Recent analyses have shown that distant orbits within the scattered disk population of the Kuiper Belt exhibit an unexpected clustering in their respective arguments of perihelion. While several hypotheses have been put forward to explain this alignment, to date, a theoretical model that can successfully account for the observations remains elusive. In this work we show that the orbits of distant Kuiper Belt objects (KBOs) cluster not only in argument of perihelion, but also in physical space. We demonstrate that the perihelion positions and orbital planes of the objects are tightly confined and that such a clustering has only a probability of 0.007% to be due to chance, thus requiring a dynamical origin. We find that the observed orbital alignment can be maintained by a distant eccentric planet with mass ≳10 m⊕ whose orbit lies in approximately the same plane as those of the distant KBOs, but whose perihelion is 180° away from the perihelia of the minor bodies. In addition to accounting for the observed orbital alignment, the existence of such a planet naturally explains the presence of high-perihelion Sedna-like objects, as well as the known collection of high semimajor axis objects with inclinations between 60° and 150° whose origin was previously unclear. Continued analysis of both distant and highly inclined outer solar system objects provides the opportunity for testing our hypothesis as well as further constraining the orbital elements and mass of the distant planet.
The American Astronomical Society (AAS), established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. Its membership of about 7,000 individuals also includes physicists, mathematicians, geologists, engineers, and others whose research and educational interests lie within the broad spectrum of subjects comprising contemporary astronomy. The mission of the AAS is to enhance and share humanity's scientific understanding of the universe.
The Institute of Physics (IOP) is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.
A publishing partnership
The Astronomical Journal is an open access journal publishing original astronomical research, with an emphasis on significant scientific results derived from observations. Publications in AJ include descriptions of data capture, surveys, analysis techniques, astronomical interpretation, instrumentation, and software and computing.
Remembering former AJ editor, Paul W. Hodge (1934–2019)
GOLD OPEN ACCESS FROM 1 JANUARY 2022
Konstantin Batygin and Michael E. Brown 2016 AJ 151 22
Evan Tey et al 2024 AJ 167 283
We report the discovery of the transiting planet GJ 238 b, with a radius of 0.566 ± 0.014 R⊕ (1.064 ± 0.026 times the radius of Mars) and an orbital period of 1.74 days. The transit signal was detected by the TESS mission and designated TOI-486.01. The star's position close to the southern ecliptic pole allows for almost continuous observations by TESS when it is observing the southern sky. The host star is an M2.5 dwarf with V = 11.57 ± 0.02 mag, K = 7.030 ± 0.023 mag, a distance of 15.2156 ± 0.0030 pc, a mass of
M☉, a radius of
R☉, and an effective temperature of 3485 ± 140 K. We validate the planet candidate by ruling out or rendering highly unlikely each of the false positive scenarios, based on archival data and ground-based follow-up observations. Validation was facilitated by the host star's small size and high proper motion of 892.633 ± 0.025 mas yr–1.
Samantha M. Lawler et al 2022 AJ 163 21
Megaconstellations of thousands to tens of thousands of artificial satellites (satcons) are rapidly being developed and launched. These satcons will have negative consequences for observational astronomy research, and are poised to drastically interfere with naked-eye stargazing worldwide should mitigation efforts be unsuccessful. Here we provide predictions for the optical brightnesses and on-sky distributions of several satcons, including Starlink, OneWeb, Kuiper, and StarNet/GW, for a total of 65,000 satellites on their filed or predicted orbits. We develop a simple model of satellite reflectivity, which is calibrated using published Starlink observations. We use this model to estimate the visible magnitudes and on-sky distributions for these satellites as seen from different places on Earth, in different seasons, and different times of night. For latitudes near 50° north and south, satcon satellites make up a few percent of all visible point sources all night long near the summer solstice, as well as near sunrise and sunset on the equinoxes. Altering the satellites' altitudes only changes the specific impacts of the problem. Without drastic reduction of the reflectivities, or significantly fewer total satellites in orbit, satcons will greatly change the night sky worldwide.
Ryan S. Park et al 2021 AJ 161 105
The planetary and lunar ephemerides called DE440 and DE441 have been generated by fitting numerically integrated orbits to ground-based and space-based observations. Compared to the previous general-purpose ephemerides DE430, seven years of new data have been added to compute DE440 and DE441, with improved dynamical models and data calibration. The orbit of Jupiter has improved substantially by fitting to the Juno radio range and Very Long Baseline Array (VLBA) data of the Juno spacecraft. The orbit of Saturn has been improved by radio range and VLBA data of the Cassini spacecraft, with improved estimation of the spacecraft orbit. The orbit of Pluto has been improved from use of stellar occultation data reduced against the Gaia star catalog. The ephemerides DE440 and DE441 are fit to the same data set, but DE441 assumes no damping between the lunar liquid core and the solid mantle, which avoids a divergence when integrated backward in time. Therefore, DE441 is less accurate than DE440 for the current century, but covers a much longer duration of years −13,200 to +17,191, compared to DE440 covering years 1550–2650.
Adam G. Riess et al 1998 AJ 116 1009
We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 ≤ z ≤ 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (ΩM), the cosmological constant (i.e., the vacuum energy density, ΩΛ), the deceleration parameter (q0), and the dynamical age of the universe (t0). The distances of the high-redshift SNe Ia are, on average, 10%–15% farther than expected in a low mass density (ΩM = 0.2) universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., ΩΛ > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than ΩM ≥ 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8 σ and 3.9 σ confidence levels, and with ΩΛ > 0 at the 3.0 σ and 4.0 σ confidence levels, for two different fitting methods, respectively. Fixing a "minimal" mass density, ΩM = 0.2, results in the weakest detection, ΩΛ > 0 at the 3.0 σ confidence level from one of the two methods. For a flat universe prior (ΩM + ΩΛ = 1), the spectroscopically confirmed SNe Ia require ΩΛ > 0 at 7 σ and 9 σ formal statistical significance for the two different fitting methods. A universe closed by ordinary matter (i.e., ΩM = 1) is formally ruled out at the 7 σ to 8 σ confidence level for the two different fitting methods. We estimate the dynamical age of the universe to be 14.2 ± 1.7 Gyr including systematic uncertainties in the current Cepheid distance scale. We estimate the likely effect of several sources of systematic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these effects appear to reconcile the data with ΩΛ = 0 and q0 ≥ 0.
Patryk Sofia Lykawka and Takashi Ito 2023 AJ 166 118
The orbits of trans-Neptunian objects (TNOs) can indicate the existence of an undiscovered planet in the outer solar system. Here we used N-body computer simulations to investigate the effects of a hypothetical Kuiper Belt planet (KBP) on the orbital structure of TNOs in the distant Kuiper Belt beyond ∼50 au. We used observations to constrain model results, including the well-characterized Outer Solar System Origins Survey (OSSOS). We determined that an Earth-like planet (m ∼ 1.5–3 M⊕) located on a distant (semimajor axis a ∼ 250–500 au, perihelion q ∼ 200 au) and inclined (i ∼ 30°) orbit can explain three fundamental properties of the distant Kuiper Belt: a prominent population of TNOs with orbits beyond Neptune's gravitational influence (i.e., detached objects with q > 40 au), a significant population of high-i objects (i > 45°), and the existence of some extreme objects with peculiar orbits (e.g., Sedna). Furthermore, the proposed KBP is compatible with the existence of identified gigayear-stable TNOs in the 2:1, 5:2, 3:1, 4:1, 5:1, and 6:1 Neptunian mean motion resonances. These stable populations are often neglected in other studies. We predict the existence of an Earth-like planet and several TNOs on peculiar orbits in the outer solar system, which can serve as observationally testable signatures of the putative planet's perturbations.
Bryson Cale et al 2019 AJ 158 170
The coolest dwarf stars are intrinsically faint at visible wavelengths and exhibit rotationally modulated stellar activity from spots and plages. It is advantageous to observe these stars at near-infrared (NIR) wavelengths (1–2.5 μm) where they emit the bulk of their bolometric luminosity and are most quiescent. In this work, we describe our methodology and results in obtaining precise radial velocity (RV) measurements of low-mass stars using K-band spectra taken with the R ∼ 80,000 iSHELL spectrograph and the NASA Infrared Telescope Facility using a methane isotopologue gas cell in the calibration unit. Our novel analysis pipeline extracts RVs by minimizing the rms of the residuals between the observed spectrum and a forward model. The model accounts for the gas cell, tellurics, blaze function, multiple sources of quasi-sinusoidal fringing, and line spread function of the spectrograph. The stellar template is derived iteratively using the target observations themselves through averaging barycenter-shifted residuals. We have demonstrated 5 m s−1 precision over one-year timescales for the M4 dwarf Barnard's Star and K dwarf 61 Cygni A, and 3 m s−1 over a month for the M2 dwarf GJ 15 A. This work demonstrates the potential for iSHELL to determine dynamical masses for candidate exoplanets discovered with the NASA Transiting Exoplanet Survey Satellite mission, and to search for exoplanets orbiting moderately active and/or young K & M dwarfs.
Lauren A. Sgro et al 2024 AJ 168 26
NASA's Transiting Exoplanet Survey Satellite (TESS) has identified over 7000 candidate exoplanets via the transit method, with gas giants among the most readily detected due to their large radii. Even so, long intervals between TESS observations for much of the sky lead to candidates for which only a single transit is detected in one TESS sector, leaving those candidate exoplanets with unconstrained orbital periods. Here, we confirm the planetary nature of TIC 393818343 b, originally identified via a single TESS transit, using radial velocity data and ground-based photometric observations from citizen scientists with the Unistellar Network and Exoplanet Watch. We determine a period of P = 16.24921
days, a mass MP = 4.34 ± 0.15 MJ, and semimajor axis a = 0.1291
au, placing TIC 393818343 b in the "warm Jupiter" population of exoplanets. With an eccentricity e = 0.6058 ± 0.0023, TIC 393818343 b is the most eccentric warm Jupiter to be discovered by TESS orbiting less than 0.15 au from its host star and therefore an excellent candidate for follow-up, as it may inform our future understanding of how hot and warm Jupiter populations are linked.
Samuel K. Grunblatt et al 2024 AJ 168 1
Hot Neptunes, gaseous planets smaller than Saturn (∼3–8 R⊕) with orbital periods less than 10 days, are rare. Models predict this is due to high-energy stellar irradiation stripping planetary atmospheres over time, often leaving behind only rocky planetary cores. Using our TESS full-frame-image pipeline giants in conjunction with Keck/HIRES radial velocity measurements, we present the discovery of TIC365102760 b, a 6.2 R⊕(0.55 RJ), 19.2 M⊕(0.060 MJ) planet transiting a red giant star every 4.21285 days. The old age and high equilibrium temperature yet remarkably low density of this planet (
) suggest that its gaseous envelope should have been stripped by high-energy stellar irradiation billions of years ago. The present-day planet mass and radius suggest the atmospheric stripping was slower than predicted. Unexpectedly low stellar activity and/or late-stage planet inflation could be responsible for the observed properties of this system. Further studies of this system with more precise photometry in multiple passbands will be capable of revealing more details of this planet's atmosphere.
Arjun Dey et al 2019 AJ 157 168
The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing–Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 μm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project.
M. Ban 2024 AJ 168 96
Timothy N. Miller et al 2024 AJ 168 95
The Dark Energy Spectroscopic Instrument (DESI) is currently measuring the spectra of 40 million galaxies and quasars, the largest such survey ever made to probe the nature of cosmological dark energy. The 4 m Mayall telescope at Kitt Peak National Observatory has been adapted for DESI, including the construction of a 3
2 diameter prime focus corrector that focuses astronomical light onto a 0.8 m diameter focal surface with excellent image quality over the DESI bandpass of 360–980 nm. The wide-field corrector includes six lenses, as large as 1.1 m in diameter and as heavy as 237 kilograms, including two counterrotating wedged lenses that correct for atmospheric dispersion over zenith angles from 0° to 60°. The lenses, cells, and barrel assembly all meet precise alignment tolerances on the order of tens of microns. The barrel alignment is maintained throughout a range of observing angles and temperature excursions in the Mayall dome by use of a hexapod, which is itself supported by a new cage, ring, and truss structure. In this paper we describe the design, fabrication, and performance of the new corrector and associated structure, focusing on how they meet DESI requirements. In particular, we describe the prescription and specifications of the lenses, design choices and error budgeting of the barrel assembly, stray light mitigations, and integration and test at the Mayall telescope. We conclude with some validation highlights that demonstrate the successful corrector on-sky performance, and we list some lessons learned during the multiyear fabrication phase.
Christiana Z. Suggs et al 2024 AJ 168 94
As part of our variable star follow-up program, we have examined a number of stars from the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey. Using a combination of our own data, ATLAS data, and other archival data, we confirmed the published periods and established a baseline ephemeris for each star. This initial sample of six stars are from the PUL or mono-periodic set from the ATLAS survey. Our determined periods agreed well with the published values. Five targets were found to be high amplitude δ Scuti variables (HADS), and one a low-amplitude δ Scuti (LADS). Beyond the primary period we examined the frequency content, Q value, position in the PL relation, and position within the instability strip of each object. We found ATO J070.9950+37.4038 to be the most complex target. The frequency content is likely a set of nonradial pulsations. ATO J328.8034+58.0406 is a multiperiodic HADS variable that is pulsating in the first and second overtones. ATO 345.4240+42.0479 was found to be a simple HADS monoperiodic fundamental pulsator. In the case of ATO J086.0780+30.3287, we found a strong fundamental pulsation with many harmonics and a weaker first overtone pulsation. We classify ATO J086.0780+30.3287 as a HADS. ATO J077.6090+36.5619 was found to be an interesting case of a monoperiodic star that appears to be pulsating in the third overtone. The lower amplitude for this target would put it in the LADS group. ATO J045.8159+46.0090 was found to be a multiperiodic HADS pulsating in the first and second overtones.
Sinclaire E. Jones et al 2024 AJ 168 93
We report the discovery of a close-in (Porb = 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d = 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius
, mass
, and density
for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of Prot = 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period
and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of
for TOI-2015 b and
for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.
Benjamin T. Liberles et al 2024 AJ 168 92
Previous work has established the enhanced occurrence of compact systems of multiple small exoplanets around metal-poor stars. Understanding the origin of this effect in the planet formation process is a topic of ongoing research. Here we consider the radii of planets residing in systems of multiple transiting planets, compared to those residing in single-transiting systems, with a particular focus on late-type host stars. We investigate whether the two radius distributions are consistent with being drawn from the same underlying planetary population. We construct a planetary sample of 290 planets around late K and M dwarfs containing 149 planets from single-transiting planetary systems and 141 planets from multi-transiting compact multiple planetary systems (54 compact multiples). We performed a two-sample Kolmogorov–Smirnov test, Mann–Whitney U test, and Anderson–Darling k-sampling test on the radius distributions of our two samples. We find statistical evidence (p < 0.0026) that planets in compact multiple systems are larger, on average, than their single-transiting counterparts for planets with Rp < 6 R⊕. We determine that the offset cannot be explained by detection bias. We investigate whether this effect could be explained via more efficient outgassing of a secondary atmosphere in compact multiple systems due to the stress and strain forces of interplanetary tides on planetary interiors. We find that this effect is insufficient to explain our observations without significant enrichment in H2O compared to Earth-like bulk composition.
M. Ban 2024 AJ 168 96
Timothy N. Miller et al 2024 AJ 168 95
The Dark Energy Spectroscopic Instrument (DESI) is currently measuring the spectra of 40 million galaxies and quasars, the largest such survey ever made to probe the nature of cosmological dark energy. The 4 m Mayall telescope at Kitt Peak National Observatory has been adapted for DESI, including the construction of a 3
2 diameter prime focus corrector that focuses astronomical light onto a 0.8 m diameter focal surface with excellent image quality over the DESI bandpass of 360–980 nm. The wide-field corrector includes six lenses, as large as 1.1 m in diameter and as heavy as 237 kilograms, including two counterrotating wedged lenses that correct for atmospheric dispersion over zenith angles from 0° to 60°. The lenses, cells, and barrel assembly all meet precise alignment tolerances on the order of tens of microns. The barrel alignment is maintained throughout a range of observing angles and temperature excursions in the Mayall dome by use of a hexapod, which is itself supported by a new cage, ring, and truss structure. In this paper we describe the design, fabrication, and performance of the new corrector and associated structure, focusing on how they meet DESI requirements. In particular, we describe the prescription and specifications of the lenses, design choices and error budgeting of the barrel assembly, stray light mitigations, and integration and test at the Mayall telescope. We conclude with some validation highlights that demonstrate the successful corrector on-sky performance, and we list some lessons learned during the multiyear fabrication phase.
Christiana Z. Suggs et al 2024 AJ 168 94
As part of our variable star follow-up program, we have examined a number of stars from the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey. Using a combination of our own data, ATLAS data, and other archival data, we confirmed the published periods and established a baseline ephemeris for each star. This initial sample of six stars are from the PUL or mono-periodic set from the ATLAS survey. Our determined periods agreed well with the published values. Five targets were found to be high amplitude δ Scuti variables (HADS), and one a low-amplitude δ Scuti (LADS). Beyond the primary period we examined the frequency content, Q value, position in the PL relation, and position within the instability strip of each object. We found ATO J070.9950+37.4038 to be the most complex target. The frequency content is likely a set of nonradial pulsations. ATO J328.8034+58.0406 is a multiperiodic HADS variable that is pulsating in the first and second overtones. ATO 345.4240+42.0479 was found to be a simple HADS monoperiodic fundamental pulsator. In the case of ATO J086.0780+30.3287, we found a strong fundamental pulsation with many harmonics and a weaker first overtone pulsation. We classify ATO J086.0780+30.3287 as a HADS. ATO J077.6090+36.5619 was found to be an interesting case of a monoperiodic star that appears to be pulsating in the third overtone. The lower amplitude for this target would put it in the LADS group. ATO J045.8159+46.0090 was found to be a multiperiodic HADS pulsating in the first and second overtones.
Sinclaire E. Jones et al 2024 AJ 168 93
We report the discovery of a close-in (Porb = 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d = 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius
, mass
, and density
for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of Prot = 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period
and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of
for TOI-2015 b and
for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.
Benjamin T. Liberles et al 2024 AJ 168 92
Previous work has established the enhanced occurrence of compact systems of multiple small exoplanets around metal-poor stars. Understanding the origin of this effect in the planet formation process is a topic of ongoing research. Here we consider the radii of planets residing in systems of multiple transiting planets, compared to those residing in single-transiting systems, with a particular focus on late-type host stars. We investigate whether the two radius distributions are consistent with being drawn from the same underlying planetary population. We construct a planetary sample of 290 planets around late K and M dwarfs containing 149 planets from single-transiting planetary systems and 141 planets from multi-transiting compact multiple planetary systems (54 compact multiples). We performed a two-sample Kolmogorov–Smirnov test, Mann–Whitney U test, and Anderson–Darling k-sampling test on the radius distributions of our two samples. We find statistical evidence (p < 0.0026) that planets in compact multiple systems are larger, on average, than their single-transiting counterparts for planets with Rp < 6 R⊕. We determine that the offset cannot be explained by detection bias. We investigate whether this effect could be explained via more efficient outgassing of a secondary atmosphere in compact multiple systems due to the stress and strain forces of interplanetary tides on planetary interiors. We find that this effect is insufficient to explain our observations without significant enrichment in H2O compared to Earth-like bulk composition.
Jhon Yana Galarza et al 2024 AJ 168 91
Among Neptunian mass exoplanets (20−50 M⊕), puffy hot Neptunes are extremely rare, and their unique combination of low mass and extended radii implies very low density (ρ < 0.3 g cm−3). Over the last decade, only a few puffy planets have been detected and precisely characterized with both transit and radial velocity observations, most notably including WASP-107 b, TOI-1420 b, and WASP-193 b. In this paper, we report the discovery of TOI-1173 A b, a low-density (
g cm−3) super-Neptune with P = 7.06 days in a nearly circular orbit around the primary G-dwarf star in the wide binary system TOI-1173 A/B. Using radial velocity observations with the MAROON-X and HIRES spectrographs and transit photometry from TESS, we determine a planet mass of Mp = 27.4 ± 1.7 M⊕ and radius of Rp = 9.19 ± 0.18 R⊕. TOI-1173 A b is the first puffy super-Neptune planet detected in a wide binary system (projected separation ∼11,400 au). We explore several mechanisms to understand the puffy nature of TOI-1173 A b and show that tidal heating is the most promising explanation. Furthermore, we demonstrate that TOI-1173 A b likely has maintained its orbital stability over time and may have undergone von-Zeipel–Lidov–Kozai migration followed by tidal circularization, given its present-day architecture, with important implications for planet migration theory and induced engulfment into the host star. Further investigation of the atmosphere of TOI-1173 A b will shed light on the origin of close-in low-density Neptunian planets in field and binary systems, while spin–orbit analyses may elucidate the dynamical evolution of the system.
Chen-hui Shi et al 2024 AJ 168 90
Galaxy pairs hold significant importance in understanding the evolution of galaxies, and the extensive search for a large sample of galaxy pairs is meaningful. In this article, we develop a deep learning-based approach for the search of galaxy pairs and conduct a comprehensive search on Sloan Digital Sky Survey (SDSS) images. In nine million photometric images, 17,965 physical galaxy pairs with spectral or photometric redshifts are detected. Four sets of results are provided, including physical pairs determined by two spectral redshifts, two photometric redshifts, one spectral redshift, and one photometric redshift, and visual irregular pairs that have no precise redshift information but can be inferred as physical galaxy pairs based on the morphological changes. Then their morphological and physical characteristics are explored, the redshifts of most targets are around 0.1, and as the redshift difference between two galaxies increases, the number of galaxy pairs gradually reduces. The distributions of star formation rate (SFR) are not the same for different morphologies of galaxy pairs, irregular pairs have higher SFR than the other three types, and statistics indicate that the SFR of galaxies depends on both nearby galaxies and internal properties. Color and stellar mass are also key properties of galaxies which can reflect the status of galaxy pairs. Compared to other surveys, a greater number of galaxy pair targets are detected, and this is also the first extensive detection of galaxy pairs in SDSS images using photometric redshifts. These galaxy pair samples can greatly aid in the study of galaxy evolution.
Neelam Panwar et al 2024 AJ 168 89
We present a multiwavelength analysis of the young star cluster Berkeley 59, based on Gaia data and deep IR observations with the 3.58 m Telescopio Nazionale Galileo and Spitzer space telescope. The mean proper motion of the cluster is found to be μαcosδ ∼ −0.63 mas yr−1 and μδ ∼ −1.83 mas yr−1, and the kinematic distance of the cluster, ∼1 kpc, is in agreement with previous photometric studies. The present data are the deepest available near-IR observations for the cluster so far and reach below 0.03 M⊙. The mass function of the cluster region is calculated using the statistically cleaned color–magnitude diagram and is similar to the Salpeter value for the member stars above 0.4 M⊙. In contrast, the slope becomes shallower (Γ ∼ 0.01 ± 0.18) in the mass range 0.04–0.4 M⊙, comparable to other nearby clusters. The spatial distribution of young brown dwarfs (BDs) and stellar candidates shows a nonhomogeneous distribution. This suggests that the radiation feedback from massive stars may be a prominent factor contributing to the BD population in the cluster Berkeley 59. We also estimated the star-to-BD ratio for the cluster, which is found to be ∼3.6. The Kolmogorov–Smirnov test shows that the stellar and BD populations significantly differ, and stellar candidates are nearer the cluster center compared to the BDs, suggesting mass segregation in the cluster toward the substellar mass regime.
Adam E. Lanman et al 2024 AJ 168 87
Localizing fast radio bursts (FRBs) to their host galaxies is an essential step to better understanding their origins and using them as cosmic probes. The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB Outriggers program aims to add very long baseline interferometry localization capabilities to CHIME, such that FRBs may be localized to tens of milliarcsecond precision at the time of their discovery, more than sufficient for host galaxy identification. The first-built outrigger telescope is the
Outrigger (KKO), located 66 km west of CHIME. Cross-correlating KKO with CHIME can achieve arcsecond precision along the baseline axis while avoiding the worst effects of the ionosphere. Since the CHIME–KKO baseline is mostly east/west, this improvement is mostly in right ascension. This paper presents measurements of KKO's performance throughout its commissioning phase, as well as a summary of its design and function. We demonstrate KKO's capabilities as a standalone instrument by producing full-sky images, mapping the angular and frequency structure of the primary beam, and measuring feed positions. To demonstrate the localization capabilities of the CHIME–KKO baseline, we collected five separate observations each, for a set of 20 bright pulsars, and aimed to measure their positions to within 5''. All of these pulses were successfully localized to within this specification. The next two outriggers are expected to be commissioned in 2024 and will enable subarcsecond localizations for approximately hundreds of FRBs each year.
Yunning Zhao et al 2024 AJ 168 88
Based on the slopes between DESI g, r and Infrared Astronomical Satellite (IRAS) 100 μm intensities, specifically kg and kr, we have constructed a substantial sample of Galactic cirri. This sample covers 561.25 deg2 at high Galactic latitudes (∣b∣ ≥ 30°), allowing for a systematic study of the physical parameters of the Galactic cirrus on a large scale, such as g − r color, dust temperature, asymmetry factor, and albedo. The ratio of kg and kr is consistent with the diffuse Galactic starlight model, suggesting that the diffuse starlight within our own Galaxy serves as the primary illumination source for the cirrus. Both kg and kr decrease slowly with increasing Galactic latitudes and IRAS 100 μm intensities, while they do not have a correlation with Galactic longitudes. The distribution of kg and kr confirms a significant scatter in the slopes, reaching a factor of 4–5. Such large scatter cannot be explained by the weak correlation between the slopes and Galactic latitudes and IRAS 100 μm intensities. Instead, it is attributed to substantial variations in the intrinsic properties of the dust, e.g., asymmetry factor and albedo. We propose that the properties of dust particles play a critical role in the observed scatter in slopes, making them the primary contributing factors. Moreover, the variations in dust properties within the cirrus are localized rather than exhibiting large-scale gradients.