis of μ-Raman spectral features that were indicative of their having unusual non-3C polytypes and/or high degrees of crystal disorder. Analytical transmission electron microscopy (TEM), which provides elemental compositional and structural information, shows evidence for complex histories for the grains. Our TEM results confirm the presence of non-3C,2H crystal domains. Minor-element heterogeneities and/or subgrains were observed in all grains analyzed for their compositions. The C/O ratios inferred for the parent stars varied from 0.98 to ≥1.03. Our data show that SiC condensation can occur under a wide range of conditions, in which environmental factors other than temperature (e.g., pressure, gas composition, heterogeneous nucleation on precondensed phases) play a significant role. Based on previous μ-Raman studies, ∼10% of SiC grains may have infrared (IR) spectral features that are influenced by crystal defects, porosity, and/or subgrains. Future sub-diffraction-limited IR measurements of complex SiC grains might shed further light on the relative contributions of each of these features to the shape and position of the characteristic IR 11 μm SiC feature and thus improve the interpretation of IR spectra of AGB stars like those that produced the presolar SiC grains.

91

and

We conduct three-dimensional hydrodynamical numerical simulations of planetary nebula (PN) shaping and show that jets that precede the ejection of the main PN shell can form the morphological feature of ears. Ears are two opposite protrusions from the main nebula that are smaller than the main nebula and with a cross section that decreases monotonically from the base of an ear at the shell to its far end. Only a very small fraction of PNe have ears. The short-lived jets, about a year in the present simulations, interact with the regular asymptotic giant branch wind to form the ears, while the later blown dense wind forms the main PN dense shell. Namely, the jets are older than the main PN shell. We also find that for the jets to inflate ears they cannot be too energetic, cannot be too wide, and cannot be too slow. A flow structure where short-lived jets precede the main phase of nebula ejection by a few years or less can result from a system that enters a common envelope evolution. The low mass companion accretes mass through an accretion disk and launches jets just before it enters the envelope of the giant progenitor star of the PN. Shortly after that the companion enters the envelope and spirals-in to eject the envelope that forms the main PN shell.

92

, , and

Disk vortices have been heralded as promising routes for planet formation due to their ability to trap significant amounts of pebbles. While the gas motions and trapping properties of two-dimensional vortices have been studied in enough detail in the literature, pebble trapping in three dimensions has received less attention, due to the higher computational demand. Here we use the Pencil Code to study 3D vortices generated by convective overstability and the trapping of solids within them. The gas is unstratified whereas the pebbles settle to the midplane due to vertical gravity. We find that for pebbles of normalized friction times of $\mathrm{St}=0.05$ and $\mathrm{St}=1$, and dust-to-gas ratio $\varepsilon =0.01$, the vortex column in the midplane is strongly perturbed. Yet when the initial dust-to-gas ratio is decreased the vortices remain stable and function as efficient pebble traps. Streaming instability is triggered even for the lowest dust-to-gas ratio (${\varepsilon }_{0}={10}^{-4}$) and smallest pebble sizes ($\mathrm{St}=0.05$) we assumed, showing a path for planetesimal formation in vortex cores from even extremely subsolar metallicity. To estimate if the reached overdensities can be held together solely by their own gravity we estimate the Roche density at different radii. Depending on disk model and radial location of the pebble clump we do reach concentrations higher than the Roche density. We infer that if self-gravity was included for the pebbles then gravitational collapse would likely occur.

93
The following article is Open access

, , , , , , , , , et al

Theoretical models show that the power of relativistic jets of active galactic nuclei depends on the spin and mass of the central supermassive black holes, as well as the accretion. Here we report an analysis of archival observations of a sample of blazars. We find a significant correlation between jet kinetic power and the spin of supermassive black holes. At the same time, we use multiple linear regression to analyze the relationship between jet kinetic power and accretion, spin, and black hole mass. We find that the spin of supermassive black holes and accretion are the most important contributions to the jet kinetic power. The contribution rates of both the spin of supermassive black holes and accretion are more than 95%. These results suggest that the spin energy of supermassive black holes powers the relativistic jets. The jet production efficiency of almost all Fermi blazars can be explained by moderately thin, magnetically arrested accretion disks around rapidly spinning black holes.

94

, , , , , , , , , et al

Utilizing the Atacama Large Millimeter/submillimeter Array, we present CS line maps in five rotational lines (Ju = 7, 5, 4, 3, 2) toward the circumnuclear disk (CND) and streamers of the Galactic center. Our primary goal is to resolve the compact structures within the CND and the streamers, in order to understand the stability conditions of molecular cores in the vicinity of the supermassive black hole (SMBH) Sgr A*. Our data provide the first homogeneous high-resolution (1farcs3 = 0.05 pc) observations aiming at resolving density and temperature structures. The CS clouds have sizes of 0.05–0.2 pc with a broad range of velocity dispersion (σFWHM = 5–40 km s−1). The CS clouds are a mixture of warm (Tk ≥ 50–500 K, ${n}_{{{\rm{H}}}_{2}}$ = 103–105 cm−3) and cold gas (Tk ≤ 50 K, ${n}_{{{\rm{H}}}_{2}}$ = 106–108 cm−3). A stability analysis based on the unmagnetized virial theorem including tidal force shows that ${84}_{-37}^{+16} \% $ of the total gas mass is tidally stable, which accounts for the majority of gas mass. Turbulence dominates the internal energy and thereby sets the threshold densities 10–100 times higher than the tidal limit at distance ≥1.5 pc to Sgr A*, and therefore it inhibits the clouds from collapsing to form stars near the SMBH. However, within the central 1 pc, the tidal force overrides turbulence and the threshold densities for a gravitational collapse quickly grow to ≥ 108 cm−3.

95

, , , , and

Many theoretical studies have shown that external photoevaporation from massive stars can severely truncate, or destroy altogether, the gaseous protoplanetary disks around young stars. In tandem, several observational studies report a correlation between the mass of a protoplanetary disk and its distance to massive ionizing stars in star-forming regions, and cite external photoevaporation by the massive stars as the origin of this correlation. We present N-body simulations of the dynamical evolution of star-forming regions and determine the mass loss in protoplanetary disks from external photoevaporation due to far-ultraviolet and extreme-ultraviolet radiation from massive stars. We find that projection effects can be significant, in that low-mass disk-hosting stars that appear close to the ionizing sources may be fore- or background stars in the star-forming region. We find very little evidence in our simulations for a trend in increasing disk mass with increasing distance from the massive star(s), even when projection effects are ignored. Furthermore, the dynamical evolution of these young star-forming regions moves stars whose disks have been photoevaporated to far-flung locations, away from the ionizing stars, and we suggest that any correlation between disk mass and distance from the ionizing star is either coincidental, or due to some process other than external photoevaporation.

96
The following article is Open access

and

This work proposes a thermophysical model for realistic surface layers on airless small bodies (RSTPM) for the use of interpreting their multiepoch thermal light curves (e.g., WISE/NEOWISE). RSTPM considers the real orbital cycle, rotation cycle, rough surface, temperature-dependent thermal parameters, as well as contributions of sunlight reflection to observations. It is thus able to produce a precise temperature distribution and thermal emission of airless small bodies regarding the variations on orbital timescales. Details of the physics, mathematics, and numerical algorithms of RSTPM are presented. When used to interpret multiepoch thermal light curves by WISE/NEOWISE, RSTPM can give constraints on the spin orientation and surface physical properties, such as the mean thermal inertia or the mean size of dust grains, the roughness fraction, and the albedo via a radiometric procedure. As an application example, we apply this model to the main-belt object (24) Themis, the largest object of the Themis family, which is believed to be the source region of many main-belt comets. We find multiepoch (2010, 2014–2018) observations of Themis by WISE/NEOWISE, yielding 18 thermal light curves. By fitting these data with RSTPM, the best-fit spin orientation of Themis is derived to be (λ = 137°, β = 59°) in ecliptic coordinates, and the mean radius of dust grains on the surface is estimated to be $\tilde{b}=\,{140}_{-114}^{+500}(6\sim 640)$μm, indicating that the surface thermal inertia varies from ∼3 Jm−2 s−0.5 K−1 to ∼60 Jm−2s−0.5 K−1 due to seasonal temperature variation. A more detailed analysis found that the thermal light curves of Themis show a weak feature that depends on the rotation phase, which is indicative of heterogeneous thermal properties or imperfections of the light-curve inversion shape model.

97

, , , , and

Nonpotential magnetic energy promptly released in solar flares is converted to other forms of energy. This may include nonthermal energy of flare-accelerated particles, thermal energy of heated flaring plasma, and kinetic energy of eruptions, jets, upflows/downflows, and stochastic (turbulent) plasma motions. The processes or parameters governing partitioning of the released energy between these components are an open question. How these components are distributed between distinct flaring loops and what controls these spatial distributions are also unclear. Here, based on multiwavelength data and 3D modeling, we quantify the energy partitioning and spatial distribution in the well-observed SOL2014-02-16T064620 solar flare of class C1.5. Nonthermal emission of this flare displayed a simple impulsive single-spike light curve lasting about 20 s. In contrast, the thermal emission demonstrated at least three distinct heating episodes, only one of which was associated with the nonthermal component. The flare was accompanied by upflows and downflows and substantial turbulent velocities. The results of our analysis suggest that (i) the flare occurs in a multiloop system that included at least three distinct flux tubes; (ii) the released magnetic energy is divided unevenly between the thermal and nonthermal components in these loops; (iii) only one of these three flaring loops contains an energetically important amount of nonthermal electrons, while two other loops remain thermal; (iv) the amounts of direct plasma heating and that due to nonthermal electron loss are comparable; and (v) the kinetic energy in the flare footpoints constitutes only a minor fraction compared with the thermal and nonthermal energies.

98

, , , , , , , , , et al

Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timing is important for gravitational-wave detection with pulsar timing arrays (PTAs), which depend on the reliability of pulsars as stable clocks with an uncertainty of ∼100 ns or less over ∼10 yr or more. Scattering can be described as a convolution of the intrinsic pulse shape with an impulse response function representing the effects of multipath propagation. In previous studies, the technique of cyclic spectroscopy has been applied to pulsar signals to deconvolve the effects of scattering from the original emitted signals, increasing the overall timing precision. We present an analysis of simulated data to test the quality of deconvolution using cyclic spectroscopy over a range of parameters characterizing interstellar scattering and pulsar signal-to-noise ratio (S/N). We show that cyclic spectroscopy is most effective for high S/N and/or highly scattered pulsars. We conclude that cyclic spectroscopy could play an important role in scattering correction to distant populations of highly scattered pulsars not currently included in PTAs. For future telescopes and for current instruments such as the Green Bank Telescope upgraded with the ultrawide bandwidth receiver, cyclic spectroscopy could potentially double the number of PTA-quality pulsars.

99
The following article is Open access

, , , , , , , and

Type II radio bursts are generally observed in association with flare-generated or coronal-mass-ejection-driven shock waves. The exact shock and coronal conditions necessary for the production of type II radio emission are still under debate. Shock waves are important for the acceleration of electrons necessary for the generation of the radio emission. Additionally, the shock geometry and closed field line topology, e.g., quasi-perpendicular shock regions or shocks interacting with streamers, play an important role for the production of the emission. In this study we perform a 3D reconstruction and modeling of a shock wave observed during the 2014 November 5 solar event. We determine the spatial and temporal evolution of the shock properties and examine the conditions responsible for the generation and evolution of type II radio emission. Our results suggest that the formation and evolution of a strong, supercritical, quasi-perpendicular shock wave interacting with a coronal streamer were responsible for producing type II radio emission. We find that the shock wave is subcritical before and supercritical after the start of the type II emission. The shock geometry is mostly quasi-perpendicular throughout the event. Our analysis shows that the radio emission is produced in regions where the supercritical shock develops with an oblique to quasi-perpendicular geometry.

100

, , , , and

We study the long-term evolution of ejecta formed in a binary neutron star (NS) merger that results in a long-lived remnant NS by performing a hydrodynamics simulation with the outflow data of a numerical relativity simulation as the initial condition. At the homologously expanding phase, the total ejecta mass reaches ≈ 0.1 M with an average velocity of ≈ 0.1 c and lanthanide fraction of ≈ 0.005. We further perform the radiative transfer simulation employing the obtained ejecta profile. We find that, contrary to a naive expectation from the large ejecta mass and low lanthanide fraction, the optical emission is not as bright as that in GW170817/AT2017gfo, while the infrared emission can be brighter. This light-curve property is attributed to preferential diffusion of photons toward the equatorial direction due to the prolate ejecta morphology; large opacity contribution of Zr, Y, and lanthanides; and low specific heating rate of the ejecta. Our results suggest that these light-curve features could be used as an indicator for the presence of a long-lived remnant NS. We also found that the bright optical emission broadly consistent with GW170817/AT2017gfo is realized for the case in which the high-velocity ejecta components in the polar region are suppressed. These results suggest that the remnant in GW170817/AT2017gfo is unlikely to be a long-lived NS but might have collapsed to a black hole within ${ \mathcal O }(0.1)$ s.

101

, , and

A large fraction of known terrestrial-size exoplanets located in the habitable zone of M-dwarfs are expected to be tidally locked. Numerous efforts have been conducted to study the climate of such planets, using in particular 3D global climate models (GCMs). One of the biggest challenges in simulating such an extreme environment is to properly represent the effects of sub-grid convection. Most GCMs use either a simplistic convective-adjustment parameterization or sophisticated (e.g., mass flux scheme) Earth-tuned parameterizations. One way to improve the representation of convection is to study convection using numerical convection-resolving models (CRMs), with a fine spatial resolution. In this study, we developed a CRM coupling the non-hydrostatic dynamical core Advanced Research Weather-Weather Research and Forecast model with the radiative transfer and cloud/precipitation models of the Laboratoire de Météorologie Dynamique generic climate model to study convection and clouds on tidally locked planets, with a focus on Proxima b. Simulations were performed for a set of three surface temperatures (corresponding to three different incident fluxes) and two rotation rates, assuming an Earth-like atmosphere. The main result of our study is that while we recover the prediction of GCMs that (low-altitude) cloud albedo increases with increasing stellar flux, the cloud feedback is much weaker due to transient aggregation of convection leading to low partial cloud cover.

102

, , , , , , , , , et al

A supermassive black hole (SMBH) ejected from the potential well of its host galaxy via gravitational wave recoil carries important information about the mass ratio and spin alignment of the pre-merger SMBH binary. Such a recoiling SMBH may be detectable as an active galactic nucleus (AGN) broad-line region offset by up to 10 kpc from a disturbed host galaxy. We describe a novel methodology using forward modeling with The Tractor to search for such offset AGNs in a sample of 5493 optically variable AGNs detected with the Zwicky Transient Facility (ZTF). We present the discovery of nine AGNs that may be spatially offset from their host galaxies and are candidates for recoiling SMBHs. Five of these offset AGNs exhibit double-peaked broad Balmer lines, which may have arisen from unobscured accretion disk emission, and four show radio emission indicative of a relativistic jet. The fraction of double-peaked emitters in our spatially offset AGN sample is significantly larger than the 16% double-peaked emitter fraction observed for ZTF AGNs overall. In our sample of variable AGNs we also identified 52 merging galaxies, including a new spectroscopically confirmed dual AGN. Finally, we detected the dramatic rebrightening of SDSS 1133, a previously discovered variable object and recoiling SMBH candidate, in ZTF. The flare was accompanied by the reemergence of strong P Cygni line features, indicating that SDSS 1133 may be an outbursting luminous blue variable star.

103

, , , , , , , , , et al

We explore the connection between the kinematics, structures and stellar populations of massive galaxies at 0.6 < z < 1.0 using the fundamental plane (FP). Combining stellar kinematic data from the Large Early Galaxy Astrophysics Census (LEGA-C) survey with structural parameters measured from deep Hubble Space Telescope imaging, we obtain a sample of 1419 massive ($\mathrm{log}({M}_{* }/{M}_{\odot })\gt 10.5$) galaxies that span a wide range in morphology, star formation activity, and environment, and therefore is representative of the massive galaxy population at z ∼ 0.8. We find that quiescent and star-forming galaxies occupy the parameter space of the g-band FP differently and thus have different distributions in the dynamical mass-to-light ratio (Mdyn/Lg), largely owing to differences in the stellar age and recent star formation history, and to a lesser extent, the effects of dust attenuation. In contrast, we show that both star-forming and quiescent galaxies lie on the same mass FP at z ∼ 0.8, with a comparable level of intrinsic scatter about the plane. We examine the variation in Mdyn/M* through the thickness of the mass FP, finding no significant residual correlations with stellar population properties, Sérsic index, or galaxy overdensity. Our results suggest that, at fixed size and velocity dispersion, the variations in Mdyn/Lg of massive galaxies reflect an approximately equal contribution of variations in M*/Lg, and variations in the dark matter fraction or initial mass function.

104

, , and

A recent observational study suggests that the occurrence of hot Jupiters (HJs) around solar-type stars is correlated with stellar clustering. We study a new scenario for HJ formation, called "Flyby Induced High-e Migration," that may help explain this correlation. In this scenario, stellar flybys excite the eccentricity and inclination of an outer companion (giant planet, brown dwarf, or low-mass star) at large distance (10–300 au), which then triggers high-e migration of an inner cold Jupiter (at a few astronomical units) through the combined effects of von Zeipel–Lidov–Kozai (ZLK) eccentricity oscillation and tidal dissipation. Using semianalytical calculations of the effective ZLK inclination window, together with numerical simulations of stellar flybys, we obtain the analytic estimate for the HJ occurrence rate in this formation scenario. We find that this "flyby induced high-e migration" could account for a significant fraction of the observed HJ population, although the result depends on several uncertain parameters, including the density and lifetime of birth stellar clusters, and the occurrence rate of the "cold Jupiter + outer companion" systems.

105

, , , , , , and

The radio galaxy 1321+045 is a rare example of a young, compact steep-spectrum source located in the center of a z = 0.263 galaxy cluster. Using a combination of Chandra, VLBA, VLA, MERLIN, and IRAM 30 m observations, we investigate the conditions that have triggered this outburst. We find that the previously identified 5 kpc scale radio lobes are probably no longer powered by the active galactic nucleus, which seems to have launched a new ∼20 pc jet on a different axis, likely within the last few hundred years. We estimate the enthalpy of the lobes to be ${8.48}_{-3.56}^{+6.04}\times {10}^{57}\,\mathrm{erg}$, only sufficient to balance cooling in the surrounding 16 kpc for ∼9 Myr. The properties of the cluster's intracluster medium (ICM) are similar to those of rapidly cooling nearby clusters, with a low central entropy (8.6${}_{-1.4}^{+2.2}$ keV cm2 within 8 kpc), short central cooling time (390${}_{-150}^{+170}$ Myr), and tcool/tff and tcool/teddy ratios indicative of thermal instability out to ∼45 kpc. Despite previous detection of Hα emission from the brightest cluster galaxy, our IRAM 30 m observations do not detect CO emission in either the (1–0) or (3–2) transitions. We place 3σ limits on the molecular gas mass of Mmol ≤ 7.7 × 109 M and ≤5.6 × 109 M from the two lines respectively. We find indications of a recent minor cluster merger that has left a ∼200 kpc tail of stripped gas in the ICM, and probably induced sloshing motions.

106

and

The bulk propagation speed of GeV-energy cosmic rays is limited by frequent scattering off hydromagnetic waves. Most galaxy evolution simulations that account for this confinement assume the gas is fully ionized and cosmic rays are well coupled to Alfvén waves; however, multiphase density inhomogeneities, frequently underresolved in galaxy evolution simulations, induce cosmic-ray collisions and ionization-dependent transport driven by cosmic-ray decoupling and elevated streaming speeds in partially neutral gas. How do cosmic rays navigate and influence such a medium, and can we constrain this transport with observations? In this paper, we simulate cosmic-ray fronts impinging upon idealized, partially neutral clouds and lognormally distributed clumps, with and without ionization-dependent transport. With these high-resolution simulations, we identify cloud interfaces as crucial regions where cosmic-ray fronts can develop a stairstep pressure gradient sufficient to collisionlessly generate waves, overcome ion–neutral damping, and exert a force on the cloud. We find that the acceleration of cold clouds is hindered by only a factor of a few when ionization-dependent transport is included, with additional dependencies on magnetic field strength and cloud dimensionality. We also probe how cosmic rays sample the background gas and quantify collisional losses. Hadronic gamma-ray emission maps are qualitatively different when ionization-dependent transport is included, but the overall luminosity varies by only a small factor, as the short cosmic-ray residence times in cold clouds are offset by the higher densities that cosmic rays sample.

107
The following article is Open access

, , , , and

Terrestrial planets with large water inventories are likely ubiquitous and will be among the first Earth-sized planets to be characterized with upcoming telescopes. It has previously been argued that waterworlds—particularly those possessing more than 1% H2O—experience limited melt production and outgassing due to the immense pressure overburden of their overlying oceans, unless subject to high internal heating. But an additional, underappreciated obstacle to outgassing on waterworlds is the high solubility of volatiles in high-pressure melts. Here, we investigate this phenomenon and show that volatile solubilities in melts probably prevent almost all magmatic outgassing from waterworlds. Specifically, for Earth-like gravity and oceanic crust composition, oceans or water ice exceeding 10–100 km in depth (0.1–1 GPa) preclude the exsolution of volatiles from partial melt of silicates. This solubility limit compounds the pressure overburden effect as large surface oceans limit both melt production and degassing from any partial melt that is produced. We apply these calculations to Trappist-1 planets to show that, given current mass and radius constraints and implied surface water inventories, Trappist-1f and -1g are unlikely to experience volcanic degassing. While other mechanisms for interior-surface volatile exchange are not completely excluded, the suppression of magmatic outgassing simplifies the range of possible atmospheric evolution trajectories and has implications for interpretation of ostensible biosignature gases, which we illustrate with a coupled model of planetary interior–climate–atmosphere evolution.

108

, , , and

Sunspots are known to be strong absorbers of solar oscillation modal power. The most convincing way to demonstrate this is done via Fourier–Hankel decomposition (FHD), where the local oscillation field is separated into in- and outgoing waves, showing the reduction in power. Due to the Helioseismic and Magnetic Imager's high-cadence Doppler measurements, power absorption can be investigated at frequencies beyond the acoustic cutoff frequency. We perform an FHD on five sunspot regions and two quiet-Sun control regions and study the resulting absorption spectra α(ν), specifically at frequencies ν > 5.3 mHz. We observe an unreported high-frequency absorption feature, which only appears in the presence of a sunspot. This feature is confined to phase speeds of one-skip waves whose origins coincide with the sunspot's center, with vph = 85.7 km s−1 in this case. By employing a fit to the absorption spectra at a constant phase speed, we find that the peak absorption strength ${\alpha }_{\max }$ lies between 0.166 and 0.222 at a noise level of about 0.009 (5%). The well-known absorption along ridges at lower frequencies can reach up to ${\alpha }_{\max }\approx 0.5$. Thus our finding in the absorption spectrum is weaker, but nevertheless significant. From first considerations regarding the energy budget of high-frequency waves, this observation can likely be explained by the reduction of emissivity within the sunspot. We derive a simple relation between emissivity and absorption. We conclude that sunspots yield a wave power absorption signature (for certain phase speeds only), which may help in understanding the effect of strong magnetic fields on convection and source excitation and potentially in understanding the general sunspot subsurface structure.

109

, , , , , , and

This paper introduces Subhalo Mass-loss Analysis using Core Catalogs (SMACC). SMACC adds a mass model to substructure merger trees based on halo "core tracking." Our approach avoids the need for running expensive subhalo finding algorithms and instead uses subhalo mass-loss modeling to assign masses to halo cores. We present details of the SMACC methodology and demonstrate its excellent performance in describing halo substructure and its evolution. Validation of the approach is carried out using cosmological simulations at significantly different resolutions. We apply SMACC to the 1.24-trillion-particle Last Journey simulation and construct core catalogs with the additional mass information. These catalogs can be readily used as input to semianalytic models or subhalo abundance matching approaches to determine approximate galaxy distributions, as well as for in-depth studies of small-scale structure evolution.

110

, , , , , , , , and

In order to connect galaxy clusters to their progenitor protoclusters, we must constrain the star formation histories within their member galaxies and the timescale of virial collapse. In this paper we characterize the complex star-forming properties of a z = 2.5 protocluster in the COSMOS field using ALMA dust continuum and new Very Large Array CO (1–0) observations of two filaments associated with the structure, sometimes referred to as the "Hyperion" protocluster. We focus in particular on the protocluster "core," which has previously been suggested as the highest-redshift bona fide galaxy cluster traced by extended X-ray emission in a stacked Chandra/XMM image. We reanalyze these data and refute these claims, finding that at least 40% ± 17% of extended X-ray sources of similar luminosity and size at this redshift arise instead from inverse Compton scattering off recently extinguished radio galaxies rather than intracluster medium. Using ancillary COSMOS data, we also constrain the spectral energy distributions of the two filaments' eight constituent galaxies from the rest-frame UV to radio. We do not find evidence for enhanced star formation efficiency in the core and conclude that the constituent galaxies are already massive (M ≈ 1011M), with molecular gas reservoirs >1010M that will be depleted within 200–400 Myr. Finally, we calculate the halo mass of the nested core at z = 2.5 and conclude that it will collapse into a cluster of (2–9) × 1014M, comparable to the size of the Coma Cluster at z = 0 and accounting for at least 50% of the total estimated halo mass of the extended "Hyperion" structure.

111

, , , , , and

We present a detailed analysis of the single-slit optical spectrum of the flat-spectrum radio quasar (FSRQ) B2 0003+38A, taken by the Echellette Spectrograph and Imager (ESI) on the Keck II telescope. This classical low-redshift FSRQ (z = 0.22911, as measured from the stellar absorption lines) remains underexplored in its emission lines, though its broadband continuum properties from radio to X-ray are well studied. After removing the unresolved quasar nucleus and the starlight from the host galaxy, we obtain a spatially resolved 2D spectrum, which clearly shows three components, indicating a rotating disk, an extended emission-line region (EELR), and an outflow. The bulk of the EELR, with a characteristic mass MEELR ∼ 107M, and redshifted by vEELR ≈ 120 km s−1 with respect to the quasar systemic velocity, shows a one-sided structure stretching to a projected distance of rEELR ∼ 20 kpc from the nucleus. The rotation curve of the rotating disk is consistent with that of a typical galactic disk, suggesting that the FSRQ is hosted by a disk galaxy. This conclusion is in accordance with the facts that strong absorption in the H i 21 cm line was previously observed, and that Na iλλ5891, 5897 and Ca iiλλ3934, 3969 doublets are detected in the optical ESI spectrum. B2 0003+38A will become the first FSRQ discovered to be hosted by a gas-rich disk galaxy, if this is confirmed by follow-up deep imaging and/or integral field unit mapping with a high spatial resolution. These observations will also help unravel the origin of the EELR.

112

, , , , , , , , and

Accelerated He+ pickup ions (PUIs) downstream of quasiperpendicular shocks are studied as a function of the fast-mode Mach number (Mf) and shock obliquity (θBn). We analyze 10 quasiperpendicular shocks with Mach numbers in the range [1, 7] observed by the Magnetospheric MultiScale (MMS) mission, and compare upstream and downstream He+ velocity distribution functions. For each shock event, we characterize the upstream PUI distribution and derive reduced 1D velocity distributions for the selected upstream and downstream intervals. We also compare the upstream-to-downstream ratio of spectral indices, computed from the He+ perpendicular distributions, to Mf and θBn. We find a positive correlation of this spectral index ratio and Mf, which suggests that perpendicular energization of He+ PUIs is enhanced as the shock becomes stronger. These results inform modeling efforts of PUIs and shock-acceleration processes, particularly those taking place at the termination shock.

113

, , , , , , , , , et al

In this paper we examine the factors that shape the distribution of molecular gas surface densities on the 150 pc scale across 67 morphologically diverse star-forming galaxies in the PHANGS-ALMA CO (2–1) survey. Dividing each galaxy into radial bins, we measure molecular gas surface density contrasts, defined here as the ratio between a fixed high percentile of the CO distribution and a fixed reference level in each bin. This reference level captures the level of the faint CO floor that extends between bright filamentary features, while the intensity level of the higher percentile probes the structures visually associated with bright, dense interstellar medium features like spiral arms, bars, and filaments. We compare these contrasts to matched percentile-based measurements of the 3.6 μm emission measured using Spitzer/IRAC imaging, which trace the underlying stellar mass density. We find that the logarithms of CO contrasts on 150 pc scales are 3–4 times larger than, and positively correlated with, the logarithms of 3.6 μm contrasts probing smooth nonaxisymmetric stellar bar and spiral structures. The correlation appears steeper than linear, consistent with the compression of gas as it flows supersonically in response to large-scale stellar structures, even in the presence of weak or flocculent spiral arms. Stellar dynamical features appear to play an important role in setting the cloud-scale gas density in our galaxies, with gas self-gravity perhaps playing a weaker role in setting the 150 pc scale distribution of gas densities.

114
The following article is Open access

and

Atmospheric retrievals of exoplanetary transmission spectra provide important constraints on various properties, such as chemical abundances, cloud/haze properties, and characteristic temperatures, at the day–night atmospheric terminator. To date, most spectra have been observed for giant exoplanets due to which retrievals typically assume hydrogen-rich atmospheres. However, recent observations of mini Neptunes/super-Earths, and the promise of upcoming facilities including the James Webb Space Telescope (JWST), call for a new generation of retrievals that can address a wide range of atmospheric compositions and related complexities. Here we report Aurora, a next-generation atmospheric retrieval framework that builds upon state-of-the-art architectures and incorporates the following key advancements: (a) a generalized compositional retrieval allowing for H-rich and H-poor atmospheres, (b) a generalized prescription for inhomogeneous clouds/hazes, (c) multiple Bayesian inference algorithms for high-dimensional retrievals, (d) modular considerations for refraction, forward scattering, and Mie scattering, and (e) noise modeling functionalities. We demonstrate Aurora on current and/or synthetic observations of the hot Jupiter HD 209458 b, mini Neptune K2-18b, and rocky exoplanet TRAPPIST-1 d. Using current HD 209458 b spectra, we demonstrate the robustness of our framework and cloud/haze prescription against assumptions of H-rich/H-poor atmospheres, improving on previous treatments. Using real and synthetic spectra of K2-18b, we demonstrate an agnostic approach to confidently constrain its bulk atmospheric composition and obtain precise abundance estimates. For TRAPPIST-1 d, 10 JWST-NIRSpec transits can enable identification of the main atmospheric component for cloud-free, CO2-rich, and N2-rich atmospheres and abundance constraints on trace gases, including initial indications of O3 if present at enhanced levels (∼10×–100× Earth levels).

115

, , , , , , , , , et al

The Galactic Center (GC) region hosts a variety of powerful astronomical sources and rare astrophysical processes that emit a large flux of nonthermal radiation. The inner 375 pc × 600 pc region, called the Central Molecular Zone, is home to the supermassive black hole Sagittarius A*, massive cloud complexes, and particle accelerators such as supernova remnants (SNRs). We present the results of our improved analysis of the very-high-energy gamma-ray emission above 2 TeV from the GC using 125 hr of data taken with the Very Energetic Radiation Imaging Telescope Array System imaging-atmospheric Cerenkov telescope between 2010 and 2018. The central source VER J1745–290, consistent with the position of Sagittarius A*, is detected at a significance of 38 standard deviations above the background level (38σ), and we report its spectrum and light curve. Its differential spectrum is consistent with a power law with exponential cutoff, with a spectral index of ${2.12}_{-0.17}^{+0.22}$, a flux normalization at 5.3 TeV of ${1.27}_{-0.23}^{+0.22}\times {10}^{-13}$ TeV−1 cm−2 s−1, and cutoff energy of ${10.0}_{-2.0}^{+4.0}$ TeV. We also present results on the diffuse emission near the GC, obtained by combining data from multiple regions along the GC ridge, which yield a cumulative significance of 9.5σ. The diffuse GC ridge spectrum is best fit by a power law with a hard index of 2.19 ± 0.20, showing no evidence of a cutoff up to 40 TeV. This strengthens the evidence for a potential accelerator of PeV cosmic rays being present in the GC. We also provide spectra of the other sources in our field of view with significant detections, composite SNR G0.9+0.1, and HESS J1746–285.

116

and

Recent studies have detected structurally bound water in the refractory silicate minerals present in ordinary and enstatite chondrite meteorites. The mechanism for the incorporation of the hydrogen is not well defined. In this paper we quantitatively examine a two-fold process involving the implantation and diffusion of nebular hydrogen ions that is responsible for the hydration of the chondritic minerals. Our simulations show that depending on critical parameters, including the flux of the protons in nebular plasma, retention coefficient, temperature of the silicate minerals, and desorption rate of implanted hydrogen, the implantation of low-energy hydrogen ions can result in equivalent water contents of ∼0.1 wt% in chondritic silicates within 10 years. Thus, this novel mechanism operating in the nebula at 10−3 bar pressure and <650 K temperatures can efficiently hydrate the free-floating chondritic minerals prior to the rapid formation of planetesimals inside the snow line, and agree well with the wet accretion scenario for the inner solar system objects.

117

, , , , , and

The polarimetric observations of the protoplanetary disk around HL Tau have shown the scattering-induced polarization at ALMA Band 7, which indicates that the maximum dust size is ∼100 μm, while the spectral energy distribution (SED) has suggested that the maximum dust size is approximately a millimeter. To solve the contradiction, we investigate the impact of differential settling of dust grains on the SED and polarization. If the disk is optically thick, a longer observing wavelength traces more interior layers, which would be dominated by larger grains. We find that the SED of the center part of the HL Tau disk can be explained with millimeter-sized grains for a broad range of turbulence strength, while 160 μm–sized grains cannot be explained unless the turbulence strength parameter αt is lower than 10−5. We also find that the observed polarization fraction can be potentially explained with a maximum dust size of 1 mm if αt ≲ 10−5, although models with 160 μm–sized grains are also acceptable. However, if the maximum dust size is ∼3 mm, the simulated polarization fraction is too low to explain the observations even if the turbulence strength is extremely small, indicating a maximum dust size of ≲1 mm. The degeneracy between 100 μm– and millimeter-sized grains can be solved by improving the ALMA calibration accuracy or polarimetric observations at (sub)centimeter wavelengths.

118

, , , and

In this work we derive the minimum allowed orbital periods of H-rich bodies ranging in mass from Saturn's mass to 1 M, emphasizing gas giants and brown dwarfs (BDs) over the range 0.0003–0.074 M. Analytic fitting formulae for ${P}_{\min }$ as a function of the mass of the body and as a function of the mean density are presented. We assume that the density of the host star is sufficiently high so as not to limit the minimum period. In many instances this implies that the host star is a white dwarf. This work is aimed, in part, toward distinguishing BDs from planets that are found transiting the host white dwarf without recourse to near-infrared or radial velocity measurements. In particular, orbital periods of ≲100 minutes are very likely to be BDs. The overall minimum period over this entire mass range is ≃37 minutes.

119

, , , , , , , , , et al

We present a detailed spectral-timing analysis of the Kilohertz quasiperiodic oscillations (kHz QPOs) in Sco X-1 using the data of the Rossi X-ray Timing Explorer (RXTE) and the Hard X-ray Modulation Telescope (Insight-HXMT). The energy band with detectable kHz QPOs is studied for the first time: on the horizontal branch, it is ∼6.89–24.01 and ∼8.68–21.78 keV for the upper and lower kHz QPOs, respectively, detected by the RXTE, and ∼9–27.5 keV for the upper kHz QPOs by the Insight-HXMT; on the lower normal branch, the energy band is narrower. The fractional root mean square (rms) of the kHz QPOs increases with energy at a lower energy, reaches a plateau at about 16 and 20 keV for the lower and upper peaks, and then levels off though with a large uncertainty. The simulation of the deadtime effect of RXTE/PCA shows that the deadtime does not affect much the search of the kHz QPOs but makes the rms amplitude underestimated. No significant QPO is detected below ∼6 keV as shown by the RXTE data, implying that the kHz QPOs do not originate from the blackbody emission of the accretion disk and neutron star surface. In addition, with the combined analysis of the energy spectra and the absolute rms spectra of kHz QPOs, we suggest that the kHz QPOs in Sco X-1 originate from the Comptonization of the inner part of the transition layer, where the rotation sets the frequency and the inward bulk motion makes the spectrum harder.

120

, , and

Multiwavelength analyses of spectra of active galactic nuclei provide useful information on the physical processes in the accretion disk and jets of black holes. This, however, is limited to bright sources and may not represent the population as a whole. Another approach is through the investigation of the cosmological evolution of the luminosity function (LF), which shows varied evolution (luminosity and density) at different wavelengths. These differences and the correlations between luminosities can shed light on the jet-accretion disk connection. Most such studies use forward fitting parametric methods that involve several functions and many parameters. We use nonparametric, nonbinning methods developed by Efron & Petrosian and Lynden-Bell, for obtaining unbiased description of the evolution of the LF, from data truncated by observational selection effects. We present an analysis of the evolution of gamma-ray LF of blazars with a main focus on flat-spectrum radio quasars. This requires analysis of both gamma-ray and optical data, essential for redshift measurements, and a description of the joint LF. We use a new approach that divides the sample into two subsamples, each with its own flux limit. We use the Fermi Large Area Telescope and GAIA observations, and present results on the gamma-ray LF and its evolution, and determine the intrinsic correlation between the gamma-ray and optical luminosities corrected for the well-known false correlation induced by their similar redshift dependence and evolution of the two luminosities. We also present a direct estimation of the contribution of blazars to the spectrum of the extragalactic gamma-ray background.

121

and

Swing amplification is a model of spiral arm formation in disk galaxies. Previous N-body simulations show that the epicycle phases of stars in spiral arms are synchronized. However, the elementary process of the phase synchronization is not well understood. In order to investigate phase synchronization, we investigate the orbital evolution of stars due to gravitational scattering by a perturber under the epicycle approximation and its dependence on orbital elements and a disk parameter. We find that gravitational scattering by the perturber can cause phase synchronization of stellar orbits. The epicycle phases are better synchronized for smaller initial epicycle amplitudes of stars and larger shear rates of galactic disks. The vertical motion of stars does not affect the phase synchronization. The phase synchronization forms trailing dense regions, which may correspond to spiral arms.

122

, , , and

We present theoretical predictions for the free–free emission at centimeter wavelengths obtained from photoevaporation and magnetohydrodynamic (MHD) wind disk models adjusted to the case of the TW Hydrae young stellar object. For this system, disk photoevaporation with heating due to the high-energy photons from the star has been proposed as a possible mechanism to open the gap observed in the dust emission with the Atacama Large Millimeter/submillimeter Array. We show that the photoevaporation disk model predicts a radial profile for the free–free emission that is made of two main spatial components, one originated from the bound disk atmosphere at 0.5–1 au from the star, and another more extended component from the photoevaporative wind at larger disk radii. We also show that the stellar X-ray luminosity has a significant impact on both these components. The predicted radio emission from the MHD wind model has a smoother radial distribution which extends to closer distances to the star than the photoevaporation case. We also show that a future radio telescope such as the Next Generation Very Large Array would have enough sensitivity and angular resolution to spatially resolve the main structures predicted by these models.

123

, , , , , , , , , et al

We present ALMA observations of 101 protoplanetary disks within the star-forming region Lynds 1641 in the Orion Molecular Cloud A. Our observations include 1.33 mm continuum emission and spectral windows covering the J = 2–1 transition of 12CO, 13CO, and C18O. We detect 89 protoplanetary disks in the dust continuum at the 4σ level (∼88% detection rate) and 31 in 12CO, 13 in 13CO, and 4 in C18O. Our sample contains 23 transitional disks, 20 of which are detected in the continuum. We target infrared-bright Class II objects, which biases our sample toward massive disks. We determine dust masses or upper limits for all sources in our sample and compare our sample to protostars in this region. We find a decrease in dust mass with evolutionary state. We also compare this sample to other regions surveyed in the (sub)millimeter and find that Lynds 1641 has a relatively massive dust disk population compared to regions of similar and older ages, with a median dust mass of ${11.1}_{-4.6}^{+32.9}$M and 27% with dust masses equal to or greater than the minimum solar nebula dust mass value of ∼30 M. We analyze the disk mass–accretion rate relationship in this sample and find that the viscous disk lifetimes are similar to the age of the region, though with a large spread. One object, [MGM2012] 512, shows a large-scale (>5000 au) structure in both the dust continuum and the three gas lines. We discuss potential origins for this emission, including an accretion streamer with large dust grains.

124

, , and

Two new schemes for identifying field lines involved in eruptions, the r-scheme and q-scheme, are proposed to analyze the eruptive and confined nature of solar flares, as extensions to the original rm scheme proposed in Lin et al. Motivated by three solar flares originating from NOAA Active Region 12192 that are misclassified by rm, we introduce refinements to the r-scheme employing the "magnetic twist flux" to approximate the force balance acting on a magnetic flux rope (MFR); in the q-scheme, the reconnected field is represented by those field lines that anchor in the flare ribbons. Based on data obtained by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, the coronal magnetic field for 51 flares larger than M5.0 class, from 29 distinct active regions, is constructed using a nonlinear force-free field extrapolation model. Statistical analysis based on linear discriminant function analysis is then performed, revealing that despite both schemes providing moderately successful classifications for the 51 flares, the coronal mass ejection-eruptivity classification for the three target events can only be improved with the q-scheme. We find that the highly twisted field lines and the flare-ribbon field lines have equal average force-free constant α, but all of the flare-ribbon-related field lines are shorter than 150 Mm in length. The findings lead us to conclude that it is challenging to distinguish the MFR from the ambient magnetic field using any quantity based on common magnetic nonpotentiality measures.

125

, , , , , , , , , et al

Studying the resolved stellar populations of the different structural components that build massive galaxies directly unveils their assembly history. We aim at characterizing the stellar population properties of a representative sample of bulges and pure spheroids in massive galaxies (M > 1010M) in the GOODS-N field. We take advantage of the spectral and spatial information provided by SHARDS and Hubble Space Telescope data to perform the multi-image spectrophotometric decoupling of the galaxy light. We derive the spectral energy distribution separately for bulges and disks in the redshift range 0.14 < z ≤ 1 with spectral resolution R ∼ 50. Analyzing these spectral energy distributions, we find evidence of a bimodal distribution of bulge formation redshifts. We find that 33% of them present old mass-weighted ages, implying a median formation redshift ${z}_{\mathrm{form}}={6.2}_{-1.7}^{+1.5}$. They are relics of the early universe embedded in disk galaxies. A second wave, dominant in number, accounts for bulges formed at median redshift ${z}_{\mathrm{form}}={1.3}_{-0.6}^{+0.6}$. The oldest (first-wave) bulges are more compact than the youngest. Virtually all pure spheroids (i.e., those without any disk) are coetaneous with the second-wave bulges, presenting a median redshift of formation ${z}_{\mathrm{form}}={1.1}_{-0.3}^{+0.3}$. The two waves of bulge formation are distinguishable not only in terms of stellar ages but also in star formation mode. All first-wave bulges formed fast at z ∼ 6, with typical timescales around 200 Myr. A significant fraction of the second-wave bulges assembled more slowly, with star formation timescales as long as 1 Gyr. The results of this work suggest that the centers of massive disk-like galaxies actually harbor the oldest spheroids formed in the universe.

126

, , , and

The seven planets orbiting TRAPPIST-1 in a compact near-resonant chain offer a unique case to study in planet formation theory. We demonstrate in this paper that the remarkable flatness of the system, exceeding that of any other known planetary system, is an important constraint on the mass of the gaseous disk in which it formed and attained its current configuration. We use three-dimensional hydrodynamic simulations of the gas and planets to study specific formation models. In particular, we report simulations motivated by the model proposed by Ormel et al.—in this model, the dispersal of the gas disk pushes the planets from an initial resonant chain into their present configuration. We find that a disk with the mass used in this model is consistent with the flatness of the TRAPPIST-1 system, but a more massive disk is not, with the transition occurring between 15 and 50 times the mass of the Ormel et al. disk. This upper limit on mass rules out certain models of the formation of the system, namely in situ formation and disk migration on long timescales.

127

, , , , , , and

With the onset of solar maximum and the expected increased prevalence of interplanetary shock waves, Parker Solar Probe is likely to observe numerous shocks in the next few years. An outstanding question that has received surprisingly little attention has been how turbulence interacts with collisionless shock waves. Turbulence in the supersonic solar wind is described frequently as a superposition of a majority 2D and a minority slab component. We formulate a collisional perpendicular shock-turbulence transmission problem in a way that enables investigation of the interaction and transmission of quasi-perpendicular fluctuations such as magnetic flux ropes/islands and vortices as well as entropy and acoustic modes in the large plasma beta regime. We focus on the transmission of an upstream spectrum of these modes, finding that the downstream spectral amplitude is typically increased significantly (a factor of 10 or more), and that the upstream spectral index of the inertial range, and indeed the general spectral shape, is unchanged for the downstream magnetic variance, kinetic energy, and density variance. A comparison of the theoretically predicted downstream magnetic variance, kinetic energy, and density variance spectra with those observed at 1, 5, and 84 au by Wind, Ulysses, and Voyager 2 shows excellent agreement. The overall theoretically predicted characteristics of the transmission of turbulence across shocks observed in the solar wind appear to be largely consistent with recent observational studies by Pitňa et al. and Borovsky.

128

, , , , , and

Millimeter and centimeter observations are discovering an increasing number of interstellar complex organic molecules (iCOMs) in a large variety of star-forming sites, from the earliest stages of star formation to protoplanetary disks and in comets. In this context it is pivotal to understand how the solid-phase interactions between iCOMs and grain surfaces influence the thermal desorption process and, therefore, the presence of molecular species in the gas phase. In the laboratory, it is possible to simulate the thermal desorption process, deriving important parameters such as the desorption temperatures and energies. We report new laboratory results on temperature-programmed desorption from olivine dust of astrophysical relevant ice mixtures of water, acetonitrile, and acetaldehyde. We found that in the presence of grains, only a fraction of acetaldehyde and acetonitrile desorb at about 100 K and 120 K, respectively, while 40% of the molecules are retained by fluffy grains of the order of 100 μm up to temperatures of 190–210 K. In contrast with the typical assumption that all molecules are desorbed in regions with temperatures higher than 100 K, this result implies that about 40% of the molecules can survive on the grains enabling the delivery of volatiles toward regions with temperatures as high as 200 K and shifting inwards the position of the snow lines in protoplanetary disks. These studies offer a necessary support to interpret observational data and may help our understanding of iCOM formation, providing an estimate of the fraction of molecules released at various temperatures.

129

, , , , and

In a previous paper, we presented an extension of our reflection model relxill_nk to include the finite thickness of the accretion disk following the prescription in Taylor & Reynolds. In this paper, we apply our model to fit the 2013 simultaneous observations by the Nuclear Spectroscopic Telescope Array (NuSTAR) and XMM-Newton of the supermassive black hole in MCG-06-30-15 and the 2019 NuSTAR observation of the Galactic black hole in EXO 1846-031. The high-quality data of these spectra had previously led to precise black hole spin measurements and very stringent constraints on possible deviations from the Kerr metric. We find that the disk thickness does not change previous spin results found with a model employing an infinitesimally thin disk, which confirms the robustness of spin measurements in high radiative efficiency disks, where the impact of disk thickness is minimal. Similar analysis on lower accretion rate systems will be an important test for measuring the effect of disk thickness on black hole spin measurements.

130

, , , , , , and

Stellar wind and photon radiation interactions with a planet can cause atmospheric depletion, which may have a potentially catastrophic impact on a planet's habitability. While photon interactions with planetary atmospheres and outflows have been researched to some degree, studies of stellar wind interactions are in their infancy. Here, we use three-dimensional magnetohydrodynamic simulations to model the effect of the stellar wind on the magnetosphere and outflow of a hypothetical planet, modeled to have an H-rich evaporating envelope with a prescribed mass-loss rate, orbiting in the habitable zone close to a low-mass M dwarf. We take the TRAPPIST-1 system as a prototype, with our simulated planet situated at the orbit of TRAPPIST-1e. We show that the atmospheric outflow is accelerated and advected upon interaction with the wind, resulting in a diverse range of planetary magnetosphere morphologies and plasma distributions as local stellar wind conditions change along the orbit. We consider the implications of the wind–outflow interaction on potential hydrogen Lyα observations of the planetary atmosphere during transits. The Lyα observational signatures depend strongly on the local wind conditions at the time of the observation and can be subject to considerable variation on timescales as short as an hour. Our results indicate that observed variations in exoplanet transit signatures could be explained by wind–outflow interaction.

131

, , , , , , , , , et al

We present a spatio-kinematical analysis of the CO (J = 2 → 1) line emission, observed with the Atacama Large Millimeter/submillimeter Array (ALMA), of the outflow associated with the most massive core, ALMA1, in the 70 μm dark clump G010.991–00.082. The position–velocity (PV) diagram of the molecular outflow exhibits a peculiar S-shaped morphology that has not been seen in any other star-forming region. We propose a spatio-kinematical model for the bipolar molecular outflow that consists of a decelerating high-velocity component surrounded by a slower component whose velocity increases with distance from the central source. The physical interpretation of the model is in terms of a jet that decelerates as it entrains material from the ambient medium, which has been predicted by calculations and numerical simulations of molecular outflows in the past. One side of the outflow is shorter and shows a stronger deceleration, suggesting that the medium through which the jet moves is significantly inhomogeneous. The age of the outflow is estimated to be τ ≈ 1300 yr, after correction for a mean inclination of the system of ≈57°.

132

and

We introduce a possible disruption mechanism of dust grains in planet formation by their spinning motion. This mechanism has been discussed as rotational disruption for the interstellar dust grains. We theoretically calculate whether porous dust aggregates can be disrupted by their spinning motion and whether it prohibits dust growth in protoplanetary disks. We assume radiative torque and gas-flow torque as driving sources of the spinning motion, assume that dust aggregates reach a steady-state rigid rotation, and compare the obtained tensile stress due to the centrifugal force with their tensile strength. We model the irregularly shaped dust aggregates by introducing a parameter, γft, that mimics the conversion efficiency from force to torque. As a result, we find that porous dust aggregates are rotationally disrupted by their spinning motion induced by gas flow when their mass is larger than ∼108 g and their volume filling factor is smaller than ∼0.01 in our fiducial model, while relatively compact dust aggregates with volume filling factor more than 0.01 do not face this problem. If we assume the dust porosity evolution, we find that dust aggregates whose Stokes number is ∼0.1 can be rotationally disrupted in their growth and compression process. Our results suggest that the growth of dust aggregates may be halted due to rotational disruption or that other compression mechanisms are needed to avoid it. We also note that dust aggregates are not rotationally disrupted when γft ≤ 0.02 in our fiducial model and the modeling of irregularly shaped dust aggregates is essential in future work.

133

, , , and

Substructures in protoplanetary disks (PPDs), whose ubiquity was unveiled by recent Atacama Large Millimeter/submillimeter Array observations, are widely discussed regarding their possible origins. We carry out global 2D magnetohydrodynamic (MHD) simulations in axisymmetry, coupled with self-consistent ray-tracing radiative transfer, thermochemistry, and nonideal MHD diffusivities. The abundance profiles of grains are also calculated based on the global dust evolution calculation, including sintering effects. We found that dust size plays a crucial role in the ring formation around the snow lines of PPDs through the accretion process. Disk ionization structures and thus tensorial conductivities depend on the size of grains. When grains are significantly larger than polycyclic aromatic hydrocarbons (PAHs), the nonideal MHD conductivities change dramatically across each snow line of major volatiles, leading to a sudden change in the accretion process across the snow lines and the subsequent formation of gaseous rings/gaps there. Specific layout of magnetic fields can suppress wind launching in certain regions by canceling out different stress components. On the other hand, the variations of conductivities are a lot less with only PAH-sized grains in disks and then these disks retain smoother radial density profiles across snow lines.

134

, , , , , , , , , et al

Low-frequency radio selection finds radio-bright galaxies regardless of the amount of obscuration by gas and dust. We report Chandra observations of a complete 178 MHz–selected, and so orientation-unbiased, sample of 44 0.5 < z < 1 3CRR sources. The sample is comprised of quasars and narrow-line radio galaxies (NLRGs) with similar radio luminosities, and the radio structure serves as both an age and an orientation indicator. Consistent with unification, intrinsic obscuration (measured by NH, X-ray hardness ratio, and X-ray luminosity) generally increases with inclination. However, the sample includes a population not seen in high-z 3CRR sources: NLRGs viewed at intermediate inclination angles with NH < 1022 cm−2. Multiwavelength analysis suggests that these objects have lower L/LEdd than typical NLRGs at similar orientation. Thus, both orientation and L/LEdd are important, and a "radiation-regulated unification" provides a better explanation of the sample's observed properties. In comparison with the 3CRR sample at 1 < z < 2, our lower-redshift sample shows a higher fraction of Compton-thin NLRGs (45% versus 29%) but a similar Compton-thick fraction (20%), implying a larger covering factor of Compton-thin material at intermediate viewing angles and thus a more "puffed-up" torus atmosphere. We posit that this is due to a range of L/LEdd extending to lower values in this sample. In contrast, at high redshifts, the narrower range and high L/LEdd values allowed orientation (and so simple unification) to dominate the sample's observed properties.

135

, , , , , and

The use of the magnetic-field-induced transition (MIT) $3{{\rm{p}}}^{4}3{\rm{d}}{}^{4}{D}_{7/2}\to 3{{\rm{p}}}^{5}\,{}^{2}{P}_{3/2}^{{\rm{o}}}$ in Fe X for the measurement of the magnetic field strength in the solar corona has been discussed and demonstrated in a number of recent studies. This diagnostic technique depends on, among other conditions, the accuracy of the atomic data for Fe X. In the present work, we carry out a large-scale calculation for the atomic properties needed for the determination of the MIT rate using the multiconfiguration Dirac–Hartree–Fock method. Four computational schemes are employed to study the convergence of the atomic properties of interest. Comparison with other experimental and theoretical sources are performed and recommended values are suggested for important properties, e.g., the magnetic induced transition probabilities as a function of magnetic field strengths. The present calculations affect magnetic field measurements by decreasing the magnetic field strengths by 10%–15%, leading to differences in magnetic energy up to 30%. We recommend that the current data should be employed in magnetic field measurements in the future.

136

, , , , , and

The helium-tagging technique was employed to record absorption spectra of cold anthracene cations and protonated anthracene. The evaluation of the spectra of the chromophore with a different number of attached He atoms allows getting the precise band positions of the molecular ions in the gas phase. The positions of the two most intense bands of anthracene, suitable for astrophysical detection, were found to be λmax = 3478.9 ± 1.8 Å and λmax = 7068.9 ± 5.7 Å. A considerable shift of the red band position compared to a previous measurement was attributed to a temperature effect. No coincidence of the absorption bands in astrophysical observational spectra was found. This allows estimating the upper limit for the abundance of anthracene cations per H nuclei <10−9 along the HD 183143 line of sight. We discuss possible reasons for such a low abundance of this molecular ion.

137

, , , , , , , , and

We present a new identity card for the cluster NGC 6440 in the Galactic Bulge. We have used a combination of high-resolution Hubble Space Telescope images, wide-field ground-based observations performed with the ESO-FORS2, and the public survey catalog Pan-STARRS to determine the gravitational center, projected density profile, and structural parameters of this globular from resolved star counts. The new determination of the cluster center differs by ∼2'' (corresponding to 0.08 pc) from the previous estimate, which was based on the surface brightness peak. The star density profile, extending out to 700'' from the center and suitably decontaminated from the Galactic field contribution, is best fit by a King model with a significantly higher concentration (c = 1.86 ± 0.06) and smaller core radius (rc = 6farcs4 ± 0farcs3) with respect to the literature values. By taking advantage of high-quality optical and near-IR color–magnitude diagrams, we also estimated the cluster age, distance, and reddening. The luminosity of the red giant branch bump was also determined. This study indicates that the extinction coefficient in the bulge in the direction of the cluster has a value (RV = 2.7) that is significantly lower than that traditionally used for the Galaxy (RV = 3.1). The corresponding best-fit values of the age, distance, and color excess of NGC 6440 are 13 Gyr, 8.3 kpc, and E(BV) ∼ 1.27. These new determinations also allowed us to update the values of the central (trc = 2.5 107 yr) and half-mass (trh = 109 yr) relaxation times, suggesting that NGC 6440 is in a dynamically evolved stage.

138

, , , , , , , , , and

Dust evolution in protoplanetary disks from small dust grains to pebbles is key to the planet formation process. The gas in protoplanetary disks should influence the vertical distribution of small dust grains (∼1 μm) in the disk. Utilizing archival near-infrared polarized light and millimeter observations, we can measure the scale height and flare parameter β of the small dust grain scattering surface and 12CO gas emission surface for three protoplanetary disks: IM Lup, HD 163296, and HD 97048 (CU Cha). For two systems, IM Lup and HD 163296, the 12CO gas and small dust grains at small radii from the star have similar heights, but at larger radii (>100 au), the dust grain scattering surface height is lower than the 12CO gas emission surface height. In the case of HD 97048, the small dust grain scattering surface has similar heights to the 12CO gas emission surface at all radii. We ran a protoplanetary disk radiative transfer model of a generic protoplanetary disk with TORUS and showed that there is no difference between the observed scattering surface and 12CO emission surface. We also performed analytical modeling of the system and found that gas-to-dust ratios larger than 100 could explain the observed difference in IM Lup and HD 163296. This is the first direct comparison of observations of gas and small dust grain height distribution in protoplanetary disks. Future observations of gas emission and near-infrared scattered-light instruments are needed to look for similar trends in other protoplanetary disks.

139

, , , , , , , and

High-resolution observations of ionized and molecular gas in the nuclear regions of galaxies are indispensable for delineating the interplay of star formation, gaseous inflows, stellar radiation, and feedback processes. Combining our new Atacama Large Millimeter/submillimeter Array band 3 mapping and archival Very Large Telescope/MUSE data, we present a spatially resolved analysis of molecular and ionized gas in the central 5.4 kpc region of NGC 1365. We find the star formation rate/efficiency (SFR/SFE) in the inner circumnuclear ring is about 0.4/1.1 dex higher than in the outer regions. At a linear resolution of 180 pc, we obtain a superlinear Kennicutt–Schmidt law, demonstrating a steeper slope (1.96 ± 0.14) than previous results presumably based on lower-resolution observations. Compared to the northeastern counterpart, the southwestern dust lane shows lower SFE, but denser molecular gas and larger virial parameters. This is consistent with an interpretation of negative feedback from an active galactic nucleus (AGN) and/or starburst, in the sense that the radiation/winds can heat and interact with the molecular gas even in relatively dense regions. After subtracting the circular motion component of the molecular gas and the stellar rotation, we detect two prominent noncircular motion components of molecular and ionized hydrogen gas, reaching a line-of-sight velocity of up to 100 km s−1. We conclude that the winds or shocked gas from the central AGN may expel the low-density molecular gas and diffuse ionized gas on the surface of the rotating disk.

140

, , , , , , , , , and

We investigated experimentally and theoretically dielectronic recombination (DR) populating doubly excited configurations $3l3l^{\prime} $ (LMM) in Fe xvii, the strongest channel for soft X-ray line formation in this ubiquitous species. We used two different electron beam ion traps and two complementary measurement schemes for preparing the Fe xvii samples and evaluating their purity, observing negligible contamination effects. This allowed us to diagnose the electron density in both EBITs. We compared our experimental resonant energies and strengths with those of previous independent work at a storage ring as well as those of configuration interaction, multiconfiguration Dirac–Fock calculations, and many-body perturbation theory. This last approach showed outstanding predictive power in the comparison with the combined independent experimental results. From these we also inferred DR rate coefficients, unveiling discrepancies from those compiled in the OPEN-ADAS and AtomDB databases.

141

, , , and

We report the detection of 23 OH+ 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO(J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO(J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH+ emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH+ absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH+ absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appears to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH+ absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH+ ion production. This is in agreement with a picture in which these high-redshift galaxies are "scaled-up" versions of the most intense nearby starbursts.

142
The following article is Open access

, , , , , and

Solar wind plasma at the Earth's orbit carries transient magnetic field structures including discontinuities. Their interaction with the Earth's bow shock can significantly alter discontinuity configuration and stability. We investigate such an interaction for the most widespread type of solar wind discontinuities—rotational discontinuities (RDs). We use a set of in situ multispacecraft observations and perform kinetic hybrid simulations. We focus on the RD current density amplification that may lead to magnetic reconnection. We show that the amplification can be as high as two orders of magnitude and is mainly governed by three processes: the transverse magnetic field compression, global thinning of RD, and interaction of RD with low-frequency electromagnetic waves in the magnetosheath, downstream of the bow shock. The first factor is found to substantially exceed simple hydrodynamic predictions in most observed cases, the second effect has a rather moderate impact, while the third causes strong oscillations of the current density. We show that the presence of accelerated particles in the bow shock precursor highly boosts the current density amplification, making the postshock magnetic reconnection more probable. The pool of accelerated particles strongly affects the interaction of RDs with the Earth's bow shock, as it is demonstrated by observational data analysis and hybrid code simulations. Thus, shocks should be distinguished not by the inclination angle, but rather by the presence of foreshocks populated with shock reflected particles. Plasma processes in the RD–shock interaction affect magnetic structures and turbulence in the Earth's magnetosphere and may have implications for the processes in astrophysics.

143

, , , , , and

We present optical photometry and spectroscopy of SN 2019stc (=ZTF19acbonaa), an unusual Type Ic supernova (SN Ic) at a redshift of z = 0.117. SN 2019stc exhibits a broad double-peaked light curve, with the first peak having an absolute magnitude of Mr = −20.0 mag, and the second peak, about 80 rest-frame days later, Mr = −19.2 mag. The total radiated energy is large, Erad ≈ 2.5 × 1050 erg. Despite its large luminosity, approaching those of Type I superluminous supernovae (SLSNe), SN 2019stc exhibits a typical SN Ic spectrum, bridging the gap between SLSNe and SNe Ic. The spectra indicate the presence of Fe-peak elements, but modeling of the first light-curve peak with radioactive heating alone leads to an unusually high nickel mass fraction of fNi ≈ 0.31 (MNi ≈ 3.2 M). Instead, if we model the first peak with a combined magnetar spin-down and radioactive heating model we find a better match with Mej ≈ 4 M, a magnetar spin period of Pspin ≈ 7.2 ms, and magnetic field of B ≈ 1014 G, and fNi ≲ 0.2 (consistent with SNe Ic). The prominent second peak cannot be naturally accommodated with radioactive heating or magnetar spin-down, but instead can be explained as circumstellar interaction with ≈0.7 M of hydrogen-free material located ≈400 au from the progenitor. Accounting for the ejecta mass, circumstellar shell mass, and remnant neutron star mass, we infer a CO core mass prior to explosion of ≈6.5 M. The host galaxy has a metallicity of ≈0.26 Z, low for SNe Ic but consistent with SLSNe. Overall, we find that SN 2019stc is a transition object between normal SNe Ic and SLSNe.

144

, , , , , and

The "Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun" mission provides a unique opportunity to study the structure of interplanetary shocks and the associated generation of plasma waves with frequencies between ∼50 and 8000 Hz due to its long duration electric and magnetic field burst waveform captures. We compare wave properties and occurrence rates at 11 quasi-perpendicular interplanetary shocks with burst data within 10 minutes (∼3200 proton gyroradii upstream, ∼1900 downstream) of the shock ramp. A perturbed shock is defined as possessing a large amplitude whistler precursor in the quasi-static magnetic field with an amplitude greater than 1/3 the difference between the upstream and downstream average magnetic field magnitudes; laminar shocks lack these large precursors and have a smooth, step function-like transition. In addition to wave modes previously observed, including ion acoustic, whistler, and electrostatic solitary waves, waves in the ion acoustic frequency range that show rapid temporal frequency change are common. Three shocks had burst captures in the ramp; of these, the two laminar shocks contained a wide range of large amplitude wave modes in the ramp whereas the one perturbed shock contained no such waves. Thus, energy dissipation through wave–particle interactions is more prominent in these two laminar shocks than in the perturbed shock. Based on observations from all 11 shocks, the wave occurrence rates for laminar shocks are higher in the transition region, especially the ramp, than downstream. In contrast, perturbed shocks have approximately 2–3 times the wave occurrence rate downstream than laminar shocks.

145

, , and

Using the Monte Carlo code SEDONA, multiband photometry and spectra are calculated for supernovae derived from stripped helium stars with presupernova masses of 2.2 to 10.0 M. The models are representative of evolution in close binaries and have previously been exploded using a parameterized one-dimensional model for neutrino transport. A subset, those with presupernova masses in the range of 2.2–5.6 M, have many properties in common with observed Type Ib and Ic supernovae, including a median ejected mass near 2 M, explosion energies near 1 × 1051 erg, typical 56Ni masses of 0.07–0.09 M, peak times of about 20 days, and a narrow range for the VR color index 10 days post-V-maximum near 0.3 mag. The median peak bolometric luminosity, near 1042.3 erg s−1, is fainter, however, than several observational tabulations, and the brightest explosion has a bolometric luminosity of only 1042.50 erg s−1. The brightest absolute B, V, and R magnitudes at peak are −17.2, −17.8, and −18.0. These limits are fainter than some allegedly typical Type Ib and Ic supernovae and could reflect problems in our models or in the observational analysis. Helium stars with lower and higher masses also produce interesting transients that may have been observed, including fast, faint, blue transients and long, red, faint Type Ic supernovae. New models are specifically presented for SN 2007Y, SN 2007gr, SN 2009jf, LSQ 13abf, SN 2008D, and SN 2010X.

146

, , , , , , , , , et al

Blazars are active galactic nuclei with their relativistic jets pointing toward the observer, comprising two major subclasses, flat-spectrum radio quasars (FSRQs) and BL Lac objects. We present multiwavelength photometric and spectroscopic monitoring observations of the blazar B2 1420+32, focusing on its outbursts in 2018–2020. Multiepoch spectra show that the blazar exhibited large-scale spectral variability in both its continuum and line emission, accompanied by dramatic gamma-ray and optical variability by factors of up to 40 and 15, respectively, on week to month timescales. Over the last decade, the gamma-ray and optical fluxes increased by factors of 1500 and 100, respectively. B2 1420+32 was an FSRQ with broad emission lines in 1995. Following a series of flares starting in 2018, it transitioned between BL Lac and FSRQ states multiple times, with the emergence of a strong Fe pseudocontinuum. Two spectra also contain components that can be modeled as single-temperature blackbodies of 12,000 and 5200 K. Such a collection of "changing-look" features has never been observed previously in a blazar. We measure gamma-ray–optical and interband optical lags implying emission-region separations of less than 800 and 130 gravitational radii, respectively. Since most emission-line flux variations, except the Fe continuum, are within a factor of 2–3, the transitions between FSRQ and BL Lac classifications are mainly caused by the continuum variability. The large Fe continuum flux increase suggests the occurrence of dust sublimation releasing more Fe ions in the central engine and an energy transfer from the relativistic jet to subrelativistic emission components.

147

, , , , , , and

To better understand the decay of different types of sunspots, we studied the decay of eight α-configuration sunspots by using the data that were acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory. We followed their decay for about four days and analyzed the evolution of their photospheric area and magnetic field parameters. We found that the area and total magnetic flux of α sunspots show a near-linear decrease during their decay. Meanwhile, the area decay rate of an individual sunspot is not constant. The area decay of a sunspot can be divided into two stages, a slow and a rapid decay process. Moreover, according to the difference of the area decay of the penumbra and umbra, the α sunspots decay can be classified in three ways: the penumbra and umbra decay synchronously, the penumbra decays first, and the umbra decays first. In addition, the flux decay of the penumbra is lagging behind the decay of the penumbral area. This finding suggests that the vertical magnetic field of the sunspot penumbra increases significantly in the early stage of sunspot decay.

148

, , and

We describe a numerical scheme for magnetohydrodynamics simulations of dust–gas mixture by extending smoothed particle magnetohydrodynamics. We employ the single-species particle approach to describe dust–gas mixture with several modifications from the previous studies. We assume that the charged and neutral dust can be treated as single-fluid, that the electromagnetic force acts on the gas, and that that acting on the charged dust is negligible. The validity of these assumptions in the context of protostar formation is not obvious and is extensively evaluated. By investigating the electromagnetic force and electric current with terminal velocity approximation, it is found that as the dust size increases, the contribution of dust to them becomes smaller and negligible. We conclude that our assumption that the electromagnetic force on the dusts is negligible is valid for the dust size with ad ≳ 10 μm. On the other hand, they do not produce the numerical artifact for the dust ad ≲ 10 μm in the envelope and disk, where the perfect coupling between gas and dust is realized. However, we also found that our assumptions may break down in outflow (or under an environment with very strong magnetic field and low density) for the dust ad ≲ 10 μm. We conclude that our assumptions are valid in almost all cases where macroscopic dust dynamics is important in the context of protostar formation. We conduct numerical tests of dusty waves, dusty magnetohydrodynamics shocks, and gravitational collapse of magnetized cloud cores with our simulation code. The results show that our numerical scheme well reproduces the dust dynamics in the magnetized medium.

149

, , , , , , , and

We present a 0farcs15 resolution (21 au) ALMA 870 μm continuum survey of 25 pointings containing 31 young stellar objects in the Ophiuchus molecular clouds. Using the dust continuum as a proxy for dust mass and circumstellar disk radius in our sample, we report mean masses of ${2.8}_{-1.3}^{+2.1}$ and ${2.5}_{-1.1}^{+9.2}$M and mean radii of ${23.5}_{-1.2}^{+1.8}$ and ${16.5}_{-0.9}^{+2.8}$ au, for Class I and Flat spectrum protostars, respectively. In addition, we calculate the multiplicity statistics of the dust surrounding young stellar objects in Ophiuchus. The multiplicity fraction and companion star fraction of the combined Class I and Flats based solely on this work are 0.25 ± 0.09 and 0.33 ± 0.10, respectively, which are consistent with the values for Perseus and Orion. While we see clear differences in mass and radius between the Ophiuchus and Perseus/Orion protostellar surveys, we do not see any significant differences in the multiplicities of the various regions. We posit that there are some differences in the conditions for star formation in Ophiuchus that strongly affect disk size (and consequently disk mass), but does not affect system multiplicity, which could imply important variation in planet formation processes.

150

, , , , , , , , , et al

We report the timing and spectral analyses of the type-II X-ray bursts from the rapid burster (MXB 1730–335) observed by the Hard X-ray Modulation Telescope (Insight-HXMT) and Swift/X-Ray Telescope (XRT). By stacking the long-duration bursts, we find for the first time that the hard X-rays are lagging behind the soft X-rays by 3 s. However, such a lag is not visible for the short-duration bursts, probably because of the poor statistics. For all bursts the energy spectrum is found to be nonthermal, thanks to the broadband coverage of Insight-HXMT. These findings provide new insights into the type-II bursts and require a temporally visible corona for possible interpretation.

151

, , and

We derive the nonthermal velocities (NTVs) in the transition region of an active region using the Si iv 1393.78 Å line observed by the Interface Region Imaging Spectrograph and compare them with the line-of-sight photospheric magnetic fields obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The active region consists of two strong field regions with opposite polarity, separated by a weak field corridor that widened as the active region evolved. The means of the NTV distributions in strong field regions (weak field corridors) range between ∼18–20 (16–18) km s−1, albeit the NTV maps show a much larger range. In addition, we identify a narrow lane in the middle of the corridor with significantly reduced NTV. The NTVs do not show a strong center-to-limb variation, albeit they show somewhat larger values near the disk center. The NTVs are well correlated with redshifts as well as line intensities. The results obtained here and those presented in our companion paper on Doppler shifts suggest two populations of plasma in the active region emitting in Si iv. The first population exists in the strong field regions and extends partway into the weak field corridor between them. We attribute this plasma to spicules heated to ∼0.1 MK (often called type II spicules). They have a range of inclinations relative to vertical. The second population exists in the center of the corridor, is relatively faint, and has smaller velocities, likely horizontal. These results provide further insights into the heating of the transition region.