Focus on Early Data from the Dark Energy Spectroscopic Instrument (DESI)

Guest Editors

  • Kyle Dawson, University of Utah, USA

The Dark Energy Spectroscopic Instrument (DESI) was built at the 4-meter Mayall Telescope at Kitt Peak. It was built to undertake the largest cosmic cartography experiment to date. DESI will measure the redshifts of about forty million galaxies and quasars and the radial velocities of more than six million unique stars. Spectroscopy of the extragalactic samples will allow exploration of the large-scale structure that captures the physics of the cosmological model, marking DESI as the first Stage-IV dark energy experiment. The instrument consists of a robotically-controlled 5000-fiber focal plane, and ten spectrographs that provide a resolving power that ranges from approximately 2000 at 360 nm to approximately 5000 at 980 nm. Over the course of five years, this instrument will provide spectra of stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar targets over a footprint exceeding 14,000 square degrees. When complete, the extragalactic complement will be eight times larger than all previous spectroscopic samples combined.

The collaboration behind DESI consists of roughly one thousand scientists with research interests ranging from studies of the Milky Way to galaxy and quasar astrophysics to cosmology with large-scale structure. DESI observations of the primary science targets began in December 2020, with an initial goal of validating the observational program that will foster these studies. The articles in this focus issue provide a summary of the data and the results from these early observations. In total, these articles provide the instrumental and operational overview, summary of data quality, and the full characterization of the spectroscopic samples that will define the primary DESI program.

Papers

Open access
Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument

DESI Collaboration et al 2022 AJ 164 207

The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3fdg2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0farcs1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned.

Open access
The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument

Adam D. Myers et al 2023 AJ 165 50

In 2021 May, the Dark Energy Spectroscopic Instrument (DESI) began a 5 yr survey of approximately 50 million total extragalactic and Galactic targets. The primary DESI dark-time targets are emission line galaxies, luminous red galaxies, and quasars. In bright time, DESI will focus on two surveys known as the Bright Galaxy Survey and the Milky Way Survey. DESI also observes a selection of "secondary" targets for bespoke science goals. This paper gives an overview of the publicly available pipeline (desitarget) used to process targets for DESI observations. Highlights include details of the different DESI survey targeting phases, the targeting ID (TARGETID) used to define unique targets, the bitmasks used to indicate a particular type of target, the data model and structure of DESI targeting files, and examples of how to access and use the desitarget code base. This paper will also describe "supporting" DESI target classes, such as standard stars, sky locations, and random catalogs that mimic the angular selection function of DESI targets. The DESI target-selection pipeline is complex and sizable; this paper attempts to summarize the most salient information required to understand and work with DESI targeting data.

Open access
Target Selection and Validation of DESI Luminous Red Galaxies

Rongpu Zhou et al 2023 AJ 165 58

The Dark Energy Spectroscopic Instrument (DESI) is carrying out a five-year survey that aims to measure the redshifts of tens of millions of galaxies and quasars, including 8 million luminous red galaxies (LRGs) in the redshift range 0.4 < z ≲ 1.0. Here we present the selection of the DESI LRG sample and assess its spectroscopic performance using data from Survey Validation (SV) and the first two months of the Main Survey. The DESI LRG sample, selected using g, r, z, and W1 photometry from the DESI Legacy Imaging Surveys, is highly robust against imaging systematics. The sample has a target density of 605 deg−2 and a comoving number density of 5 × 10−4 h3 Mpc−3 in 0.4 < z < 0.8; this is a significantly higher density than previous LRG surveys (such as SDSS, BOSS, and eBOSS) while also extending to z ∼ 1. After applying a bright star veto mask developed for the sample, 98.9% of the observed LRG targets yield confident redshifts (with a catastrophic failure rate of 0.2% in the confident redshifts), and only 0.5% of the LRG targets are stellar contamination. The LRG redshift efficiency varies with source brightness and effective exposure time, and we present a simple model that accurately characterizes this dependence. In the appendices, we describe the extended LRG samples observed during SV.

Open access
The DESI Survey Validation: Results from Visual Inspection of Bright Galaxies, Luminous Red Galaxies, and Emission-line Galaxies

Ting-Wen Lan et al 2023 ApJ 943 68

The Dark Energy Spectroscopic Instrument (DESI) Survey has obtained a set of spectroscopic measurements of galaxies to validate the final survey design and target selections. To assist in these tasks, we visually inspect DESI spectra of approximately 2500 bright galaxies, 3500 luminous red galaxies (LRGs), and 10,000 emission-line galaxies (ELGs) to obtain robust redshift identifications. We then utilize the visually inspected redshift information to characterize the performance of the DESI operation. Based on the visual inspection (VI) catalogs, our results show that the final survey design yields samples of bright galaxies, LRGs, and ELGs with purity greater than 99%. Moreover, we demonstrate that the precision of the redshift measurements is approximately 10 km s−1 for bright galaxies and ELGs and approximately 40 km s−1 for LRGs. The average redshift accuracy is within 10 km s−1 for the three types of galaxies. The VI process also helps improve the quality of the DESI data by identifying spurious spectral features introduced by the pipeline. Finally, we show examples of unexpected real astronomical objects, such as Lyα emitters and strong lensing candidates, identified by VI. These results demonstrate the importance and utility of visually inspecting data from incoming and upcoming surveys, especially during their early operation phases.

Open access
The DESI Survey Validation: Results from Visual Inspection of the Quasar Survey Spectra

David M. Alexander et al 2023 AJ 165 124

A key component of the Dark Energy Spectroscopic Instrument (DESI) survey validation (SV) is a detailed visual inspection (VI) of the optical spectroscopic data to quantify key survey metrics. In this paper we present results from VI of the quasar survey using deep coadded SV spectra. We show that the majority (≈70%) of the main-survey targets are spectroscopically confirmed as quasars, with ≈16% galaxies, ≈6% stars, and ≈8% low-quality spectra lacking reliable features. A nonnegligible fraction of the quasars are misidentified by the standard spectroscopic pipeline, but we show that the majority can be recovered using post-pipeline "afterburner" quasar-identification approaches. We combine these "afterburners" with our standard pipeline to create a modified pipeline to increase the overall quasar yield. At the depth of the main DESI survey, both pipelines achieve a good-redshift purity (reliable redshifts measured within 3000 km s−1) of ≈99%; however, the modified pipeline recovers ≈94% of the visually inspected quasars, as compared to ≈86% from the standard pipeline. We demonstrate that both pipelines achieve a median redshift precision and accuracy of ≈100 km s−1 and ≈70 km s−1, respectively. We constructed composite spectra to investigate why some quasars are missed by the standard pipeline and find that they are more host-galaxy dominated (i.e., distant analogs of "Seyfert galaxies") and/or more dust reddened than the standard-pipeline quasars. We also show example spectra to demonstrate the overall diversity of the DESI quasar sample and provide strong-lensing candidates where two targets contribute to a single spectrum.

Open access
Target Selection and Validation of DESI Emission Line Galaxies

A. Raichoor et al 2023 AJ 165 126

The Dark Energy Spectroscopic Instrument (DESI) will precisely constrain cosmic expansion and the growth of structure by collecting ∼40 million extragalactic redshifts across ∼80% of cosmic history and one-third of the sky. The Emission Line galaxy (ELG) sample, which will comprise about one-third of all DESI tracers, will be used to probe the universe over the 0.6 < z < 1.6 range, including the 1.1 < z < 1.6 range, which is expected to provide the tightest constraints. We present the target selection for the DESI Survey Validation (SV) and Main Survey ELG samples, which relies on the imaging of the Legacy Surveys. The Main ELG selection consists of a g-band magnitude cut and a (gr) versus (rz) color box, while the SV selection explores extensions of the Main selection boundaries. The Main ELG sample is composed of two disjoint subsamples, which have target densities of about 1940 deg−2 and 460 deg−2, respectively. We first characterize their photometric properties and density variations across the footprint. We then analyze the DESI spectroscopic data that have been obtained from 2020 December to 2021 December in the SV and Main Survey. We establish a preliminary criterion for selecting reliable redshifts, based on the [O ii] flux measurement, and assess its performance. Using this criterion, we are able to present the spectroscopic efficiency of the Main ELG selection, along with its redshift distribution. We thus demonstrate that the Main selection 1940 deg−2 subsample alone should provide 400 deg−2 and 460 deg−2 reliable redshifts in the 0.6 < z < 1.1 and the 1.1 < z < 1.6 ranges, respectively.